Initial commit

This commit is contained in:
zy
2023-11-16 13:17:49 +08:00
commit 8950e12801
19 changed files with 1976 additions and 0 deletions

63
.gitignore vendored Normal file
View File

@@ -0,0 +1,63 @@
# Prerequisites
*.d
# Object files
*.o
*.ko
*.obj
*.elf
# Linker output
*.ilk
*.map
*.exp
# Precompiled Headers
*.gch
*.pch
# Libraries
*.lib
*.a
*.la
*.lo
# Shared objects (inc. Windows DLLs)
*.dll
*.so
*.so.*
*.dylib
# Executables
*.exe
*.out
*.app
*.i*86
*.x86_64
*.hex
# Debug files
*.dSYM/
*.su
*.idb
*.pdb
# Kernel Module Compile Results
*.mod*
*.cmd
.tmp_versions/
modules.order
Module.symvers
Mkfile.old
dkms.conf
watch
linux-5.17.15/**
linux-5.17.15.tar.xz
helloworld
hptest
linux-5.17.15/.clang-format
linux-5.17.15/.gitignore
linux-5.17.15/.mailmap
linux-5.17.15/.cocciconfig
linux-5.17.15/.get_maintainer.ignore
linux-5.17.15/.cocciconfig

28
.vscode/c_cpp_properties.json vendored Normal file
View File

@@ -0,0 +1,28 @@
{
"configurations": [
{
"name": "Linux",
"includePath": [
"${workspaceFolder}/**",
"../linux-5.17.15/include/**",
"../linux-5.17.15/arch/x86/include/**",
"../linux-5.17.15/arch/x86/include/generated/**"
],
"forcedInclude": [
"../linux-5.17.15/include/generated/autoconf.h"
],
"defines": [
"__GNUC__",
"__KERNEL__",
"__linux__",
"__x86_64__",
"_GNU_SOURCE"
],
"compilerPath": "/usr/bin/gcc",
"cStandard": "c89",
"compilerArgs": [],
"intelliSenseMode": "linux-gcc-x64",
}
],
"version": 4
}

46
.vscode/launch.json vendored Normal file
View File

@@ -0,0 +1,46 @@
{
// 使用 IntelliSense 了解相关属性。
// 悬停以查看现有属性的描述。
// 欲了解更多信息,请访问: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "(gdb) linux kernel",
"type": "cppdbg",
"request": "launch",
//"preLaunchTask": "centos7",
// socat pty,link=./rootkit.pty,raw,echo=0 EXEC:"/mnt/c/ProgramData/chocolatey/lib/npiperelay/tools/npiperelay.exe -ep -s //./pipe/rootkit",nofork
"program": "${workspaceFolder}/linux-5.17.15/vmlinux",
//"miDebuggerServerAddress": "localhost:1234",
//"debugServerPath": "${workspaceFolder}/rootkit.pty",
"miDebuggerPath": "/usr/bin/gdb",
"miDebuggerArgs": "-ex 'set serial baud 115200 target remote ./rootkit.pty'",
"args": [],
"stopAtEntry": true,
"cwd": "${workspaceFolder}",
"environment": [],
"externalConsole": false,
"MIMode": "gdb",
//"miDebuggerArgs": "-n",
"targetArchitecture": "x64",
"setupCommands": [ // 或许在这里添加的 set serial baud 115200 | target remote ./rootkit.pty
{
"text": "set arch i386:x86-64:intel",
"ignoreFailures": false
},
{
"text": "dir .",
"ignoreFailures": false
},
{
"text": "add-auto-load-safe-path ./",
"ignoreFailures": false
},
{
"text": "-enable-pretty-printing",
"ignoreFailures": true
}
]
}
]
}

27
.vscode/settings.json vendored Normal file
View File

@@ -0,0 +1,27 @@
{
"files.associations": {
"hrtimer.h": "c",
"ktime.h": "c",
"typeinfo": "c",
"signal.h": "c",
"module.h": "c",
"watch_module.h": "c",
"kernel.h": "c",
"device.h": "c",
"mm.h": "c",
"fs.h": "c",
"sched.h": "c",
"monitor_user.h": "c"
},
"clangd.arguments": [
"--compile-commands-dir=${workspaceFolder}/linux-5.17.15",
"--background-index",
"--completion-style=detailed",
"--header-insertion=never",
"-log=info"
],
"C_Cpp.autocomplete": "disabled",
"C_Cpp.codeFolding": "disabled",
"C_Cpp.configurationWarnings": "disabled",
"C_Cpp.intelliSenseEngine": "disabled"
}

33
.vscode/tasks.json vendored Normal file
View File

@@ -0,0 +1,33 @@
{
"tasks": [
{
"label": "centos7",
"type": "shell",
"command": "./run.sh",
"presentation": {
"echo": true,
"clear": true,
"group": "vm"
},
"isBackground": true,
"problemMatcher": [
{
"pattern": [
{
"regexp": ".",
"file": 1,
"location": 2,
"message": 3
}
],
"background": {
"activeOnStart": true,
"beginsPattern": ".",
"endsPattern": ".",
}
}
]
}
],
"version": "2.0.0"
}

36
Makefile Normal file
View File

@@ -0,0 +1,36 @@
CC = gcc
CFLAGS = -Wall
PROG = helloworld
HPTEST = hptest
UDIR = $(PWD)/user
MDIR := $(PWD)/kernel
KDIR := $(PWD)/linux-5.17.15 # 内核源码目录
TDIR := $(PWD)/testcase
BUILD_DIR := $(PWD)/build
OUTPUT_DIR = $(PWD)/build
# KMOD = variable_monitor
# obj-m := kernel/$(KMOD).o
# $(KMOD)-objs := kernel/monitor_kernel.o
all: $(PROG) $(HPTEST) module
$(PROG): $(TDIR)/helloworld.c
$(CC) $(CFLAGS) -o $(OUTPUT_DIR)/$(PROG) $(TDIR)/helloworld.c $(UDIR)/monitor_user.c
$(HPTEST): $(TDIR)/helloworld.c
$(CC) $(CFLAGS) -o $(OUTPUT_DIR)/$(HPTEST) $(TDIR)/hptest.c $(UDIR)/monitor_user.c
module:
make -C $(KDIR) M=$(MDIR) modules
# module:
# make -C linux-5.17.15 M=$(PWD)/kernel modules
clean:
rm -f $(OUTPUT_DIR)/*
make -C $(KDIR) M=$(MDIR) clean

150
README.md Normal file
View File

@@ -0,0 +1,150 @@
## Variable Monitor
Monitor numerical variables (given address, length), and print system stack information when the set conditions are exceeded.
Number of simultaneous monitoring
- Monitoring with the same timing length will be grouped into one group, corresponding to one timer.
- A set of up to 32 variables, after which a new timer is allocated.
- The global maximum number of timers is 128.
- The above quantity limit is defined in the `watch_module.h` header macro.
Currently, monitoring is limited to the same application, and simultaneous calls from multiple applications are not currently supported.
- Multiple applications can work normally if only one program calls `cancel_all_watch();`.
## Usage
Example: helloworld.c
- Add `#include "watch.h"`
- Set each variable that needs to be monitored: name && address && length, set threshold, comparison method, timer interval (ns), etc.
- `start_watch(watch_arg);` Start monitoring
- Call `cancel_all_watch();` when you need to cancel monitoring
When the set conditions are exceeded, the system stack information is printed and viewed with `dmesg`, as shown in the following example:
- Within a timer, if multiple variables exceed the threshold, the stack information will not be output repeatedly;
- The timer restart time after printing the stack is 1s, and the next round of monitoring will start after 1s.
```log
[86245.364861] -------------------------------------
[86245.364864] -------------watch monitor-----------
[86245.364865] Threshold reached:
name: temp0, threshold: 150
[86245.364866] Timestamp (ns): 1699589000606300743
[86245.364867] Recent Load: 116.65, 126.83, 151.17
[86245.365669] task: name lcore-worker-4, pid 803327
[86245.365672] task: name lcore-worker-5, pid 803328
[86245.365673] task: name lcore-worker-6, pid 803329
[86245.365674] task: name lcore-worker-7, pid 803330
[86245.365676] task: name lcore-worker-8, pid 803331
[86245.365677] task: name lcore-worker-9, pid 803332
[86245.365679] task: name lcore-worker-10, pid 803333
[86245.365681] task: name lcore-worker-11, pid 803334
[86245.365682] task: name lcore-worker-68, pid 803335
[86245.365683] task: name lcore-worker-69, pid 803336
[86245.365684] task: name lcore-worker-70, pid 803337
[86245.365685] task: name lcore-worker-71, pid 803338
[86245.365686] task: name lcore-worker-72, pid 803339
[86245.365687] task: name lcore-worker-73, pid 803340
[86245.365688] task: name lcore-worker-74, pid 803341
[86245.365689] task: name lcore-worker-75, pid 803342
[86245.365694] task: name pkt:worker-0, pid 803638
[86245.365702] hrtimer_nanosleep+0x8d/0x120
[86245.365709] __x64_sys_nanosleep+0x96/0xd0
[86245.365711] do_syscall_64+0x37/0x80
[86245.365716] entry_SYSCALL_64_after_hwframe+0x44/0xae
[86245.365718] task: name pkt:worker-1, pid 803639
[86245.365721] hrtimer_nanosleep+0x8d/0x120
[86245.365724] __x64_sys_nanosleep+0x96/0xd0
[86245.365726] do_syscall_64+0x37/0x80
[86245.365728] entry_SYSCALL_64_after_hwframe+0x44/0xae
[86245.365730] task: name pkt:worker-2, pid 803640
[86245.365732] hrtimer_nanosleep+0x8d/0x120
[86245.365734] __x64_sys_nanosleep+0x96/0xd0
[86245.365737] do_syscall_64+0x37/0x80
[86245.365739] entry_SYSCALL_64_after_hwframe+0x44/0xae
[86245.365740] task: name pkt:worker-3, pid 803641
[86245.365743] hrtimer_nanosleep+0x8d/0x120
```
### Parameter Description
start_watch passes in the watch_arg structure. The meaning of each field is as follows
- name limit `MAX_NAME_LEN`(15) valid characters
```c
typedef struct
{
pid_t task_id; // current process id
char name[MAX_NAME_LEN + 1]; // name (15+1)
void *ptr; // virtual address
int length_byte; // byte
long long threshold; // threshold value
unsigned char unsigned_flag; // unsigned flag (true: unsigned, false: signed)
unsigned char greater_flag; // reverse flag (true: >, false: <)
unsigned long time_ns; // timer interval (ns)
} watch_arg;
```
An initialization example
```c
watch_args = (watch_arg){
.task_id = getpid(),
.ptr = &temp,
.name = "temp",
.length_byte = sizeof(int),
.threshold = 150 + i,
.unsigned_flag = 0,
.greater_flag = 1,
.time_ns = 2000 + (i / 33) * 5000
};
```
## demo
In the main project directory:
```bash
make && insmod watch_module.ko
./watch
```
You can see the printed stack information in dmesg
```bash
# Unload module and clean compile files
rmmod watch_module.ko && make clean
```
Only tested on kernel 5.17.15-1.el8.x86_64.
## Other
The program is divided into two parts: character device and user space interface, both of which communicate through ioctl.
User space address access
- The variable virtual address passed in by the user program, use `get_user_pages_remote` to obtain the memory page where the address is located, and `kmap` maps it to the kernel.
- In the 192.168.40.204 environment, the HugeTLB Pages test mounts normally.
- The memory page address + offset is stored in the `kernel_watch_arg` corresponding to the timer, and hrTimer accesses `kernel_watch_arg` when polling to get the real value.
timer grouping
- The hrTimer data structure is defined in the global array `kernel_wtimer_list`. When allocating a timer, it will check the traversal `kernel_wtimer_list` to compare the timer interval.
- Watches with the same timing interval are assigned to the same group and correspond to the same hrTimer.
- If the number of variables monitored by a timer exceeds `TIMER_MAX_WATCH_NUM` (32), a new hrTimer will be created.
- The total number of hrTimers (`kernel_wtimer_list` array length) limit is `MAX_TIMER_NUM`(128).
Memory page mount/unmount
- `get_user_pages_remote`/ `kmap` will increase the corresponding count and requires the equivalent `put_page`/`kunmap`.
- A global linked list in the module `watch_local_memory_list` stores the page and kt corresponding to each successfully mounted variable. When performing the close operation of the character device, it is traversed and unloaded.
Stack output conditions: The conditions are referenced from [diagnose-tools::load.c](https://github.com/alibaba/diagnose-tools/blob/e285bc4626a7d207eabd4a69cb276e1a3b1b7c76/SOURCE/module/kernel/load.c#L209)
- `TASK` must satisfy TASK_RUNNING and `__task_contributes_to_load`.
- `__task_contributes_to_load` corresponds to the kernel macro `task_contributes_to_loa`.
```c
// https://www.spinics.net/lists/kernel/msg3582022.html
// remove from 5.8.rc3,but it still work
// whether the task contributes to the load
#define __task_contributes_to_load(task) \
((READ_ONCE(task->__state) & TASK_UNINTERRUPTIBLE) != 0 && (task->flags & PF_FROZEN) == 0 && \
(READ_ONCE(task->__state) & TASK_NOLOAD) == 0)
```

174
README_zh.md Normal file
View File

@@ -0,0 +1,174 @@
## Variable Monitor
changelog
```log
11.9 多个变量监控支持
11.10 按照 pid 区分不同内核结构, 支持每个进程单独申请取消自己的监控.
11.13 用户接口 cancel_all_watch -> cancel_watch, 每个进程互不干扰.
```
## 说明
监控 数值变量(给定 地址,长度), 超过设定条件打印系统堆栈信息.
同时监控数量
- 相同定时长度的监控 会被分为一组,对应一个定时器.
- 一组最多 32 个变量,超过后会分配一个新的定时器.
- 定时器数量全局最多 128 个.
- 以上数量限制定义在 `watch_module.h` 头部宏.
## 使用
示例如 helloworld.c
- 添加 `#include "watch.h"`
- 对每个需要监控的变量 设置: 名称 && 地址 && 长度, 设置阈值, 比较方式, 定时器间隔(ns) 等.
- `start_watch(watch_arg);` 启动监控
- 需要取消监控时调用 `cancel_watch();`
超出设定条件时,打印系统堆栈信息, `dmesg` 查看,如下示例:
- 一个定时器内,多个变量超过阈值,堆栈信息不会重复输出;
- 打印堆栈后定时器再启动时间为 1s, 1s 后开始下一个轮次监控.
```log
[ 713.225894] -------------------------------------
[ 713.225900] -------------watch monitor-----------
[ 713.225900] Threshold reached:
[ 713.225901] name: temp0, threshold: 150, pid: 4261
[ 713.225902] name: temp1, threshold: 151, pid: 4261
[ 713.225903] name: temp2, threshold: 152, pid: 4261
[ 713.225904] name: temp3, threshold: 153, pid: 4261
[ 713.225904] name: temp4, threshold: 154, pid: 4261
[ 713.225905] name: temp5, threshold: 155, pid: 4261
[ 713.225905] name: temp6, threshold: 156, pid: 4261
[ 713.225906] name: temp7, threshold: 157, pid: 4261
[ 713.225906] name: temp8, threshold: 158, pid: 4261
[ 713.225907] name: temp9, threshold: 159, pid: 4261
[ 713.225907] name: temp10, threshold: 160, pid: 4261
[ 713.225908] name: temp11, threshold: 161, pid: 4261
[ 713.225908] name: temp12, threshold: 162, pid: 4261
[ 713.225909] name: temp13, threshold: 163, pid: 4261
[ 713.225909] name: temp14, threshold: 164, pid: 4261
[ 713.225910] name: temp15, threshold: 165, pid: 4261
[ 713.225910] name: temp16, threshold: 166, pid: 4261
[ 713.225911] name: temp17, threshold: 167, pid: 4261
[ 713.225911] name: temp18, threshold: 168, pid: 4261
[ 713.225912] name: temp19, threshold: 169, pid: 4261
[ 713.225912] name: temp20, threshold: 170, pid: 4261
[ 713.225913] name: temp21, threshold: 171, pid: 4261
[ 713.225913] name: temp22, threshold: 172, pid: 4261
[ 713.225914] name: temp23, threshold: 173, pid: 4261
[ 713.225914] name: temp24, threshold: 174, pid: 4261
[ 713.225915] name: temp25, threshold: 175, pid: 4261
[ 713.225915] name: temp26, threshold: 176, pid: 4261
[ 713.225916] name: temp27, threshold: 177, pid: 4261
[ 713.225916] name: temp28, threshold: 178, pid: 4261
[ 713.225916] name: temp29, threshold: 179, pid: 4261
[ 713.225917] name: temp30, threshold: 180, pid: 4261
[ 713.225917] name: temp31, threshold: 181, pid: 4261
[ 713.225918] Timestamp (ns): 1699846710299420862
[ 713.225919] Recent Load: 0.05, 0.12, 0.08
[ 713.225921] task: name rcu_gp, pid 3, state 1026
[ 713.225926] rescuer_thread+0x290/0x390
[ 713.225931] kthread+0xd7/0x100
[ 713.225932] ret_from_fork+0x1f/0x30
[ 713.225935] task: name rcu_par_gp, pid 4, state 1026
[ 713.225936] rescuer_thread+0x290/0x390
[ 713.225937] kthread+0xd7/0x100
[ 713.225938] ret_from_fork+0x1f/0x30
[ 713.225940] task: name netns, pid 5, state 1026
[ 713.225941] rescuer_thread+0x290/0x390
[ 713.225942] kthread+0xd7/0x100
```
### 参数说明
start_watch 传入的是 watch_arg 结构体.各个字段意义如下
- name 限制 `MAX_NAME_LEN`(15) 个有效字符
```c
typedef struct
{
pid_t task_id; // current process id
char name[MAX_NAME_LEN + 1]; // name (15+1)
void *ptr; // virtual address
int length_byte; // byte
long long threshold; // threshold value
unsigned char unsigned_flag; // unsigned flag (true: unsigned, false: signed)
unsigned char greater_flag; // reverse flag (true: >, false: <)
unsigned long time_ns; // timer interval (ns)
} watch_arg;
```
一个初始化示例
```c
watch_args = (watch_arg){
.task_id = getpid(),
.ptr = &temp,
.name = "temp",
.length_byte = sizeof(int),
.threshold = 150 + i,
.unsigned_flag = 0,
.greater_flag = 1,
.time_ns = 2000 + (i / 33) * 5000
};
```
## demo
项目主文件下
- `helloworld.c`: 测试大量变量监控
- `hptest.c`: 测试 hugePage 挂载
```bash
# 编译加载模块
make && insmod variable_monitor.ko
./helloworld
```
dmesg 可以看到打印的堆栈信息
```bash
# 卸载模块,清理编译文件
rmmod variable_monitor.ko && make clean
```
仅在 `kernel 5.17.15-1.el8.x86_64` 测试,其他内核版本未测试.
## 其他
程序分为两部分: 字符设备 和 用户空间接口, 两者通过 ioctl 通信.
用户空间地址访问
- 用户程序传入的变量 虚拟地址, 使用 `get_user_pages_remote` 获取地址所在内存页, `kmap` 将其映射到内核.
- 192.168.40.204 环境下,HugeTLB Pages 测试挂载正常.
- 内存页地址 + 偏移量存入定时器对应的 `kernel_watch_arg` 中, hrTimer 轮询时访问 `kernel_watch_arg` 得到真实值.
定时器分组
- hrTimer 数据结构定义在全局数组 `kernel_wtimer_list`.分配定时器时,会检查遍历 `kernel_wtimer_list` 比较定时器间隔,
- 相同定时间隔的 watch 分配到同一组,对应同一个 hrTimer.
- 若一个定时器监控变量数量超过 `TIMER_MAX_WATCH_NUM` (32),则会创建一个新的 hrTimer.
- hrTimer 的总数量(`kernel_wtimer_list` 数组长度)限制是 `MAX_TIMER_NUM`(128).
内存页 mount/unmount
- `get_user_pages_remote`/ `kmap` 会增加对应的计数,需要对等的 `put_page`/`kunmap`.
- 一个模块内全局链表 `watch_local_memory_list` 存储每一个成功挂载的变量对应的 page 和 kt,执行字符设备的 close 操作时,遍历并卸载.
variable monitor 添加/删除
- kernel_watch_arg 数据结构中有 pid 的成员变量,但添加变量监控时,不按照进程区分.
- 删除时遍历全部监控变量,比较 pid.
- 删除造成的缺位,将最后的变量移动到空位, sentinel--; hrTimer 同理.
堆栈输出条件: 条件参考自 [diagnose-tools::load.c](https://github.com/alibaba/diagnose-tools/blob/e285bc4626a7d207eabd4a69cb276e1a3b1b7c76/SOURCE/module/kernel/load.c#L209)
- `TASK` 要满足 TASK_RUNNING 和 `__task_contributes_to_load``TASK_IDLE`(可能有阻塞进程).
- `__task_contributes_to_load` 对应内核宏 `task_contributes_to_loa`.
```c
// https://www.spinics.net/lists/kernel/msg3582022.html
// remove from 5.8.rc3,but it still work
// whether the task contributes to the load
#define __task_contributes_to_load(task) \
((READ_ONCE(task->__state) & TASK_UNINTERRUPTIBLE) != 0 && (task->flags & PF_FROZEN) == 0 && \
(READ_ONCE(task->__state) & TASK_NOLOAD) == 0)
```

3
kernel/Makefile Normal file
View File

@@ -0,0 +1,3 @@
KMOD = variable_monitor
obj-m := $(KMOD).o
$(KMOD)-objs := monitor_kernel.o

157
kernel/monitor_kernel.c Normal file
View File

@@ -0,0 +1,157 @@
#include <linux/device.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include "monitor_kernel_lib.c"
#include "monitor_kernel_task.c"
#define DEVICE_NAME "variable_monitor"
// for character device
static dev_t dev_num;
static struct cdev *watch_cdev;
static struct class *watch_class;
struct my_device_data {
pid_t pid;
};
static int device_open(struct inode *inode, struct file *file) {
struct my_device_data *data;
printk(KERN_INFO "%s: with pid %d\n", __FUNCTION__, current->pid);
// save pid
data = kmalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->pid = current->pid;
file->private_data = data;
return 0;
}
static int device_release(struct inode *inode, struct file *file) {
// printk(KERN_INFO "%s\n", __FUNCTION__);
// load pid
struct my_device_data *data = file->private_data;
// clear watch with pid
clear_watch(data->pid);
kfree(data); // free data memory
return 0;
}
static long device_ioctl(struct file *file, unsigned int ioctl_num,
unsigned long ioctl_param) {
watch_arg warg;
void *kptr;
kernel_watch_timer *timer = NULL;
kernel_watch_arg k_watch_arg;
// copy watch_arg
if (copy_from_user(&warg, (watch_arg *)ioctl_param, sizeof(warg))) {
return -EACCES;
}
printk(KERN_INFO "Watch_arg: task_id=%d, name=%s, ptr=%p, length_byte=%d, "
"time_ns=%ld, threshold=%lld\n",
warg.task_id, warg.name, warg.ptr, warg.length_byte, warg.time_ns,
warg.threshold);
// user space address to kernel space address
kptr = convert_user_space_ptr(warg.task_id, (unsigned long)warg.ptr);
if (kptr == NULL) {
printk(KERN_ERR "Cannot access user space\n");
return -EACCES;
}
// check length
if (warg.length_byte != 1 && warg.length_byte != 2 && warg.length_byte != 4 &&
warg.length_byte != 8) {
printk(KERN_ERR "Invalid length %d\n", warg.length_byte);
return -EINVAL;
}
// k_watch_arg init
w_arg2k_w_arg(kptr, warg, &k_watch_arg);
timer = get_timer(warg.time_ns); // get a valuable timer
printk(KERN_INFO "ptr transform kptr: %p\n", kptr);
printk(KERN_INFO "timer: %p\n", timer);
printk(KERN_INFO "timer->sentinel: %d, timer->time_ns: %lld\n",
timer->sentinel, timer->time_ns);
printk(KERN_INFO "timer->hr_timer: %p\n", &timer->hr_timer);
TIMER_CANCEL(timer); // just in case
timer_add_watch(timer, k_watch_arg);
TIMER_START(timer);
printk(KERN_INFO "Start watching var: %s\n", warg.name);
return 0;
}
static struct file_operations fops = {
.open = device_open,
.release = device_release,
.unlocked_ioctl = device_ioctl,
};
int init_module(void) {
printk(KERN_INFO "%s\n", __FUNCTION__);
if (alloc_chrdev_region(&dev_num, 0, 1, DEVICE_NAME) < 0) {
printk(KERN_ALERT "Failed to register device number\n");
return -1;
}
if ((watch_cdev = cdev_alloc()) == NULL) {
printk(KERN_ALERT "Failed to allocate cdev structure\n");
unregister_chrdev_region(dev_num, 1);
return -1;
}
cdev_init(watch_cdev, &fops);
if (cdev_add(watch_cdev, dev_num, 1) == -1) {
printk(KERN_ALERT "Failed to add cdev structure\n");
device_destroy(watch_class, dev_num);
class_destroy(watch_class);
unregister_chrdev_region(dev_num, 1);
return -1;
}
if ((watch_class = class_create(THIS_MODULE, DEVICE_NAME)) == NULL) {
printk(KERN_ALERT "Failed to create class\n");
cdev_del(watch_cdev);
unregister_chrdev_region(dev_num, 1);
return -1;
}
if (device_create(watch_class, NULL, dev_num, NULL, DEVICE_NAME) == NULL) {
printk(KERN_ALERT "Failed to create device\n");
class_destroy(watch_class);
cdev_del(watch_cdev);
unregister_chrdev_region(dev_num, 1);
return -1;
}
printk(KERN_INFO "dev number: %d\n", dev_num);
printk(KERN_INFO "path: /dev/%s %d\n", DEVICE_NAME, dev_num);
fn_kallsyms_lookup_name_init(); // init kallsyms_lookup_name
LOOKUP_SYMS(stack_trace_save_tsk); // stack_trace_save_tsk
LOOKUP_SYMS(show_stack); // show_stack
LOOKUP_SYMS(idle_sched_class); // idle_sched_class
LOOKUP_SYMS(access_remote_vm); // access_remote_vm
LOOKUP_SYMS_NORET(get_task_type); // get_task_type
LOOKUP_SYMS_NORET(kernfs_name); // kernfs_name
return 0;
}
void cleanup_module(void) {
printk(KERN_INFO "%s\n", __FUNCTION__);
// clear all timer and page list
clear_all_watch();
// unmount
device_destroy(watch_class, dev_num);
class_destroy(watch_class);
cdev_del(watch_cdev);
unregister_chrdev_region(dev_num, 1);
}
MODULE_LICENSE("GPL");

179
kernel/monitor_kernel.h Normal file
View File

@@ -0,0 +1,179 @@
#include <linux/hrtimer.h>
#include <linux/kprobes.h>
#include <linux/ktime.h>
#include <linux/list.h>
#include <linux/slab.h> /* for kmalloc */
#include <linux/string.h>
#include <asm/uaccess.h>
#include <linux/cdev.h>
#include <linux/highmem.h>
#include <linux/sched.h>
#include <linux/sched/loadavg.h> /* for avenrun, LOAD_* */
#include <linux/sched/mm.h>
#include <linux/sched/signal.h>
#include <linux/stacktrace.h> /* for stack_trace_print */
#define MAX_TIMER_NUM (128) // max timer number
#define TIMER_MAX_WATCH_NUM (32) // A timer max watch number at once time
#define MAX_NAME_LEN (15) // max name length
typedef struct {
pid_t task_id; // current process id
char name[MAX_NAME_LEN + 1]; // name
void *ptr; // virtual address
int length_byte; // byte
long long threshold; // threshold value
unsigned char unsigned_flag; // unsigned flag (true: unsigned, false: signed)
unsigned char greater_flag; // reverse flag (true: >, false: <)
unsigned long time_ns; // timer interval (ns)
} watch_arg;
typedef struct {
pid_t task_id; // current process id
char name[MAX_NAME_LEN + 2]; // name, last char automatically add '\0'
void *kptr; // kernel address + offset
int length_byte; // byte
long long threshold; // threshold value
unsigned char unsigned_flag; // unsigned flag (true: unsigned, false: signed)
unsigned char greater_flag; // reverse flag (true: >, false: <)
} kernel_watch_arg;
typedef struct {
unsigned long long time_ns; // hrTimer time interval (ns)
struct hrtimer hr_timer; // hrTimer
ktime_t kt; // hrTimer time
unsigned sentinel; // sentinel
kernel_watch_arg
k_watch_args[TIMER_MAX_WATCH_NUM]; // all watched kernel_watch_arg
} kernel_watch_timer;
#define TIMER_FILLED(timer) ((timer)->sentinel >= TIMER_MAX_WATCH_NUM)
#define TIMER_EMPTY(timer) (!((timer)->time_ns | (timer)->sentinel))
#define TIMER_NO_KWARG(timer) ((timer)->sentinel == 0)
#define TIMER_START(timer) \
(hrtimer_start(&timer->hr_timer, timer->kt, HRTIMER_MODE_REL))
#define TIMER_CANCEL(timer) (hrtimer_cancel(&timer->hr_timer))
kernel_watch_timer kernel_wtimer_list[MAX_TIMER_NUM] = {
0}; // all kernel_watch_timer
int kernel_wtimer_num = 0; // current kernel_watch_timer number
EXPORT_SYMBOL(kernel_wtimer_list); // export kernel_watch_timer_list
EXPORT_SYMBOL(kernel_wtimer_num); // export kernel_watch_timer_num
// Helper function
unsigned char w_arg2k_w_arg(void *ptr, watch_arg warg,
kernel_watch_arg *k_watch_arg);
// for timer
kernel_watch_timer *get_timer(unsigned long long time_ns);
unsigned char timer_add_watch(kernel_watch_timer *timer,
kernel_watch_arg k_watch_arg);
unsigned char timer_del_watch_by_pid(kernel_watch_timer *timer, pid_t pid);
// for memory access
typedef struct {
pid_t task_id; // current process id
struct page *page;
void *kaddr;
struct list_head entry;
} watch_local_memory;
static LIST_HEAD(watch_local_memory_list);
void free_page_list(pid_t task_id);
void free_all_page_list(void);
// static struct page *page = NULL;
// static void *kaddr = NULL;
void *convert_user_space_ptr(pid_t pid, unsigned long kaddr);
// for timer
// #define US2NS (1000) // Interval in microseconds
// static struct hrtimer hr_timer;
// static ktime_t kt;
// hrTimer
enum hrtimer_restart check_variable_cb(struct hrtimer *timer);
void start_all_hrTimer(void);
void cancel_all_hrTimer(void);
unsigned char read_and_compare(kernel_watch_arg *k_arg);
// for diag_kallsyms_lookup_name
unsigned long (*diag_kallsyms_lookup_name)(const char *name);
static struct kprobe kprobe_kallsyms_lookup_name = {.symbol_name =
"kallsyms_lookup_name"};
int fn_kallsyms_lookup_name_init(void); // init kallsyms_lookup_name
// form
// https://github.com/alibaba/diagnose-tools/blob/8cd905a1c17f2201e460a2d607413a1303757a32/SOURCE/module/internal.h#L65
// look for current function address, all the function with prefix "orig_" are
#define LOOKUP_SYMS(name) \
do { \
orig_##name = (void *)diag_kallsyms_lookup_name(#name); \
if (!orig_##name) { \
printk(KERN_ERR "kallsyms_lookup_name: %s\n", #name); \
return -EINVAL; \
} \
} while (0)
#define LOOKUP_SYMS_NORET(name) \
do { \
orig_##name = (void *)diag_kallsyms_lookup_name(#name); \
if (!orig_##name) \
pr_err("kallsyms_lookup_name: %s\n", #name); \
} while (0)
#define BACKTRACE_DEPTH 20 // max stack depth
// LOOKUP_SYMS(stack_trace_save_tsk);
unsigned int (*orig_stack_trace_save_tsk)(struct task_struct *task,
unsigned long *store,
unsigned int size,
unsigned int skipnr);
// LOOKUP_SYMS(show_stack);
void (*orig_show_stack)(struct task_struct *task, unsigned long *sp,
const char *loglvl);
// https://www.spinics.net/lists/kernel/msg3582022.html
// remove from 5.8.rc3,but it still work
// whether the task contributes to the load
#define __task_contributes_to_load(task) \
((READ_ONCE(task->__state) & TASK_UNINTERRUPTIBLE) != 0 && \
(task->flags & PF_FROZEN) == 0 && \
(READ_ONCE(task->__state) & TASK_NOLOAD) == 0)
/// @brief print all task stack
/// @param
static void print_task_stack(void) {
struct task_struct *g, *p; // g: task group; p: task
unsigned long backtrace[BACKTRACE_DEPTH]; // save stack
unsigned int nr_bt; // stack depth
unsigned long long current_time; // last time
current_time = ktime_get_real();
printk("Timestamp (ns): %lld\n", current_time);
printk("Recent Load: %lu.%02lu, %lu.%02lu, %lu.%02lu\n", // recent load
LOAD_INT(avenrun[0]), LOAD_FRAC(avenrun[0]), LOAD_INT(avenrun[1]),
LOAD_FRAC(avenrun[1]), LOAD_INT(avenrun[2]), LOAD_FRAC(avenrun[2]));
rcu_read_lock(); // lock run queue
// printk("Running task\n");
do_each_thread(g, p) {
if (p->__state == TASK_RUNNING || __task_contributes_to_load(p) ||
p->__state == TASK_IDLE) {
printk("task: %s, pid %d, state %d\n", p->comm, p->pid,
p->__state); //! todo
nr_bt = orig_stack_trace_save_tsk(p, backtrace, BACKTRACE_DEPTH, 0);
stack_trace_print(backtrace, nr_bt, 0); // print
}
}
while_each_thread(g, p);
rcu_read_unlock(); // unlock run queue
}
unsigned char del_all_kwarg_by_pid(pid_t pid);
void clear_watch(pid_t pid);
void clear_all_watch(void);

427
kernel/monitor_kernel_lib.c Normal file
View File

@@ -0,0 +1,427 @@
#include "monitor_kernel.h"
unsigned char w_arg2k_w_arg(void *ptr, watch_arg warg,
kernel_watch_arg *k_watch_arg) {
// k_watch_arg init
k_watch_arg->task_id = warg.task_id;
strncpy(k_watch_arg->name, warg.name, MAX_NAME_LEN + 1); // name
k_watch_arg->name[MAX_NAME_LEN + 1] = '\0'; // just in case
k_watch_arg->kptr = ptr;
k_watch_arg->length_byte = warg.length_byte;
k_watch_arg->threshold = warg.threshold;
k_watch_arg->unsigned_flag = warg.unsigned_flag;
k_watch_arg->greater_flag = warg.greater_flag;
return 0;
}
/// @brief get a valuable timer
/// @param time_ns
/// @return kernel_watch_timer *, NULL means fail
kernel_watch_timer *get_timer(unsigned long long time_ns) {
int i = 0;
kernel_watch_timer *timer = NULL;
// chose a timer
for (i = 0; i < kernel_wtimer_num; i++) {
timer = &kernel_wtimer_list[i];
if (TIMER_EMPTY(timer)) {
break;
}
if ((timer->time_ns == time_ns) && (!TIMER_FILLED(timer))) {
break;
}
}
// if all timer is full
if (i >= MAX_TIMER_NUM) {
printk(KERN_ERR "No timer available\n");
return NULL;
}
// if a new timer, init it
if (i > kernel_wtimer_num - 1) {
printk(KERN_INFO "New timer\n");
kernel_wtimer_list[i].time_ns = time_ns;
kernel_wtimer_list[i].sentinel = 0;
kernel_wtimer_list[i].kt = ktime_set(0, (unsigned long)time_ns); // ns
// CLOCK_MONOTONIC: time since boot | HRTIMER_MODE_REL : relative time
hrtimer_init(&(kernel_wtimer_list[i].hr_timer), CLOCK_MONOTONIC,
HRTIMER_MODE_REL);
kernel_wtimer_list[i].hr_timer.function =
check_variable_cb; // callback function
kernel_wtimer_num = i + 1;
}
printk(KERN_INFO "now, we have %d timers\n", kernel_wtimer_num);
return &kernel_wtimer_list[i];
}
/// @brief hrTimer add watch
/// @param timer
/// @param k_watch_arg
/// @return 0 is success
unsigned char timer_add_watch(kernel_watch_timer *timer,
kernel_watch_arg k_watch_arg) {
if (TIMER_FILLED(timer)) {
printk(KERN_ERR "Timer is full\n");
return -1;
}
memcpy(&timer->k_watch_args[timer->sentinel], &k_watch_arg,
sizeof(k_watch_arg));
// timer->k_watch_args[timer->sentinel] = k_watch_arg;
timer->sentinel++;
return 0;
}
unsigned char timer_del_watch_by_pid(kernel_watch_timer *timer, pid_t pid) {
int i = 0;
for (i = 0; i < timer->sentinel; i++) {
// if pid match, delete it and move the last one to this position, check
// again
if (timer->k_watch_args[i].task_id == pid) {
if (i != timer->sentinel - 1) {
memcpy(&timer->k_watch_args[i],
&timer->k_watch_args[timer->sentinel - 1],
sizeof(kernel_watch_arg));
}
timer->sentinel--;
i--;
}
}
return 0;
}
/// @brief transfer user space address to kernel space address
/// change static global "kaddr" and "page" value
/// @param pid: process id
/// @param kaddr: user space address
/// @return kernel space address + offset
void *convert_user_space_ptr(pid_t pid, unsigned long addr) {
struct task_struct *task;
struct mm_struct *mm;
int ret;
// unsigned long aligned_addr = 0;
// unsigned long offset = 0;
watch_local_memory *node;
// if (addr < TASK_SIZE || addr > -PAGE_SIZE)
// {
// printk(KERN_ERR "Invalid address\n");
// return NULL;
// }
// for get_user_pages_remote
unsigned long aligned_addr = addr & PAGE_MASK;
unsigned long offset = addr & ~PAGE_MASK;
printk(KERN_INFO "%s\n", __FUNCTION__);
node = kmalloc(sizeof(watch_local_memory), GFP_KERNEL);
node->task_id = pid;
// Find the task with pid
rcu_read_lock();
task = pid_task(find_vpid(pid), PIDTYPE_PID);
rcu_read_unlock();
if (!task) {
printk(KERN_ERR "Cannot find task for PID %d\n", pid);
kfree(node); // careful there is kfree
return NULL;
}
// Get memory descriptor
mm = get_task_mm(task);
if (!mm) {
printk(KERN_ERR "Cannot get memory descriptor\n");
kfree(node); // careful there is kfree
return NULL;
}
down_read(&task->mm->mmap_lock);
ret = get_user_pages_remote(task->mm, aligned_addr, 1, FOLL_FORCE,
&(node->page), NULL, NULL);
up_read(&task->mm->mmap_lock);
if (ret != 1) {
printk(KERN_ERR "Cannot get user page\n");
kfree(node); // careful there is kfree
return NULL;
}
// Map the page to kernel space
node->kaddr = kmap(node->page);
list_add_tail(&node->entry, &watch_local_memory_list); // add to list
// printk(KERN_INFO "node->kaddr: %p, aligned_addr: %ld, offset: %ld\n",
// node->kaddr, aligned_addr, offset);
return (void *)((unsigned long)(node->kaddr) + offset);
}
/// @brief free page in watch_local_memory_list with task_id
/// @param task_id
void free_page_list(pid_t task_id) {
watch_local_memory *node, *next;
list_for_each_entry_safe(node, next, &watch_local_memory_list, entry) {
if (node == NULL)
break;
if (node->task_id == task_id) {
// unmap and release the page
if (node->kaddr)
kunmap(node->kaddr);
if (node->page)
put_page(node->page);
list_del(&node->entry);
kfree(node); // careful there is kfree
}
}
}
/// @brief free all page in watch_local_memory_list
/// @param
void free_all_page_list(void) {
watch_local_memory *node, *next;
list_for_each_entry_safe(node, next, &watch_local_memory_list, entry) {
if (node == NULL)
break;
// unmap and release the page
if (node->kaddr)
kunmap(node->kaddr);
if (node->page)
put_page(node->page);
list_del(&node->entry);
kfree(node); // careful there is kfree
}
}
/// @brief hrTimer handler
enum hrtimer_restart check_variable_cb(struct hrtimer *timer) {
kernel_watch_timer *k_watch_timer =
container_of(timer, kernel_watch_timer, hr_timer);
int i = 0, j = 0;
int buffer[TIMER_MAX_WATCH_NUM]; // Buffer to store the messages
// check all watched kernel_watch_arg
for (i = 0; i < k_watch_timer->sentinel; i++) {
if (read_and_compare(&k_watch_timer->k_watch_args[i])) {
// snprintf(buffer + strlen(buffer), sizeof(buffer) - strlen(buffer), "
// name: %s, threshold: %lld, pid: %d\n",
// k_watch_timer->k_watch_args[i].name,
// k_watch_timer->k_watch_args[i].threshold,
// k_watch_timer->k_watch_args[i].task_id);
buffer[j] = i;
j++;
// printk(KERN_INFO "j: name %s, threshold: %lld\n",
// k_watch_timer->k_watch_args[i].name,
// k_watch_timer->k_watch_args[i].threshold);
// printk(KERN_INFO "j: %d\n", j);
}
}
if (j > 0) // if any threshold reached
{
printk("-------------------------------------\n");
printk("-------------watch monitor-----------\n");
printk("Threshold reached:\n");
for (i = 0; i < j; i++) {
printk(" name: %s, threshold: %lld, pid: %d\n",
k_watch_timer->k_watch_args[buffer[i]].name, //! todo
k_watch_timer->k_watch_args[buffer[i]].threshold,
k_watch_timer->k_watch_args[buffer[i]].task_id);
}
print_task_stack();
// restart timer after 1s
hrtimer_forward(timer, timer->base->get_time(), ktime_set(1, 0)); //! todo
printk("-------------------------------------\n");
} else {
// keep frequency
hrtimer_forward(timer, timer->base->get_time(), k_watch_timer->kt);
}
return HRTIMER_RESTART; // restart timer
}
/// @brief start hrTimer
/// @param timeout: timeout in us
/// @return 0 is success
// int start_hrTimer(unsigned long timeout)
// {
// printk("HrTimer Start\n");
// kt = ktime_set(0, (unsigned long)timeout); // us -> ns
// // CLOCK_MONOTONIC: time since boot | HRTIMER_MODE_REL : relative time
// hrtimer_init(&hr_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
// hr_timer.function = check_variable_cb;
// // mode the same as hrtimer_init
// hrtimer_start(&hr_timer, kt, HRTIMER_MODE_REL);
// return 0;
// }
/// @brief start all hrTimer
/// @param
void start_all_hrTimer(void) {
int i = 0;
kernel_watch_timer *timer = NULL;
for (i = 0; i < kernel_wtimer_num; i++) {
timer = &(kernel_wtimer_list[i]);
TIMER_START(timer);
}
printk("HrTimer start,module keep %d hrtimer for now\n", kernel_wtimer_num);
}
/// @brief cancel hrTimer
/// @param
void cancel_all_hrTimer(void) {
int i = 0;
kernel_watch_timer *timer = NULL;
for (i = 0; i < kernel_wtimer_num; i++) {
timer = &(kernel_wtimer_list[i]);
TIMER_CANCEL(timer);
}
printk("HrTimer cancel,module keep %d hrtimer for now\n", kernel_wtimer_num);
}
// for read_and_compare
typedef unsigned char (*compare_func)(void *, long long);
unsigned char compare_1_byte_signed(void *ptr, long long threshold) {
// printk("compare_1_byte_signed: value %d, biss: %lld\n", *(char *)ptr,
// threshold);
return *(char *)ptr > threshold;
}
unsigned char compare_1_byte_unsigned(void *ptr, long long threshold) {
// printk("compare_1_byte_unsigned: value %d, biss: %lld\n", *(unsigned char
// *)ptr, threshold);
return *(unsigned char *)ptr > threshold;
}
unsigned char compare_2_byte_signed(void *ptr, long long threshold) {
// printk("compare_2_byte_signed: value %d, biss: %lld\n", *(short int *)ptr,
// threshold);
return *(short int *)ptr > threshold;
}
unsigned char compare_2_byte_unsigned(void *ptr, long long threshold) {
// printk("compare_2_byte_unsigned: value %d, biss: %lld\n", *(unsigned short
// int *)ptr, threshold);
return *(unsigned short int *)ptr > threshold;
}
unsigned char compare_4_byte_signed(void *ptr, long long threshold) {
// printk("compare_4_byte_signed: value %d, biss: %lld\n", *(int *)ptr,
// threshold);
return *(int *)ptr > threshold;
}
unsigned char compare_4_byte_unsigned(void *ptr, long long threshold) {
// printk("compare_4_byte_unsigned: value %d, biss: %lld\n", *(unsigned int
// *)ptr, threshold);
return *(unsigned int *)ptr > threshold;
}
unsigned char compare_8_byte_signed(void *ptr, long long threshold) {
// printk("compare_8_byte_signed: value %lld, biss: %lld\n", *(long long
// *)ptr, threshold);
return *(long long *)ptr > threshold;
}
unsigned char compare_8_byte_unsigned(void *ptr, long long threshold) {
// printk("compare_8_byte_unsigned: value %lld, biss: %lld\n", *(unsigned long
// long *)ptr, threshold);
return *(unsigned long long *)ptr > threshold;
}
// list of compare functions
static compare_func compare_funcs[8] = {
compare_1_byte_signed, compare_2_byte_signed, compare_4_byte_signed,
compare_8_byte_signed, compare_1_byte_unsigned, compare_2_byte_unsigned,
compare_4_byte_unsigned, compare_8_byte_unsigned};
static int func_indices[2][9] = {{0, 0, 1, 0, 2, 0, 0, 0, 3},
{0, 4, 5, 0, 6, 0, 0, 0, 7}};
/// @brief read k_arg->kptr and compare with threshold
/// @param k_arg
/// @return result of compare
unsigned char read_and_compare(kernel_watch_arg *k_arg) {
void *ptr = k_arg->kptr;
int len = k_arg->length_byte;
unsigned char is_unsigned = k_arg->unsigned_flag;
long long threshold = k_arg->threshold;
unsigned char result = 0;
// if (len != 1 && len != 2 && len != 4 && len != 8)
// {
// printk(KERN_ERR "Invalid length\n");
// return 0;
// }
result = compare_funcs[func_indices[is_unsigned][len]](ptr, threshold);
// printk(KERN_INFO "read_and_compare: name %s, value %d, biss: %lld, result:
// %d \n", k_arg->name, *(int *)ptr,
// threshold, result);
if (k_arg->greater_flag)
return result;
else
return !result;
}
/// @brief init kallsyms_lookup_name
/// @param
/// @return 0 is success
int fn_kallsyms_lookup_name_init(void) {
register_kprobe(&kprobe_kallsyms_lookup_name);
diag_kallsyms_lookup_name = (void *)kprobe_kallsyms_lookup_name.addr;
unregister_kprobe(&kprobe_kallsyms_lookup_name);
printk("xby-debug, diag_kallsyms_lookup_name is %p\n",
diag_kallsyms_lookup_name);
if (!diag_kallsyms_lookup_name) {
return -EINVAL;
}
return 0;
}
unsigned char del_all_kwarg_by_pid(pid_t pid) {
int i = 0;
kernel_watch_timer *timer = NULL;
printk(KERN_INFO "del kwarg...");
for (i = 0; i < kernel_wtimer_num; i++) {
timer = &(kernel_wtimer_list[i]);
timer_del_watch_by_pid(timer, pid);
}
for (i = 0; i < kernel_wtimer_num; i++) {
timer = &(kernel_wtimer_list[i]);
if (TIMER_NO_KWARG(timer)) // no available kwarg
{
if (i != kernel_wtimer_num - 1) {
memcpy(timer, &kernel_wtimer_list[kernel_wtimer_num - 1],
sizeof(kernel_watch_timer));
}
kernel_wtimer_num--;
i--;
}
}
return 0;
}
/// @brief clear watch with pid
/// @param pid
void clear_watch(pid_t pid) {
printk(KERN_INFO "clear pid %d 's watch variable\n", pid);
cancel_all_hrTimer(); // just in case
del_all_kwarg_by_pid(pid); // delete all kwarg with pid
free_page_list(pid); // free page with pid
start_all_hrTimer(); // restart timer
}
/// @brief clear all watch and reset kernel_wtimer_list/kernel_wtimer_num
/// @param
void clear_all_watch(void) {
printk(KERN_INFO "clear all watch variable\n");
// unmap and release the page
free_all_page_list();
// cancel timer
cancel_all_hrTimer();
// clear timer
kernel_wtimer_num = 0;
memset(kernel_wtimer_list, 0, sizeof(kernel_wtimer_list));
}

View File

@@ -0,0 +1,377 @@
#include "monitor_kernel_task.h"
#include <asm/processor.h>
#include <asm/ptrace.h>
#include <asm/syscall.h> // for syscall_get_nr
#include <linux/irq.h>
#include <linux/sched/mm.h> // for get_task_mm
#include <linux/syscalls.h>
#include <linux/tracehook.h>
struct stack_trace {
unsigned int nr_entries, max_entries;
unsigned long *entries;
int skip; /* input argument: How many entries to skip */
};
struct stack_frame_user {
const void __user *next_fp;
unsigned long ret_addr;
};
static inline int diag_get_task_type(struct task_struct *tsk) {
if (orig_get_task_type)
return orig_get_task_type(&tsk->se);
return 0;
}
static inline int orig_diag_cgroup_name(struct cgroup *cgrp, char *buf,
size_t buflen) {
if (orig_kernfs_name && cgrp && cgrp->kn) {
return orig_kernfs_name(cgrp->kn, buf, buflen);
} else {
return 0;
}
}
static inline mm_info *find_mm_info(mm_tree *mm_tree, struct mm_struct *mm) {
mm_info *info;
if (mm == NULL)
return NULL;
info = radix_tree_lookup(&mm_tree->mm_tree, (unsigned long)mm);
return info;
}
static void __diag_cgroup_name(struct task_struct *tsk, char *buf,
unsigned int count, int cgroup) {
int cgroup_id = cpuacct_cgrp_id;
memset(buf, 0, count);
if (cgroup == 1) {
cgroup_id = cpuset_cgrp_id;
}
if (tsk && tsk->cgroups && tsk->cgroups->subsys &&
tsk->cgroups->subsys[cgroup_id] &&
tsk->cgroups->subsys[cgroup_id]->cgroup) {
orig_diag_cgroup_name(tsk->cgroups->subsys[cgroup_id]->cgroup, buf, count);
}
}
static void diag_cgroup_name(struct task_struct *tsk, char *buf,
unsigned int count, int cgroup) {
__diag_cgroup_name(tsk, buf, count, cgroup);
}
static int copy_stack_frame(const void __user *fp,
struct stack_frame_user *frame) {
int ret;
ret = 1;
pagefault_disable();
if (__copy_from_user_inatomic(frame, fp, sizeof(*frame)))
ret = 0;
pagefault_enable();
return ret;
}
static int copy_stack_frame_remote(struct task_struct *tsk,
const void __user *fp,
struct stack_frame_user *frame) {
int ret;
struct mm_struct *mm;
mm = get_task_mm(tsk);
if (!mm)
return 0;
ret = orig_access_remote_vm(mm, (unsigned long)fp, frame, sizeof(*frame), 0);
mmput(mm);
return ret;
}
static inline void save_stack_trace_user_remote(struct task_struct *tsk,
struct stack_trace *trace) {
const struct pt_regs *regs = task_pt_regs(tsk);
const void __user *fp = (const void __user *)regs->bp;
int count = 0;
if (in_atomic() || irqs_disabled()) {
return;
}
if (trace->nr_entries < trace->max_entries)
trace->entries[trace->nr_entries++] = regs->ip;
while (trace->nr_entries < trace->max_entries) {
struct stack_frame_user frame;
frame.next_fp = NULL;
frame.ret_addr = 0;
if (!copy_stack_frame_remote(tsk, fp, &frame)) {
break;
}
if ((unsigned long)fp < regs->sp)
break;
if (frame.ret_addr) {
trace->entries[trace->nr_entries++] = frame.ret_addr;
} else
break;
if (fp == frame.next_fp)
break;
fp = frame.next_fp;
count++;
/**
* 线上环境发现这里有hardlockup这里强制退出
*/
if (count >= trace->max_entries || count >= 100)
break;
}
}
static inline void __save_stack_trace_user(struct stack_trace *trace) {
const struct pt_regs *regs = task_pt_regs(current);
const void __user *fp = (const void __user *)regs->bp;
int count = 0;
if (trace->nr_entries < trace->max_entries)
trace->entries[trace->nr_entries++] = regs->ip;
while (trace->nr_entries < trace->max_entries) {
struct stack_frame_user frame;
frame.next_fp = NULL;
frame.ret_addr = 0;
if (!copy_stack_frame(fp, &frame))
break;
if ((unsigned long)fp < regs->sp)
break;
if (frame.ret_addr) {
trace->entries[trace->nr_entries++] = frame.ret_addr;
}
if (fp == frame.next_fp)
break;
fp = frame.next_fp;
count++;
/**
* 线上环境发现这里有hardlockup这里强制退出
*/
if (count >= trace->max_entries || count >= 100)
break;
}
}
void perfect_save_stack_trace_user(struct stack_trace *trace) {
/*
* Trace user stack if we are not a kernel thread
*/
if (current->mm) {
__save_stack_trace_user(trace);
}
if (trace->nr_entries < trace->max_entries)
trace->entries[trace->nr_entries++] = ULONG_MAX;
}
void diagnose_save_stack_trace_user(unsigned long *backtrace) {
struct stack_trace trace;
memset(&trace, 0, sizeof(trace));
memset(backtrace, 0, BACKTRACE_DEPTH2 * sizeof(unsigned long));
trace.max_entries = BACKTRACE_DEPTH2;
trace.entries = backtrace;
perfect_save_stack_trace_user(&trace);
}
void diagnose_save_stack_trace_user_remote(struct task_struct *tsk,
unsigned long *backtrace) {
struct stack_trace trace;
memset(&trace, 0, sizeof(trace));
memset(backtrace, 0, BACKTRACE_DEPTH2 * sizeof(unsigned long));
trace.max_entries = BACKTRACE_DEPTH2;
trace.entries = backtrace;
/*
* Trace user stack if we are not a kernel thread
*/
if (tsk->mm) {
save_stack_trace_user_remote(tsk, &trace);
}
if (trace.nr_entries < trace.max_entries)
trace.entries[trace.nr_entries++] = ULONG_MAX;
}
void diag_task_brief(struct task_struct *tsk, task_detail *detail) {
struct pid_namespace *ns;
struct pt_regs *task_regs;
struct task_struct *leader;
struct pt_regs *irq_regs;
if (!detail)
return;
memset(detail, 0, sizeof(task_detail));
if (!tsk || tsk->exit_state == EXIT_ZOMBIE) // zombie
return;
leader = tsk->group_leader;
if (!leader || leader->exit_state == EXIT_ZOMBIE) {
return;
}
if (tsk != current) { // not current task
detail->user_mode = -1;
detail->syscallno = -1;
} else if (!tsk->mm) { // current task but kernel thread
detail->user_mode = 0;
detail->syscallno = -1;
} else { // current task and user thread
irq_regs = get_irq_regs(); // get current irq regs
task_regs = task_pt_regs(tsk);
if ((irq_regs && user_mode(irq_regs)) ||
(task_regs && user_mode(task_regs))) {
detail->user_mode = 1; // user mode
} else {
detail->user_mode = 0; // kernel mode
}
if (task_regs) {
detail->syscallno = syscall_get_nr(tsk, task_regs); // get syscall no
}
}
if (tsk->sched_class == orig_idle_sched_class) // idle task
detail->sys_task = 2;
else if (!tsk->mm) // kernel thread
detail->sys_task = 1;
else
detail->sys_task = 0;
detail->pid = tsk->pid; // pid
detail->tgid = tsk->tgid; // tgid
detail->state = tsk->__state; // state
detail->task_type = diag_get_task_type(tsk); // task type
ns = task_active_pid_ns(tsk); // container pid
if (ns && ns != &init_pid_ns) {
detail->container_pid = task_pid_nr_ns(tsk, ns);
detail->container_tgid = task_tgid_nr_ns(tsk, ns);
} else {
detail->container_pid = tsk->pid;
detail->container_tgid = tsk->tgid;
}
strncpy(detail->comm, tsk->comm, TASK_COMM_LEN);
detail->comm[TASK_COMM_LEN - 1] = 0; // comm name
diag_cgroup_name(tsk, detail->cgroup_buf, CGROUP_NAME_LEN, 0);
diag_cgroup_name(tsk, detail->cgroup_cpuset, CGROUP_NAME_LEN, 1);
detail->cgroup_buf[CGROUP_NAME_LEN - 1] = 0; // cgroup name
detail->cgroup_cpuset[CGROUP_NAME_LEN - 1] = 0; // cgroup cpuset name
}
void diag_task_user_stack(struct task_struct *tsk, user_stack_detail *detail) {
struct pt_regs *regs;
unsigned long sp, ip, bp;
struct task_struct *leader;
if (!detail)
return;
detail->stack[0] = 0;
if (!tsk || !tsk->mm)
return;
leader = tsk->group_leader;
if (!leader || !leader->mm || leader->exit_state == EXIT_ZOMBIE) {
return;
}
sp = 0;
ip = 0;
bp = 0;
regs = task_pt_regs(tsk);
if (regs) {
sp = regs->sp;
#if defined(DIAG_ARM64)
ip = regs->pc;
bp = regs->sp;
#else
ip = regs->ip;
bp = regs->bp;
#endif
}
#if defined(DIAG_ARM64)
detail->regs = regs->user_regs;
#else
detail->regs = *regs;
#endif
detail->sp = sp;
detail->ip = ip;
detail->bp = bp;
if (tsk == current) {
diagnose_save_stack_trace_user(detail->stack);
} else {
diagnose_save_stack_trace_user_remote(tsk, detail->stack);
}
}
void diag_task_kern_stack(struct task_struct *tsk, kern_stack_detail *detail) {
orig_stack_trace_save_tsk(tsk, detail->stack, BACKTRACE_DEPTH2, 0);
}
void dump_proc_chains_argv(int style, struct task_struct *tsk, mm_tree *mm_tree,
proc_chains_detail *detail) {
struct task_struct *walker;
mm_info *mm_info;
int cnt = 0;
int i = 0;
struct task_struct *leader;
for (i = 0; i < PROCESS_CHAINS_COUNT; i++) {
detail->chains[i][0] = 0;
detail->tgid[i] = 0;
}
if (style == 0)
return;
if (!tsk || !tsk->mm)
return;
leader = tsk->group_leader;
if (!leader || !leader->mm ||
leader->exit_state == EXIT_ZOMBIE) { // leader is zombie or no mm
return;
}
rcu_read_lock();
walker = tsk;
while (walker->pid > 0) {
if (!thread_group_leader(walker))
walker = rcu_dereference(walker->group_leader);
mm_info = find_mm_info(mm_tree, walker->mm);
if (mm_info) {
if (mm_info->cgroup_buf[0] == 0)
diag_cgroup_name(walker, mm_info->cgroup_buf, 255, 0);
strncpy(detail->chains[cnt], mm_info->argv, PROCESS_ARGV_LEN);
detail->full_argv[cnt] = 1;
} else {
strncpy(detail->chains[cnt], walker->comm, TASK_COMM_LEN);
detail->full_argv[cnt] = 0;
}
detail->tgid[cnt] = walker->pid;
walker = rcu_dereference(walker->real_parent);
cnt++;
if (cnt >= PROCESS_CHAINS_COUNT)
break;
}
rcu_read_unlock();
}

View File

@@ -0,0 +1,98 @@
#include <linux/kernfs.h>
#include <linux/sched.h>
#define CGROUP_NAME_LEN 32 // max length of cgroup name
#define TASK_COMM_LEN 16 // max length of task name
#define BACKTRACE_DEPTH2 30 // max depth of backtrace
#define PROCESS_CHAINS_COUNT 10 // max count of process chains
#define PROCESS_ARGV_LEN 128 // max length of process argv
// from
// https://github.com/alibaba/diagnose-tools/blob/8cd905a1c17f2201e460a2d607413a1303757a32/SOURCE/uapi/ali_diagnose.h
typedef struct {
char cgroup_buf[CGROUP_NAME_LEN];
char cgroup_cpuset[CGROUP_NAME_LEN];
int pid;
int tgid;
int container_pid;
int container_tgid;
long state;
int task_type;
unsigned long syscallno;
/**
* 0->user 1->sys 2->idle
*/
unsigned long sys_task;
/**
* 1->user mode 0->sys mode -1->unknown
*/
unsigned long user_mode;
char comm[TASK_COMM_LEN];
} task_detail;
typedef struct {
unsigned long stack[BACKTRACE_DEPTH2];
} kern_stack_detail;
typedef struct {
struct pt_regs regs;
unsigned long ip;
unsigned long bp;
unsigned long sp;
unsigned long stack[BACKTRACE_DEPTH2];
} user_stack_detail;
typedef struct {
unsigned int full_argv[PROCESS_CHAINS_COUNT]; //
char chains[PROCESS_CHAINS_COUNT][PROCESS_ARGV_LEN]; // process chains argv
unsigned int tgid[PROCESS_CHAINS_COUNT]; // process chains tgid
} proc_chains_detail;
// most important struct
typedef struct {
int et_type;
unsigned long id;
unsigned long long tv;
task_detail task; // brief
user_stack_detail user_stack; // user stack
kern_stack_detail kern_stack; // kernel stack
proc_chains_detail proc_chains; // process chains argv
} variable_monitor_task;
typedef struct {
struct rcu_head rcu_head;
pid_t pid;
struct mm_struct *mm;
char cgroup_buf[256];
char argv[256];
} mm_info;
typedef struct {
struct radix_tree_root mm_tree;
spinlock_t mm_tree_lock;
} mm_tree;
void diag_task_brief(struct task_struct *tsk,
task_detail *detail); // get task brief
void diag_task_user_stack(struct task_struct *tsk,
user_stack_detail *detail); // get task user stack
void diag_task_kern_stack(struct task_struct *tsk,
kern_stack_detail *detail); // get task kernel stack
void dump_proc_chains_argv(
int style, struct task_struct *tsk, mm_tree *mm_tree,
proc_chains_detail *detail); // get process chains argv
// orig_X
struct sched_class *orig_idle_sched_class;
int (*orig_get_task_type)(struct sched_entity *se);
int (*orig_kernfs_name)(struct kernfs_node *kn, char *buf, size_t buflen);
int (*orig_access_remote_vm)(struct mm_struct *mm, unsigned long addr,
void *buf, int len, unsigned int gup_flags);
extern unsigned int (*orig_stack_trace_save_tsk)(struct task_struct *task,
unsigned long *store,
unsigned int size,
unsigned int skipnr);

1
rootkit.pty Symbolic link
View File

@@ -0,0 +1 @@
/dev/pts/6

51
testcase/helloworld.c Normal file
View File

@@ -0,0 +1,51 @@
#include "../user/monitor_user.h"
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#define NUM_VARS 2049
int main()
{
int i = 0;
int temps[NUM_VARS] = {0};
watch_arg watch_args[NUM_VARS] = {0};
cancel_watch();
for (i = 0; i < NUM_VARS; i++)
{
temps[i] = 100;
watch_args[i] = (watch_arg){
.task_id = getpid(),
.ptr = &temps[i],
.name = "temp",
.length_byte = sizeof(int),
.threshold = 150 + i,
.unsigned_flag = 0,
.greater_flag = 1,
.time_ns = 2000 + (i / 33) * 5000, // on hyper-v, 1us will block all system. 2us just fine, maybe 1us is too short for hyper-v
};
char name[20];
snprintf(name, sizeof(name), "temp%d", i);
// 拷贝字符串
strncpy(watch_args[i].name, name, (MAX_NAME_LEN + 1));
start_watch(watch_args[i]);
}
while (temps[NUM_VARS - 1] < 205)
{
for (i = 0; i < NUM_VARS; i++)
{
temps[i]++;
}
printf("Value of variable %d: %d", i, temps[0]);
printf("\n");
sleep(1);
}
cancel_watch();
return 0;
}

62
testcase/hptest.c Normal file
View File

@@ -0,0 +1,62 @@
#include "../user/monitor_user.h"
#include <fcntl.h>
#include <stdio.h>
#include <sys/mman.h>
#include <unistd.h>
#define HUGEPAGE_SIZE (1024 * 1024 * 1024) // Huge Page 大小为 1GB
int main() {
int fd;
void *addr;
watch_arg w_arg = {0};
// 打开一个 hugetlbfs 文件
fd = open("/run/mrzcpd/huge_pages/hugepagefile", O_CREAT | O_RDWR, 0755);
if (fd < 0) {
perror("open");
return 1;
}
// 映射 Huge Page 内存
addr = mmap(0, HUGEPAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (addr == MAP_FAILED) {
perror("mmap");
close(fd);
return 1;
}
// 大页内存 int 类型变量, for ++
int *p = (int *)addr;
*p = 0;
w_arg = (watch_arg){
.task_id = getpid(),
.ptr = p,
.name = "hptest",
.length_byte = sizeof(int),
.threshold = 20,
.unsigned_flag = 0,
.greater_flag = 1,
.time_ns = 2000, // on hyper-v, 1us will block all system. 2us just fine, maybe 1us is too short for hyper-v
};
start_watch(w_arg);
for (int i = 0; i < 100; i++)
{
(*p)++;
printf("p = %d\n", *p);
sleep(1);
}
// 释放 Huge Page 内存
if (munmap(addr, HUGEPAGE_SIZE) == -1) {
perror("munmap");
close(fd);
return 1;
}
close(fd);
return 0;
}

44
user/monitor_user.c Normal file
View File

@@ -0,0 +1,44 @@
#include "monitor_user.h"
#include <fcntl.h>
#include <stdio.h>
#include <sys/ioctl.h>
#include <unistd.h>
#define DEVICE "/dev/variable_monitor"
int file_desc = -1;
/// @brief start watch
/// @param w_arg
/// @return 0 means success, other means fail
int start_watch(watch_arg w_arg) {
if (file_desc < 0) {
file_desc = open(DEVICE, 0);
}
if (file_desc < 0) {
printf("Can't open device file: %s\n", DEVICE);
return -1;
}
if (ioctl(file_desc, 1, &w_arg) < 0) {
printf("ioctl failed\n");
close(file_desc);
return -1;
}
return 0;
}
/// @brief cancel watch
/// @return 0 means success, other means fail
int cancel_watch() {
if (file_desc < 0) {
file_desc = open(DEVICE, 0);
}
if (file_desc < 0) {
printf("Device not open: %s,%d \n", DEVICE, file_desc);
return file_desc;
}
close(file_desc);
file_desc = -1;
return 0;
}

20
user/monitor_user.h Normal file
View File

@@ -0,0 +1,20 @@
// monitor_interface.h
#include <sys/types.h>
#define MAX_NAME_LEN (15) // max name length
typedef struct {
pid_t task_id; // current process id
char name[MAX_NAME_LEN + 1]; // name
void *ptr; // virtual address
int length_byte; // byte
long long threshold; // threshold value
unsigned char unsigned_flag; // unsigned flag (true: unsigned, false: signed)
unsigned char greater_flag; // reverse flag (true: >, false: <)
unsigned long time_ns; // timer interval (ns)
} watch_arg;
// start watch
int start_watch(watch_arg w_arg);
// cancel watch
int cancel_watch(void);