import math import numpy as np def evaluate(y_true: [int], y_pred: [int], pos_label: int = 1, max_segment: int = 0) -> float: """ 基于异常段计算F值 :param y_true: 真实标签 :param y_pred: 检测标签 :param pos_label: 检测的目标数值,即指定哪个数为异常数值 :param max_segment: 异常段最大长度 :return: 段F值 """ p_tad = precision_tad(y_true=y_true, y_pred=y_pred, pos_label=pos_label, max_segment=max_segment) r_tad = recall_tad(y_true=y_true, y_pred=y_pred, pos_label=pos_label, max_segment=max_segment) score = 0 if p_tad and r_tad: score = 2 * p_tad * r_tad / (p_tad + r_tad) return score def recall_tad(y_true: [int], y_pred: [int], pos_label: int = 1, max_segment: int = 0) -> float: """ 基于异常段计算召回率 :param y_true: 真实标签 :param y_pred: 检测标签 :param pos_label: 检测的目标数值,即指定哪个数为异常数值 :param max_segment: 异常段最大长度 :return: 段召回率 """ if max_segment == 0: max_segment = get_max_segment(y_true=y_true, pos_label=pos_label) score = tp_count(y_true, y_pred, pos_label=pos_label, max_segment=max_segment) return score def precision_tad(y_true: [int], y_pred: [int], pos_label: int = 1, max_segment: int = 0) -> float: """ 基于异常段计算精确率 :param y_true: 真实标签 :param y_pred: 检测标签 :param pos_label: 检测的目标数值,即指定哪个数为异常数值 :param max_segment: 异常段最大长度 :return: 段精确率 """ if max_segment == 0: max_segment = get_max_segment(y_true=y_true, pos_label=pos_label) score = tp_count(y_pred, y_true, pos_label=pos_label, max_segment=max_segment) return score def tp_count(y_true: [int], y_pred: [int], max_segment: int = 0, pos_label: int = 1) -> float: """ 计算段的评分,交换y_true和y_pred可以分别表示召回率与精确率。 :param y_true: 真实标签 :param y_pred: 检测标签 :param pos_label: 检测的目标数值,即指定哪个数为异常数值 :param max_segment: 异常段最大长度 :return: 分数 """ if len(y_true) != len(y_pred): raise ValueError("y_true and y_pred should have the same length.") neg_label = 1 - pos_label position = 0 tp_list = [] if max_segment == 0: raise ValueError("max segment length is 0") while position < len(y_true): if y_true[position] == neg_label: position += 1 continue elif y_true[position] == pos_label: start = position while position < len(y_true) and y_true[position] == pos_label and position - start < max_segment: position += 1 end = position true_window = [weight_line(i/(end-start)) for i in range(end-start)] true_window = softmax(true_window) pred_window = np.array(y_pred[start:end]) pred_window = np.where(pred_window == pos_label, true_window, 0) tp_list.append(sum(pred_window)) else: raise ValueError("label value must be 0 or 1") score = sum(tp_list) / len(tp_list) if len(tp_list) > 0 else 0 return score def weight_line(position: float) -> float: """ 按照权重曲线,给不同位置的点赋值 :param position: 点在段中的相对位置,取值范围[0,1] :return: 权重值 """ if position < 0 or position > 1: raise ValueError(f"point position in segment need between 0 and 1, {position} is error position") sigma = 1 / (1 + math.exp(10*(position-0.5))) return sigma def softmax(x: [float]) -> [float]: """ softmax函数 :param x: 一个异常段的数据 :return: 经过softmax的一段数据 """ ret = np.exp(x)/np.sum(np.exp(x), axis=0) return ret.tolist() def get_max_segment(y_true: [int], pos_label: int = 1) -> int: """ 获取最大的异常段的长度 :param y_true: 真实标签 :param pos_label: 异常标签的取值 :return: 最大长度 """ max_num, i = 0, 0 neg_label = 1 - pos_label while i < len(y_true): if y_true[i] == neg_label: i += 1 continue elif y_true[i] == pos_label: start = i while i < len(y_true) and y_true[i] == pos_label: i += 1 end = i max_num = max(max_num, end-start) else: raise ValueError("label value must be 0 or 1") return max_num if __name__ == "__main__": # y_true = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # y_pred = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] import pandas as pd data = pd.read_csv("../records/2023-04-10_10-30-27/detection_result/MtadGatAtt_SWAT.csv") y_true = data["true"].tolist() y_pred = data["ftad"].tolist() print(evaluate(y_true, y_pred)) # print(precision_tad(y_true, y_pred)) # print(recall_tad(y_true, y_pred)) # from sklearn.metrics import f1_score, precision_score, recall_score # print(f1_score(y_true, y_pred)) # print(precision_score(y_true, y_pred)) # print(recall_score(y_true, y_pred))