This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
zhangyang-libzt/src/stack_drivers/lwip/lwip.cpp
2016-11-03 18:26:28 -07:00

1133 lines
48 KiB
C++

/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2015 ZeroTier, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#include "tap.hpp"
#include "sdkutils.hpp"
namespace ZeroTier
{
void lwip_init_interface(NetconEthernetTap *tap, const InetAddress &ip)
{
DEBUG_INFO();
lwIP_stack *stack = tap->lwipstack;
Mutex::Lock _l(tap->_ips_m);
if (std::find(tap->_ips.begin(),tap->_ips.end(),ip) == tap->_ips.end()) {
tap->_ips.push_back(ip);
std::sort(tap->_ips.begin(),tap->_ips.end());
#if defined(SDK_IPV4)
if (ip.isV4()) {
// Set IP
static ip_addr_t ipaddr, netmask, gw;
IP4_ADDR(&gw,127,0,0,1);
ipaddr.addr = *((u32_t *)ip.rawIpData());
netmask.addr = *((u32_t *)ip.netmask().rawIpData());
stack->__netif_add(&(tap->interface),&ipaddr, &netmask, &gw, NULL, tapif_init, stack->_ethernet_input);
tap->interface.state = tap;
tap->interface.output = stack->_etharp_output;
tap->_mac.copyTo(tap->interface.hwaddr, 6);
tap->interface.mtu = tap->_mtu;
tap->interface.name[0] = 'l';
tap->interface.name[1] = '4';
tap->interface.linkoutput = low_level_output;
tap->interface.hwaddr_len = 6;
tap->interface.flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_IGMP | NETIF_FLAG_LINK_UP | NETIF_FLAG_UP;
stack->__netif_set_default(&(tap->interface));
stack->__netif_set_up(&(tap->interface));
DEBUG_INFO("addr=%s, netmask=%s", ip.toString().c_str(), ip.netmask().toString().c_str());
}
#endif
#if defined(SDK_IPV6)
if(ip.isV6()) {
DEBUG_INFO("local_addr=%s", ip.toString().c_str());
static ip6_addr_t addr6;
struct sockaddr_in6 in6;
memcpy(in6.sin6_addr.s6_addr,ip.rawIpData(),16);
in6_to_ip6((ip6_addr *)&addr6, &in6);
tap->interface6.mtu = tap->_mtu;
tap->interface6.name[0] = 'l';
tap->interface6.name[1] = '6';
tap->interface6.hwaddr_len = 6;
tap->interface6.linkoutput = low_level_output;
tap->interface6.ip6_autoconfig_enabled = 1;
tap->_mac.copyTo(tap->interface6.hwaddr, tap->interface6.hwaddr_len);
stack->__netif_create_ip6_linklocal_address(&(tap->interface6), 1);
stack->__netif_add(&(tap->interface6), NULL, tapif_init, stack->_ethernet_input);
stack->__netif_set_default(&(tap->interface6));
stack->__netif_set_up(&(tap->interface6));
netif_ip6_addr_set_state(&(tap->interface6), 1, IP6_ADDR_TENTATIVE);
ip6_addr_copy(ip_2_ip6(tap->interface6.ip6_addr[1]), addr6);
tap->interface6.output_ip6 = stack->_ethip6_output;
tap->interface6.state = tap;
tap->interface6.flags = NETIF_FLAG_LINK_UP | NETIF_FLAG_UP;
DEBUG_INFO("addr=%s, netmask=%s", ip.toString().c_str(), ip.netmask().toString().c_str());
}
#endif
}
}
void lwip_loop(NetconEthernetTap *tap)
{
DEBUG_INFO();
lwIP_stack *stack = tap->lwipstack;
uint64_t prev_tcp_time = 0, prev_status_time = 0, prev_discovery_time = 0;
// Main timer loop
while (tap->_run) {
uint64_t now = OSUtils::now();
uint64_t since_tcp = now - prev_tcp_time;
uint64_t since_discovery = now - prev_discovery_time;
uint64_t since_status = now - prev_status_time;
uint64_t tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL;
uint64_t discovery_remaining = 5000;
#if defined(LWIP_IPV6)
#define DISCOVERY_INTERVAL 1000
#elif
#define DISCOVERY_INTERVAL ARP_TMR_INTERVAL
#endif
// Connection prunning
if (since_status >= STATUS_TMR_INTERVAL) {
prev_status_time = now;
for(size_t i=0;i<tap->_Connections.size();++i) {
if(!tap->_Connections[i]->sock || tap->_Connections[i]->type != SOCK_STREAM)
continue;
int fd = tap->_phy.getDescriptor(tap->_Connections[i]->sock);
// DEBUG_INFO(" tap_thread(): tcp\\jobs = {%d, %d}\n", _Connection.size(), jobmap.size());
// If there's anything on the RX buf, set to notify in case we stalled
if(tap->_Connections[i]->rxsz > 0)
tap->_phy.setNotifyWritable(tap->_Connections[i]->sock, true);
fcntl(fd, F_SETFL, O_NONBLOCK);
unsigned char tmpbuf[BUF_SZ];
ssize_t n = read(fd,&tmpbuf,BUF_SZ);
if(tap->_Connections[i]->TCP_pcb->state == SYN_SENT) {
DEBUG_EXTRA(" should finish or be removed soon, sock=%p, state=SYN_SENT",
(void*)&(tap->_Connections[i]->sock));
}
if((n < 0 && errno != EAGAIN) || (n == 0 && errno == EAGAIN)) {
//DEBUG_INFO(" closing sock (%x)", (void*)_Connections[i]->sock);
tap->closeConnection(tap->_Connections[i]->sock);
} else if (n > 0) {
DEBUG_INFO(" data read during connection check (%ld bytes)", n);
tap->phyOnUnixData(tap->_Connections[i]->sock,tap->_phy.getuptr(tap->_Connections[i]->sock),&tmpbuf,n);
}
}
}
// Main TCP/ETHARP timer section
if (since_tcp >= ZT_LWIP_TCP_TIMER_INTERVAL) {
prev_tcp_time = now;
stack->__tcp_tmr();
// FIXME: could be removed or refactored?
// Makeshift poll
for(size_t i=0;i<tap->_Connections.size();++i) {
if(tap->_Connections[i]->txsz > 0){
lwip_handleWrite(tap, tap->_Connections[i]);
}
}
} else {
tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL - since_tcp;
}
if (since_discovery >= DISCOVERY_INTERVAL) {
prev_discovery_time = now;
#if defined(SDK_IPV4)
stack->__etharp_tmr();
#endif
#if defined(SDK_IPV6)
stack->__nd6_tmr();
#endif
} else {
discovery_remaining = DISCOVERY_INTERVAL - since_discovery;
}
tap->_phy.poll((unsigned long)std::min(tcp_remaining,discovery_remaining));
}
stack->close();
}
void lwip_rx(NetconEthernetTap *tap, const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len)
{
// DEBUG_EXTRA();
lwIP_stack *stack = tap->lwipstack;
struct pbuf *p,*q;
if (!tap->_enabled)
return;
struct eth_hdr ethhdr;
from.copyTo(ethhdr.src.addr, 6);
to.copyTo(ethhdr.dest.addr, 6);
ethhdr.type = Utils::hton((uint16_t)etherType);
p = stack->__pbuf_alloc(PBUF_RAW, len+sizeof(struct eth_hdr), PBUF_POOL);
if (p != NULL) {
const char *dataptr = reinterpret_cast<const char *>(data);
// First pbuf gets ethernet header at start
q = p;
if (q->len < sizeof(ethhdr)) {
DEBUG_ERROR("dropped packet: first pbuf smaller than ethernet header");
return;
}
memcpy(q->payload,&ethhdr,sizeof(ethhdr));
memcpy((char*)q->payload + sizeof(ethhdr),dataptr,q->len - sizeof(ethhdr));
dataptr += q->len - sizeof(ethhdr);
// Remaining pbufs (if any) get rest of data
while ((q = q->next)) {
memcpy(q->payload,dataptr,q->len);
dataptr += q->len;
}
}
else {
DEBUG_ERROR("dropped packet: no pbufs available");
return;
}
{
#if defined(SDK_IPV6)
if(tap->interface6.input(p, &(tap->interface6)) != ERR_OK) {
DEBUG_ERROR("error while feeding frame into stack interface6");
}
#endif
#if defined(SDK_IPV4)
if(tap->interface.input(p, &(tap->interface)) != ERR_OK) {
DEBUG_ERROR("error while feeding frame into stack interface");
}
#endif
}
}
// Create and set up a lwIP socket PCB and Connection object
Connection *lwip_handleSocket(NetconEthernetTap *tap, PhySocket *sock, void **uptr, struct socket_st* socket_rpc)
{
lwIP_stack *stack = tap->lwipstack;
struct udp_pcb *new_udp_PCB = NULL;
struct tcp_pcb *new_tcp_PCB = NULL;
if(socket_rpc->socket_type == SOCK_DGRAM) {
DEBUG_EXTRA("SOCK_DGRAM");
Mutex::Lock _l(tap->_tcpconns_m);
new_udp_PCB = stack->__udp_new();
}
else if(socket_rpc->socket_type == SOCK_STREAM) {
DEBUG_EXTRA("SOCK_STREAM");
Mutex::Lock _l(tap->_tcpconns_m);
new_tcp_PCB = stack->__tcp_new();
}
else if(socket_rpc->socket_type == SOCK_RAW) {
DEBUG_ERROR("SOCK_RAW, not currently supported.");
}
if(new_udp_PCB || new_tcp_PCB) {
Connection * newConn = new Connection();
*uptr = newConn;
newConn->type = socket_rpc->socket_type;
newConn->sock = sock;
newConn->local_addr = NULL;
newConn->peer_addr = NULL;
if(newConn->type == SOCK_DGRAM) newConn->UDP_pcb = new_udp_PCB;
if(newConn->type == SOCK_STREAM) newConn->TCP_pcb = new_tcp_PCB;
tap->_Connections.push_back(newConn);
return newConn;
}
DEBUG_ERROR(" memory not available for new PCB");
tap->sendReturnValue(tap->_phy.getDescriptor(sock), -1, ENOMEM);
return NULL;
}
//
Connection * lwip_handleSocketProxy(NetconEthernetTap *tap, PhySocket *sock, int socket_type)
{
/*
Connection *conn = getConnection(sock);
if(!conn){
DEBUG_ERROR("unable to locate Connection object for this PhySocket sock=%p", (void*)&sock);
return NULL;
}
DEBUG_ATTN("sock=%p", (void*)&sock);
struct udp_pcb *new_udp_PCB = NULL;
struct tcp_pcb *new_tcp_PCB = NULL;
if(socket_type == SOCK_DGRAM) {
DEBUG_EXTRA("SOCK_DGRAM");
Mutex::Lock _l(_tcpconns_m);
new_udp_PCB = lwipstack->__udp_new();
}
else if(socket_type == SOCK_STREAM) {
DEBUG_EXTRA("SOCK_STREAM");
Mutex::Lock _l(_tcpconns_m);
new_tcp_PCB = lwipstack->__tcp_new();
}
if(new_udp_PCB || new_tcp_PCB) {
conn->sock = sock;
conn->type = socket_type;
conn->local_addr = NULL;
conn->peer_addr = NULL;
if(conn->type == SOCK_DGRAM) conn->UDP_pcb = new_udp_PCB;
if(conn->type == SOCK_STREAM) conn->TCP_pcb = new_tcp_PCB;
DEBUG_INFO(" updated sock=%p", (void*)&sock);
return conn;
}
DEBUG_ERROR(" memory not available for new PCB");
*/
return NULL;
}
// Connects an lwIP socket PCB to a remote host
void lwip_handleConnect(NetconEthernetTap *tap, PhySocket *sock, PhySocket *rpcSock, Connection *conn, struct connect_st* connect_rpc)
{
lwIP_stack *stack = tap->lwipstack;
ip_addr_t ba;
char addrstr[INET6_ADDRSTRLEN];
struct sockaddr_in6 *rawAddr = (struct sockaddr_in6 *) &connect_rpc->addr;
struct sockaddr *addr = (struct sockaddr*)rawAddr;
int err, port = stack->__lwip_ntohs(rawAddr->sin6_port);
// ipv4
#if defined(SDK_IPV4)
if(addr->sa_family == AF_INET) {
struct sockaddr_in *connaddr = (struct sockaddr_in *)addr;
inet_ntop(AF_INET, &(connaddr->sin_addr), addrstr, INET_ADDRSTRLEN);
sprintf(addrstr, "%s:%d", addrstr, stack->__lwip_ntohs(connaddr->sin_port));
}
struct sockaddr_in *rawAddr4 = (struct sockaddr_in *) &connect_rpc->addr;
ba = convert_ip(rawAddr4);
port = stack->__lwip_ntohs(rawAddr4->sin_port);
#endif
// ipv6
#if defined(SDK_IPV6)
struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&connect_rpc->addr;
in6_to_ip6((ip6_addr *)&ba, in6);
if(addr->sa_family == AF_INET6) {
struct sockaddr_in6 *connaddr6 = (struct sockaddr_in6 *)addr;
inet_ntop(AF_INET6, &(connaddr6->sin6_addr), addrstr, INET6_ADDRSTRLEN);
sprintf(addrstr, "%s:%d", addrstr, stack->__lwip_ntohs(connaddr6->sin6_port));
}
#endif
DEBUG_INFO("addr=%s", addrstr);
if(conn->type == SOCK_DGRAM) {
// Generates no network traffic
if((err = stack->__udp_connect(conn->UDP_pcb,(ip_addr_t *)&ba,port)) < 0)
DEBUG_ERROR("error while connecting to with UDP");
stack->__udp_recv(conn->UDP_pcb, nc_udp_recved, new Larg(tap, conn));
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), 0, ERR_OK);
return;
}
if(conn != NULL) {
stack->__tcp_sent(conn->TCP_pcb, nc_sent);
stack->__tcp_recv(conn->TCP_pcb, nc_recved);
stack->__tcp_err(conn->TCP_pcb, nc_err);
stack->__tcp_poll(conn->TCP_pcb, nc_poll, APPLICATION_POLL_FREQ);
stack->__tcp_arg(conn->TCP_pcb, new Larg(tap, conn));
DEBUG_EXTRA(" pcb->state=%x", conn->TCP_pcb->state);
if(conn->TCP_pcb->state != CLOSED) {
DEBUG_INFO(" cannot connect using this PCB, PCB!=CLOSED");
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EAGAIN);
return;
}
if((err = stack->__tcp_connect(conn->TCP_pcb,&ba,port,nc_connected)) < 0)
{
if(err == ERR_ISCONN) {
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EISCONN); // Already in connected state
return;
} if(err == ERR_USE) {
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EADDRINUSE); // Already in use
return;
} if(err == ERR_VAL) {
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EINVAL); // Invalid ipaddress parameter
return;
} if(err == ERR_RTE) {
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, ENETUNREACH); // No route to host
return;
} if(err == ERR_BUF) {
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EAGAIN); // No more ports available
return;
}
if(err == ERR_MEM) {
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EAGAIN); // TODO: Doesn't describe the problem well, but closest match
return;
}
// We should only return a value if failure happens immediately
// Otherwise, we still need to wait for a callback from lwIP.
// - This is because an ERR_OK from tcp_connect() only verifies
// that the SYN packet was enqueued onto the stack properly,
// that's it!
// - Most instances of a retval for a connect() should happen
// in the nc_connect() and nc_err() callbacks!
DEBUG_ERROR(" unable to connect");
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EAGAIN);
}
// Everything seems to be ok, but we don't have enough info to retval
conn->listening=true;
conn->rpcSock=rpcSock; // used for return value from lwip CB
}
else {
DEBUG_ERROR(" could not locate PCB based on application-provided fd");
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EBADF);
}
}
// Connect to a remote hose via the built-in SOCKS5 proxy server
int lwip_handleConnectProxy(NetconEthernetTap *tap, PhySocket *sock, struct sockaddr_in *rawAddr)
{
/*
DEBUG_ATTN("sock=%p", (void*)&sock);
Mutex::Lock _l(_tcpconns_m);
int port = rawAddr->sin_port;
ip_addr_t connAddr = convert_ip(rawAddr);
int err = 0;
Connection *conn = getConnection(sock);
if(!conn) {
DEBUG_INFO(" unable to locate Connection object for sock=%p", (void*)&sock);
return -1;
}
if(conn->type == SOCK_DGRAM) {
// Generates no network traffic
if((err = lwipstack->__udp_connect(conn->UDP_pcb,&connAddr,port)) < 0)
DEBUG_INFO("error while connecting to with UDP (sock=%p)", (void*)&sock);
lwipstack->__udp_recv(conn->UDP_pcb, nc_udp_recved, new Larg(this, conn));
errno = ERR_OK;
return 0;
}
if(conn != NULL) {
lwipstack->__tcp_sent(conn->TCP_pcb, nc_sent);
lwipstack->__tcp_recv(conn->TCP_pcb, nc_recved);
lwipstack->__tcp_err(conn->TCP_pcb, nc_err);
lwipstack->__tcp_poll(conn->TCP_pcb, nc_poll, APPLICATION_POLL_FREQ);
lwipstack->__tcp_arg(conn->TCP_pcb, new Larg(this, conn));
int ip = rawAddr->sin_addr.s_addr;
unsigned char d[4];
d[0] = ip & 0xFF;
d[1] = (ip >> 8) & 0xFF;
d[2] = (ip >> 16) & 0xFF;
d[3] = (ip >> 24) & 0xFF;
DEBUG_INFO(" addr=%d.%d.%d.%d:%d", d[0],d[1],d[2],d[3], port);
DEBUG_INFO(" pcb->state=%x", conn->TCP_pcb->state);
if(conn->TCP_pcb->state != CLOSED) {
DEBUG_INFO(" cannot connect using this PCB, PCB!=CLOSED");
errno = EAGAIN;
return -1;
}
if((err = lwipstack->__tcp_connect(conn->TCP_pcb,&connAddr,port,nc_connected_proxy)) < 0)
{
if(err == ERR_ISCONN) {
errno = EISCONN; // Already in connected state
return -1;
} if(err == ERR_USE) {
errno = EADDRINUSE; // Already in use
return -1;
} if(err == ERR_VAL) {
errno = EINVAL; // Invalid ipaddress parameter
return -1;
} if(err == ERR_RTE) {
errno = ENETUNREACH; // No route to host
return -1;
} if(err == ERR_BUF) {
errno = EAGAIN; // No more ports available
return -1;
}
if(err == ERR_MEM) {
// Can occur for the following reasons: tcp_enqueue_flags()
// 1) tcp_enqueue_flags is always called with either SYN or FIN in flags.
// We need one available snd_buf byte to do that.
// This means we can't send FIN while snd_buf==0. A better fix would be to
// not include SYN and FIN sequence numbers in the snd_buf count.
// 2) Cannot allocate new pbuf
// 3) Cannot allocate new TCP segment
errno = EAGAIN; // TODO: Doesn't describe the problem well, but closest match
return -1;
}
// We should only return a value if failure happens immediately
// Otherwise, we still need to wait for a callback from lwIP.
// - This is because an ERR_OK from tcp_connect() only verifies
// that the SYN packet was enqueued onto the stack properly,
// that's it!
// - Most instances of a retval for a connect() should happen
// in the nc_connect() and nc_err() callbacks!
DEBUG_ERROR(" unable to connect");
errno = EAGAIN;
return -1;
}
// Everything seems to be ok, but we don't have enough info to retval
conn->listening=true;
return 0;
} else {
DEBUG_ERROR(" could not locate PCB based on application-provided fd");
errno = EBADF;
return -1;
}
*/
return -1;
}
void lwip_handleBind(NetconEthernetTap *tap, PhySocket *sock, PhySocket *rpcSock, void **uptr, struct bind_st *bind_rpc)
{
lwIP_stack *stack = tap->lwipstack;
ip_addr_t ba;
char addrstr[INET6_ADDRSTRLEN];
struct sockaddr_in6 *rawAddr = (struct sockaddr_in6 *) &bind_rpc->addr;
struct sockaddr *addr = (struct sockaddr*)rawAddr;
int err, port = stack->__lwip_ntohs(rawAddr->sin6_port);
// ipv4
#if defined(SDK_IPV4)
if(addr->sa_family == AF_INET) {
struct sockaddr_in *connaddr = (struct sockaddr_in *)addr;
inet_ntop(AF_INET, &(connaddr->sin_addr), addrstr, INET_ADDRSTRLEN);
sprintf(addrstr, "%s:%d", addrstr, stack->__lwip_ntohs(connaddr->sin_port));
}
struct sockaddr_in *rawAddr4 = (struct sockaddr_in *) &bind_rpc->addr;
ba = convert_ip(rawAddr4);
port = stack->__lwip_ntohs(rawAddr4->sin_port);
#endif
// ipv6
#if defined(SDK_IPV6)
struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&bind_rpc->addr;
in6_to_ip6((ip6_addr *)&ba, in6);
if(addr->sa_family == AF_INET6) {
struct sockaddr_in6 *connaddr6 = (struct sockaddr_in6 *)addr;
inet_ntop(AF_INET6, &(connaddr6->sin6_addr), addrstr, INET6_ADDRSTRLEN);
sprintf(addrstr, "%s:%d", addrstr, stack->__lwip_ntohs(connaddr6->sin6_port));
}
#endif
Connection *conn = tap->getConnection(sock);
DEBUG_ATTN(" addr=%s, sock=%p, fd=%d", addrstr, (void*)&sock, bind_rpc->fd);
if(conn) {
if(conn->type == SOCK_DGRAM) {
#if defined(__ANDROID__)
err = stack->__udp_bind(conn->UDP_pcb, NULL, port);
#else
err = stack->__udp_bind(conn->UDP_pcb, (const ip_addr_t *)&ba, port);
#endif
if(err == ERR_USE) // port in use
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EADDRINUSE);
else {
stack->__udp_recv(conn->UDP_pcb, nc_udp_recved, new Larg(tap, conn));
struct sockaddr_in addr_in;
memcpy(&addr_in, &bind_rpc->addr, sizeof(addr_in));
addr_in.sin_port = Utils::ntoh(conn->UDP_pcb->local_port); // Newly assigned port
memcpy(&conn->local_addr, &addr_in, sizeof(addr_in));
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), ERR_OK, ERR_OK); // Success
}
return;
}
else if (conn->type == SOCK_STREAM) {
if(conn->TCP_pcb->state == CLOSED){
err = stack->__tcp_bind(conn->TCP_pcb, (const ip_addr_t *)&ba, port);
if(err != ERR_OK) {
DEBUG_ERROR("err=%d", err);
if(err == ERR_USE)
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EADDRINUSE);
if(err == ERR_MEM)
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, ENOMEM);
if(err == ERR_BUF)
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, ENOMEM);
} else {
conn->local_addr = (struct sockaddr_storage *) &bind_rpc->addr;
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), ERR_OK, ERR_OK); // Success
}
} else {
DEBUG_ERROR(" ignoring BIND request, PCB (conn=%p, pcb=%p) not in CLOSED state. ",
(void*)&conn, (void*)&conn->TCP_pcb);
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EINVAL);
}
}
}
else {
DEBUG_ERROR(" unable to locate Connection");
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EBADF);
}
}
void lwip_handleListen(NetconEthernetTap *tap, PhySocket *sock, PhySocket *rpcSock, void **uptr, struct listen_st *listen_rpc)
{
DEBUG_ATTN("sock=%p", (void*)&sock);
lwIP_stack *stack = tap->lwipstack;
Connection *conn = tap->getConnection(sock);
if(conn->type==SOCK_DGRAM) {
// FIX: Added sendReturnValue() call to fix listen() return bug on Android
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), ERR_OK, ERR_OK);
return;
}
if(!conn) {
DEBUG_ERROR(" unable to locate Connection");
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EBADF);
return;
}
if(conn->TCP_pcb->state == LISTEN) {
DEBUG_ERROR(" PCB is already in listening state");
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), ERR_OK, ERR_OK);
return;
}
struct tcp_pcb* listeningPCB;
#ifdef TCP_LISTEN_BACKLOG
listeningPCB = stack->__tcp_listen_with_backlog(conn->TCP_pcb, listen_rpc->backlog);
#else
listeningPCB = stack->__tcp_listen(conn->pcb);
#endif
if(listeningPCB != NULL) {
conn->TCP_pcb = listeningPCB;
stack->__tcp_accept(listeningPCB, nc_accept);
stack->__tcp_arg(listeningPCB, new Larg(tap, conn));
fcntl(tap->_phy.getDescriptor(conn->sock), F_SETFL, O_NONBLOCK);
conn->listening = true;
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), ERR_OK, ERR_OK);
return;
}
tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, -1);
}
// (RX packet) Read data from the RX buffer that lwIP just wrote to
void lwip_handleRead(NetconEthernetTap *tap, PhySocket *sock, void **uptr, bool lwip_invoked)
{
DEBUG_EXTRA();
lwIP_stack *stack = tap->lwipstack;
if(!lwip_invoked) {
tap->_tcpconns_m.lock();
tap->_rx_buf_m.lock();
}
Connection *conn = tap->getConnection(sock);
if(conn && conn->rxsz) {
float max = conn->type == SOCK_STREAM ? (float)DEFAULT_TCP_RX_BUF_SZ : (float)DEFAULT_UDP_RX_BUF_SZ;
long n = tap->_phy.streamSend(conn->sock, conn->rxbuf, ZT_MAX_MTU);
int payload_sz, addr_sz_offset = sizeof(struct sockaddr_storage);
memcpy(&payload_sz, conn->rxbuf + addr_sz_offset, sizeof(int)); // OPT:
// extract address
struct sockaddr_storage addr;
memcpy(&addr, conn->rxbuf, addr_sz_offset);
if(n == ZT_MAX_MTU) {
if(conn->rxsz-n > 0) // If more remains on buffer
memcpy(conn->rxbuf, conn->rxbuf+ZT_MAX_MTU, conn->rxsz - ZT_MAX_MTU);
conn->rxsz -= ZT_MAX_MTU;
// DGRAM
if(conn->type==SOCK_DGRAM){
tap->_phy.setNotifyWritable(conn->sock, false);
#if DEBUG_LEVEL >= MSG_TRANSFER
struct sockaddr_in * addr_in2 = (struct sockaddr_in *)&addr;
int port = stack->__lwip_ntohs(addr_in2->sin_port);
int ip = addr_in2->sin_addr.s_addr;
unsigned char d[4];
d[0] = ip & 0xFF;
d[1] = (ip >> 8) & 0xFF;
d[2] = (ip >> 16) & 0xFF;
d[3] = (ip >> 24) & 0xFF;
DEBUG_TRANS("UDP RX <--- :: {TX: %.3f%%, RX: %d, sock=%p} :: payload = %d bytes (src_addr=%d.%d.%d.%d:%d)",
(float)conn->txsz / max, conn->rxsz/* / max*/, (void*)conn->sock, payload_sz, d[0],d[1],d[2],d[3], port);
#endif
}
// STREAM
//DEBUG_INFO("phyOnUnixWritable(): tid = %d\n", pthread_mach_thread_np(pthread_self()));
if(conn->type==SOCK_STREAM) { // Only acknolwedge receipt of TCP packets
stack->__tcp_recved(conn->TCP_pcb, n);
DEBUG_TRANS("TCP RX <--- :: {TX: %.3f%%, RX: %.3f%%, sock=%p} :: %ld bytes",
(float)conn->txsz / max, (float)conn->rxsz / max, (void*)conn->sock, n);
}
} else {
DEBUG_EXTRA(" errno = %d, rxsz = %d", errno, conn->rxsz);
tap->_phy.setNotifyWritable(conn->sock, false);
}
}
// If everything on the buffer has been written
if(conn->rxsz == 0) {
tap->_phy.setNotifyWritable(conn->sock, false);
}
if(!lwip_invoked) {
tap->_tcpconns_m.unlock();
tap->_rx_buf_m.unlock();
}
}
// (TX packet) Write data from user app to network stack
void lwip_handleWrite(NetconEthernetTap *tap, Connection *conn)
{
DEBUG_EXTRA("conn=%p", (void*)&conn);
lwIP_stack *stack = tap->lwipstack;
if(!conn || (!conn->TCP_pcb && !conn->UDP_pcb)) {
DEBUG_ERROR(" invalid connection");
return;
}
if(conn->type == SOCK_DGRAM) {
if(!conn->UDP_pcb) {
DEBUG_ERROR(" invalid UDP_pcb, type=SOCK_DGRAM");
return;
}
// TODO: Packet re-assembly hasn't yet been tested with lwIP so UDP packets are limited to MTU-sized chunks
int udp_trans_len = conn->txsz < ZT_UDP_DEFAULT_PAYLOAD_MTU ? conn->txsz : ZT_UDP_DEFAULT_PAYLOAD_MTU;
DEBUG_EXTRA(" allocating pbuf chain of size=%d for UDP packet, txsz=%d", udp_trans_len, conn->txsz);
struct pbuf * pb = stack->__pbuf_alloc(PBUF_TRANSPORT, udp_trans_len, PBUF_POOL);
if(!pb){
DEBUG_ERROR(" unable to allocate new pbuf of size=%d", conn->txsz);
return;
}
memcpy(pb->payload, conn->txbuf, udp_trans_len);
int err = stack->__udp_send(conn->UDP_pcb, pb);
if(err == ERR_MEM) {
DEBUG_ERROR(" error sending packet. out of memory");
} else if(err == ERR_RTE) {
DEBUG_ERROR(" could not find route to destinations address");
} else if(err != ERR_OK) {
DEBUG_ERROR(" error sending packet - %d", err);
} else {
// Success
int buf_remaining = (conn->txsz)-udp_trans_len;
if(buf_remaining)
memmove(&conn->txbuf, (conn->txbuf+udp_trans_len), buf_remaining);
conn->txsz -= udp_trans_len;
#if DEBUG_LEVEL >= MSG_TRANSFER
struct sockaddr_in * addr_in2 = (struct sockaddr_in *)conn->peer_addr;
int port = stack->__lwip_ntohs(addr_in2->sin_port);
int ip = addr_in2->sin_addr.s_addr;
unsigned char d[4];
d[0] = ip & 0xFF;
d[1] = (ip >> 8) & 0xFF;
d[2] = (ip >> 16) & 0xFF;
d[3] = (ip >> 24) & 0xFF;
DEBUG_TRANS("[UDP TX] ---> :: {TX: ------, RX: ------, sock=%p} :: %d bytes (dest_addr=%d.%d.%d.%d:%d)",
(void*)conn->sock, udp_trans_len, d[0], d[1], d[2], d[3], port);
#endif
}
stack->__pbuf_free(pb);
return;
}
else if(conn->type == SOCK_STREAM) {
if(!conn->TCP_pcb) {
DEBUG_ERROR(" invalid TCP_pcb, type=SOCK_STREAM");
return;
}
// How much we are currently allowed to write to the connection
int sndbuf = conn->TCP_pcb->snd_buf;
int err, sz, r;
if(!sndbuf) {
// PCB send buffer is full, turn off readability notifications for the
// corresponding PhySocket until nc_sent() is called and confirms that there is
// now space on the buffer
if(!conn->probation) {
DEBUG_ERROR(" LWIP stack is full, sndbuf == 0");
tap->_phy.setNotifyReadable(conn->sock, false);
conn->probation = true;
}
return;
}
if(conn->txsz <= 0)
return; // Nothing to write
if(!conn->listening)
stack->__tcp_output(conn->TCP_pcb);
if(conn->sock) {
r = conn->txsz < sndbuf ? conn->txsz : sndbuf;
// Writes data pulled from the client's socket buffer to LWIP. This merely sends the
// data to LWIP to be enqueued and eventually sent to the network.
if(r > 0) {
err = stack->__tcp_write(conn->TCP_pcb, &conn->txbuf, r, TCP_WRITE_FLAG_COPY);
stack->__tcp_output(conn->TCP_pcb);
if(err != ERR_OK) {
DEBUG_ERROR(" error while writing to PCB, err=%d", err);
if(err == -1)
DEBUG_ERROR("out of memory");
return;
} else {
// adjust buffer
sz = (conn->txsz)-r;
if(sz)
memmove(&conn->txbuf, (conn->txbuf+r), sz);
conn->txsz -= r;
int max = conn->type == SOCK_STREAM ? DEFAULT_TCP_TX_BUF_SZ : DEFAULT_UDP_TX_BUF_SZ;
DEBUG_TRANS("[TCP TX] ---> :: {TX: %.3f%%, RX: %.3f%%, sock=%p} :: %d bytes",
(float)conn->txsz / (float)max, (float)conn->rxsz / max, (void*)&conn->sock, r);
return;
}
}
}
}
}
void lwip_handleClose(NetconEthernetTap *tap, PhySocket *sock, Connection *conn)
{
DEBUG_ATTN();
lwIP_stack *stack = tap->lwipstack;
if(conn->type==SOCK_DGRAM) {
stack->__udp_remove(conn->UDP_pcb);
}
if(conn->TCP_pcb && conn->TCP_pcb->state != CLOSED) {
DEBUG_EXTRA("conn=%p, sock=%p, PCB->state = %d",
(void*)&conn, (void*)&sock, conn->TCP_pcb->state);
if(conn->TCP_pcb->state == SYN_SENT /*|| conn->TCP_pcb->state == CLOSE_WAIT*/) {
DEBUG_EXTRA("ignoring close request. invalid PCB state for this operation. sock=%p", (void*)&sock);
return;
}
// DEBUG_BLANK("__tcp_close(...)");
if(stack->__tcp_close(conn->TCP_pcb) == ERR_OK) {
// Unregister callbacks for this PCB
stack->__tcp_arg(conn->TCP_pcb, NULL);
stack->__tcp_recv(conn->TCP_pcb, NULL);
stack->__tcp_err(conn->TCP_pcb, NULL);
stack->__tcp_sent(conn->TCP_pcb, NULL);
stack->__tcp_poll(conn->TCP_pcb, NULL, 1);
}
else {
DEBUG_EXTRA("error while calling tcp_close() sock=%p", (void*)&sock);
}
}
}
/*------------------------------------------------------------------------------
-------------------------------- lwIP Callbacks --------------------------------
------------------------------------------------------------------------------*/
err_t tapif_init(struct netif *netif)
{
// Actual init functionality is in addIp() of tap
return ERR_OK;
}
/*
* Outputs data from the pbuf queue to the interface
*/
err_t low_level_output(struct netif *netif, struct pbuf *p)
{
struct pbuf *q;
char buf[ZT_MAX_MTU+32];
char *bufptr;
int totalLength = 0;
ZeroTier::NetconEthernetTap *tap = (ZeroTier::NetconEthernetTap*)netif->state;
bufptr = buf;
// Copy data from each pbuf, one at a time
for(q = p; q != NULL; q = q->next) {
memcpy(bufptr, q->payload, q->len);
bufptr += q->len;
totalLength += q->len;
}
// [Send packet to network]
// Split ethernet header and feed into handler
struct eth_hdr *ethhdr;
ethhdr = (struct eth_hdr *)buf;
ZeroTier::MAC src_mac;
ZeroTier::MAC dest_mac;
src_mac.setTo(ethhdr->src.addr, 6);
dest_mac.setTo(ethhdr->dest.addr, 6);
tap->_handler(tap->_arg,tap->_nwid,src_mac,dest_mac,
Utils::ntoh((uint16_t)ethhdr->type),0,buf + sizeof(struct eth_hdr),totalLength - sizeof(struct eth_hdr));
return ERR_OK;
}
//
err_t nc_recved(void *arg, struct tcp_pcb *PCB, struct pbuf *p, err_t err)
{
Larg *l = (Larg*)arg;
DEBUG_EXTRA("conn=%p, pcb=%p", (void*)&(l->conn), (void*)&PCB);
int tot = 0;
struct pbuf* q = p;
Mutex::Lock _l(l->tap->_tcpconns_m);
if(!l->conn) {
DEBUG_ERROR("no connection");
return ERR_OK;
}
if(p == NULL) {
if(l->conn->TCP_pcb->state == CLOSE_WAIT){
l->tap->closeConnection(l->conn->sock);
return ERR_ABRT;
}
return err;
}
Mutex::Lock _l2(l->tap->_rx_buf_m);
// Cycle through pbufs and write them to the RX buffer
// The RX buffer will be emptied via phyOnUnixWritable()
while(p != NULL) {
if(p->len <= 0)
break;
int avail = DEFAULT_TCP_RX_BUF_SZ - l->conn->rxsz;
int len = p->len;
if(avail < len)
DEBUG_ERROR("not enough room (%d bytes) on RX buffer", avail);
memcpy(l->conn->rxbuf + (l->conn->rxsz), p->payload, len);
l->conn->rxsz += len;
p = p->next;
tot += len;
}
if(tot) {
//#if defined(USE_SOCKS_PROXY)
// l->tap->phyOnTcpWritable(l->conn->sock, NULL, true);
//#else
l->tap->phyOnUnixWritable(l->conn->sock, NULL, true);
//#endif
}
l->tap->lwipstack->__pbuf_free(q);
return ERR_OK;
}
//
err_t nc_accept(void *arg, struct tcp_pcb *newPCB, err_t err)
{
DEBUG_ATTN("pcb=%p", (void*)&newPCB);
Larg *l = (Larg*)arg;
Mutex::Lock _l(l->tap->_tcpconns_m);
Connection *conn = l->conn;
NetconEthernetTap *tap = l->tap;
if(!conn)
return -1;
if(conn->type==SOCK_DGRAM)
return -1;
if(!conn->sock)
return -1;
int fd = tap->_phy.getDescriptor(conn->sock);
if(conn) {
// create new socketpair
ZT_PHY_SOCKFD_TYPE fds[2];
if(socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) {
if(errno < 0) {
// sendReturnValue(conn, -1, errno);
DEBUG_ERROR("unable to create socketpair");
return ERR_MEM;
}
}
// create and populate new Connection
Connection *newTcpConn = new Connection();
l->tap->_Connections.push_back(newTcpConn);
newTcpConn->TCP_pcb = newPCB;
newTcpConn->type = SOCK_STREAM;
newTcpConn->sock = tap->_phy.wrapSocket(fds[0], newTcpConn);
if(sock_fd_write(fd, fds[1]) < 0)
return -1;
tap->lwipstack->__tcp_arg(newPCB, new Larg(tap, newTcpConn));
tap->lwipstack->__tcp_recv(newPCB, nc_recved);
tap->lwipstack->__tcp_err(newPCB, nc_err);
tap->lwipstack->__tcp_sent(newPCB, nc_sent);
tap->lwipstack->__tcp_poll(newPCB, nc_poll, 1);
if(conn->TCP_pcb->state == LISTEN)
return ERR_OK;
tcp_accepted(conn->TCP_pcb); // Let lwIP know that it can queue additional incoming connections
return ERR_OK;
} else
DEBUG_ERROR("can't locate Connection object for PCB");
return -1;
}
//
void nc_udp_recved(void * arg, struct udp_pcb * upcb, struct pbuf * p, ip_addr_t * addr, u16_t port)
{
Larg *l = (Larg*)arg;
DEBUG_EXTRA("nc_udp_recved(conn=%p,pcb=%p,port=%d)\n", (void*)&(l->conn), (void*)&upcb, port);
/*
int tot = 0;
unsigned char *addr_pos, *sz_pos, *payload_pos;
struct pbuf* q = p;
struct sockaddr_storage sockaddr_big;
#if defined(LWIP_IPV6)
struct sockaddr_in6 addr_in;
addr_in.sin6_addr.s6_addr = addr->u_addr.ip6.addr;
addr_in.sin6_port = port;
#else // ipv4
struct sockaddr_in *addr_in = (struct sockaddr_in *)&sockaddr_big;
addr_in->sin_addr.s_addr = addr->addr;
addr_in->sin_port = port;
#endif
// TODO: Finish address treatment
Mutex::Lock _l2(l->tap->_rx_buf_m);
// Cycle through pbufs and write them to the RX buffer
// The RX "buffer" will be emptied via phyOnUnixWritable()
if(p) {
// Intra-API "packetization" scheme: [addr_len|addr|payload_len|payload]
if(l->conn->rxsz == DEFAULT_UDP_RX_BUF_SZ) { // if UDP buffer full
DEBUG_INFO("UDP RX buffer full. Discarding oldest payload segment");
memmove(l->conn->rxbuf, l->conn->rxbuf + ZT_MAX_MTU, DEFAULT_UDP_RX_BUF_SZ - ZT_MAX_MTU);
addr_pos = l->conn->rxbuf + (DEFAULT_UDP_RX_BUF_SZ - ZT_MAX_MTU); // TODO:
sz_pos = addr_pos + sizeof(struct sockaddr_storage);
l->conn->rxsz -= ZT_MAX_MTU;
}
else {
addr_pos = l->conn->rxbuf + l->conn->rxsz; // where we'll prepend the size of the address
sz_pos = addr_pos + sizeof(struct sockaddr_storage);
}
payload_pos = addr_pos + sizeof(struct sockaddr_storage) + sizeof(tot); // where we'll write the payload
// write remote host address
memcpy(addr_pos, &addr_in, sizeof(struct sockaddr_storage));
}
while(p != NULL) {
if(p->len <= 0)
break;
int len = p->len;
memcpy(payload_pos, p->payload, len);
payload_pos = payload_pos + len;
p = p->next;
tot += len;
}
if(tot) {
l->conn->rxsz += ZT_MAX_MTU;
memcpy(sz_pos, &tot, sizeof(tot));
//DEBUG_EXTRA(" nc_udp_recved(): data_len = %d, rxsz = %d, addr_info_len = %d\n",
// tot, l->conn->rxsz, sizeof(u32_t) + sizeof(u16_t));
l->tap->phyOnUnixWritable(l->conn->sock, NULL, true);
l->tap->_phy.setNotifyWritable(l->conn->sock, true);
}
l->tap->lwipstack->__pbuf_free(q);
*/
}
//
err_t nc_sent(void* arg, struct tcp_pcb *PCB, u16_t len)
{
DEBUG_EXTRA("pcb=%p", (void*)&PCB);
Larg *l = (Larg*)arg;
Mutex::Lock _l(l->tap->_tcpconns_m);
if(l->conn->probation && l->conn->txsz == 0){
l->conn->probation = false; // TX buffer now empty, removing from probation
}
if(l && l->conn && len && !l->conn->probation) {
int softmax = l->conn->type == SOCK_STREAM ? DEFAULT_TCP_TX_BUF_SZ : DEFAULT_UDP_TX_BUF_SZ;
if(l->conn->txsz < softmax) {
l->tap->_phy.setNotifyReadable(l->conn->sock, true);
l->tap->_phy.whack();
}
}
return ERR_OK;
}
//
err_t nc_connected_proxy(void *arg, struct tcp_pcb *PCB, err_t err)
{
DEBUG_INFO("pcb=%p", (void*)&PCB);
return ERR_OK;
}
//
err_t nc_connected(void *arg, struct tcp_pcb *PCB, err_t err)
{
DEBUG_ATTN("pcb=%p", (void*)&PCB);
Larg *l = (Larg*)arg;
if(l && l->conn)
l->tap->sendReturnValue(l->tap->_phy.getDescriptor(l->conn->rpcSock), ERR_OK, 0);
return ERR_OK;
}
//
err_t nc_poll(void* arg, struct tcp_pcb *PCB)
{
return ERR_OK;
}
//
void nc_err(void *arg, err_t err)
{
DEBUG_ERROR("err=%d", err);
Larg *l = (Larg*)arg;
Mutex::Lock _l(l->tap->_tcpconns_m);
if(!l->conn)
DEBUG_ERROR("conn==NULL");
int fd = l->tap->_phy.getDescriptor(l->conn->sock);
switch(err)
{
case ERR_MEM:
DEBUG_ERROR("ERR_MEM->ENOMEM");
l->tap->sendReturnValue(fd, -1, ENOMEM);
break;
case ERR_BUF:
DEBUG_ERROR("ERR_BUF->ENOBUFS");
l->tap->sendReturnValue(fd, -1, ENOBUFS);
break;
case ERR_TIMEOUT:
DEBUG_ERROR("ERR_TIMEOUT->ETIMEDOUT");
l->tap->sendReturnValue(fd, -1, ETIMEDOUT);
break;
case ERR_RTE:
DEBUG_ERROR("ERR_RTE->ENETUNREACH");
l->tap->sendReturnValue(fd, -1, ENETUNREACH);
break;
case ERR_INPROGRESS:
DEBUG_ERROR("ERR_INPROGRESS->EINPROGRESS");
l->tap->sendReturnValue(fd, -1, EINPROGRESS);
break;
case ERR_VAL:
DEBUG_ERROR("ERR_VAL->EINVAL");
l->tap->sendReturnValue(fd, -1, EINVAL);
break;
case ERR_WOULDBLOCK:
DEBUG_ERROR("ERR_WOULDBLOCK->EWOULDBLOCK");
l->tap->sendReturnValue(fd, -1, EWOULDBLOCK);
break;
case ERR_USE:
DEBUG_ERROR("ERR_USE->EADDRINUSE");
l->tap->sendReturnValue(fd, -1, EADDRINUSE);
break;
case ERR_ISCONN:
DEBUG_ERROR("ERR_ISCONN->EISCONN");
l->tap->sendReturnValue(fd, -1, EISCONN);
break;
case ERR_ABRT:
DEBUG_ERROR("ERR_ABRT->ECONNREFUSED");
l->tap->sendReturnValue(fd, -1, ECONNREFUSED);
break;
// TODO: Below are errors which don't have a standard errno correlate
case ERR_RST:
l->tap->sendReturnValue(fd, -1, -1);
break;
case ERR_CLSD:
l->tap->sendReturnValue(fd, -1, -1);
break;
case ERR_CONN:
l->tap->sendReturnValue(fd, -1, -1);
break;
case ERR_ARG:
l->tap->sendReturnValue(fd, -1, -1);
break;
case ERR_IF:
l->tap->sendReturnValue(fd, -1, -1);
break;
default:
break;
}
DEBUG_ERROR(" closing connection");
l->tap->closeConnection(l->conn);
}
}