This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files

157 lines
5.4 KiB
Python
Raw Permalink Normal View History

2023-05-25 15:30:02 +08:00
import math
import numpy as np
def evaluate(y_true: [int], y_pred: [int], pos_label: int = 1, max_segment: int = 0) -> float:
"""
基于异常段计算F值
:param y_true: 真实标签
:param y_pred: 检测标签
:param pos_label: 检测的目标数值即指定哪个数为异常数值
:param max_segment: 异常段最大长度
:return: 段F值
"""
p_tad = precision_tad(y_true=y_true, y_pred=y_pred, pos_label=pos_label, max_segment=max_segment)
r_tad = recall_tad(y_true=y_true, y_pred=y_pred, pos_label=pos_label, max_segment=max_segment)
score = 0
if p_tad and r_tad:
score = 2 * p_tad * r_tad / (p_tad + r_tad)
return score
def recall_tad(y_true: [int], y_pred: [int], pos_label: int = 1, max_segment: int = 0) -> float:
"""
基于异常段计算召回率
:param y_true: 真实标签
:param y_pred: 检测标签
:param pos_label: 检测的目标数值即指定哪个数为异常数值
:param max_segment: 异常段最大长度
:return: 段召回率
"""
if max_segment == 0:
max_segment = get_max_segment(y_true=y_true, pos_label=pos_label)
score = tp_count(y_true, y_pred, pos_label=pos_label, max_segment=max_segment)
return score
def precision_tad(y_true: [int], y_pred: [int], pos_label: int = 1, max_segment: int = 0) -> float:
"""
基于异常段计算精确率
:param y_true: 真实标签
:param y_pred: 检测标签
:param pos_label: 检测的目标数值即指定哪个数为异常数值
:param max_segment: 异常段最大长度
:return: 段精确率
"""
if max_segment == 0:
max_segment = get_max_segment(y_true=y_true, pos_label=pos_label)
score = tp_count(y_pred, y_true, pos_label=pos_label, max_segment=max_segment)
return score
def tp_count(y_true: [int], y_pred: [int], max_segment: int = 0, pos_label: int = 1) -> float:
"""
计算段的评分交换y_true和y_pred可以分别表示召回率与精确率
:param y_true: 真实标签
:param y_pred: 检测标签
:param pos_label: 检测的目标数值即指定哪个数为异常数值
:param max_segment: 异常段最大长度
:return: 分数
"""
if len(y_true) != len(y_pred):
raise ValueError("y_true and y_pred should have the same length.")
neg_label = 1 - pos_label
position = 0
tp_list = []
if max_segment == 0:
raise ValueError("max segment length is 0")
while position < len(y_true):
if y_true[position] == neg_label:
position += 1
continue
elif y_true[position] == pos_label:
start = position
while position < len(y_true) and y_true[position] == pos_label and position - start < max_segment:
position += 1
end = position
true_window = [weight_line(i/(end-start)) for i in range(end-start)]
true_window = softmax(true_window)
pred_window = np.array(y_pred[start:end])
pred_window = np.where(pred_window == pos_label, true_window, 0)
tp_list.append(sum(pred_window))
else:
raise ValueError("label value must be 0 or 1")
score = sum(tp_list) / len(tp_list) if len(tp_list) > 0 else 0
return score
def weight_line(position: float) -> float:
"""
按照权重曲线给不同位置的点赋值
:param position: 点在段中的相对位置取值范围[0,1]
:return: 权重值
"""
if position < 0 or position > 1:
raise ValueError(f"point position in segment need between 0 and 1, {position} is error position")
sigma = 1 / (1 + math.exp(10*(position-0.5)))
return sigma
def softmax(x: [float]) -> [float]:
"""
softmax函数
:param x: 一个异常段的数据
:return: 经过softmax的一段数据
"""
ret = np.exp(x)/np.sum(np.exp(x), axis=0)
return ret.tolist()
def get_max_segment(y_true: [int], pos_label: int = 1) -> int:
"""
获取最大的异常段的长度
:param y_true: 真实标签
:param pos_label: 异常标签的取值
:return: 最大长度
"""
max_num, i = 0, 0
neg_label = 1 - pos_label
while i < len(y_true):
if y_true[i] == neg_label:
i += 1
continue
elif y_true[i] == pos_label:
start = i
while i < len(y_true) and y_true[i] == pos_label:
i += 1
end = i
max_num = max(max_num, end-start)
else:
raise ValueError("label value must be 0 or 1")
return max_num
if __name__ == "__main__":
# y_true = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
# 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
# y_pred = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
# 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
import pandas as pd
data = pd.read_csv("../records/2023-04-10_10-30-27/detection_result/MtadGatAtt_SWAT.csv")
y_true = data["true"].tolist()
y_pred = data["ftad"].tolist()
print(evaluate(y_true, y_pred))
# print(precision_tad(y_true, y_pred))
# print(recall_tad(y_true, y_pred))
# from sklearn.metrics import f1_score, precision_score, recall_score
# print(f1_score(y_true, y_pred))
# print(precision_score(y_true, y_pred))
# print(recall_score(y_true, y_pred))