/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2015 ZeroTier, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include "tap.hpp" #include "sdkutils.hpp" namespace ZeroTier { void lwip_init_interface(NetconEthernetTap *tap, const InetAddress &ip) { DEBUG_INFO(); lwIP_stack *stack = tap->lwipstack; Mutex::Lock _l(tap->_ips_m); if (std::find(tap->_ips.begin(),tap->_ips.end(),ip) == tap->_ips.end()) { tap->_ips.push_back(ip); std::sort(tap->_ips.begin(),tap->_ips.end()); #if defined(SDK_IPV4) if (ip.isV4()) { // Set IP static ip_addr_t ipaddr, netmask, gw; IP4_ADDR(&gw,127,0,0,1); ipaddr.addr = *((u32_t *)ip.rawIpData()); netmask.addr = *((u32_t *)ip.netmask().rawIpData()); stack->__netif_add(&(tap->interface),&ipaddr, &netmask, &gw, NULL, tapif_init, stack->_ethernet_input); tap->interface.state = tap; tap->interface.output = stack->_etharp_output; tap->_mac.copyTo(tap->interface.hwaddr, 6); tap->interface.mtu = tap->_mtu; tap->interface.name[0] = 'l'; tap->interface.name[1] = '4'; tap->interface.linkoutput = low_level_output; tap->interface.hwaddr_len = 6; tap->interface.flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_IGMP | NETIF_FLAG_LINK_UP | NETIF_FLAG_UP; stack->__netif_set_default(&(tap->interface)); stack->__netif_set_up(&(tap->interface)); DEBUG_INFO("addr=%s, netmask=%s", ip.toString().c_str(), ip.netmask().toString().c_str()); } #endif #if defined(SDK_IPV6) if(ip.isV6()) { DEBUG_INFO("local_addr=%s", ip.toString().c_str()); static ip6_addr_t addr6; struct sockaddr_in6 in6; memcpy(in6.sin6_addr.s6_addr,ip.rawIpData(),16); in6_to_ip6((ip6_addr *)&addr6, &in6); tap->interface6.mtu = tap->_mtu; tap->interface6.name[0] = 'l'; tap->interface6.name[1] = '6'; tap->interface6.hwaddr_len = 6; tap->interface6.linkoutput = low_level_output; tap->interface6.ip6_autoconfig_enabled = 1; tap->_mac.copyTo(tap->interface6.hwaddr, tap->interface6.hwaddr_len); stack->__netif_create_ip6_linklocal_address(&(tap->interface6), 1); stack->__netif_add(&(tap->interface6), NULL, tapif_init, stack->_ethernet_input); stack->__netif_set_default(&(tap->interface6)); stack->__netif_set_up(&(tap->interface6)); netif_ip6_addr_set_state(&(tap->interface6), 1, IP6_ADDR_TENTATIVE); ip6_addr_copy(ip_2_ip6(tap->interface6.ip6_addr[1]), addr6); tap->interface6.output_ip6 = stack->_ethip6_output; tap->interface6.state = tap; tap->interface6.flags = NETIF_FLAG_LINK_UP | NETIF_FLAG_UP; DEBUG_INFO("addr=%s, netmask=%s", ip.toString().c_str(), ip.netmask().toString().c_str()); } #endif } } void lwip_loop(NetconEthernetTap *tap) { DEBUG_INFO(); lwIP_stack *stack = tap->lwipstack; uint64_t prev_tcp_time = 0, prev_status_time = 0, prev_discovery_time = 0; // Main timer loop while (tap->_run) { uint64_t now = OSUtils::now(); uint64_t since_tcp = now - prev_tcp_time; uint64_t since_discovery = now - prev_discovery_time; uint64_t since_status = now - prev_status_time; uint64_t tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL; uint64_t discovery_remaining = 5000; #if defined(LWIP_IPV6) #define DISCOVERY_INTERVAL 1000 #elif #define DISCOVERY_INTERVAL ARP_TMR_INTERVAL #endif // Connection prunning if (since_status >= STATUS_TMR_INTERVAL) { prev_status_time = now; for(size_t i=0;i_Connections.size();++i) { if(!tap->_Connections[i]->sock || tap->_Connections[i]->type != SOCK_STREAM) continue; int fd = tap->_phy.getDescriptor(tap->_Connections[i]->sock); // DEBUG_INFO(" tap_thread(): tcp\\jobs = {%d, %d}\n", _Connection.size(), jobmap.size()); // If there's anything on the RX buf, set to notify in case we stalled if(tap->_Connections[i]->rxsz > 0) tap->_phy.setNotifyWritable(tap->_Connections[i]->sock, true); fcntl(fd, F_SETFL, O_NONBLOCK); unsigned char tmpbuf[BUF_SZ]; ssize_t n = read(fd,&tmpbuf,BUF_SZ); if(tap->_Connections[i]->TCP_pcb->state == SYN_SENT) { DEBUG_EXTRA(" should finish or be removed soon, sock=%p, state=SYN_SENT", (void*)&(tap->_Connections[i]->sock)); } if((n < 0 && errno != EAGAIN) || (n == 0 && errno == EAGAIN)) { //DEBUG_INFO(" closing sock (%x)", (void*)_Connections[i]->sock); tap->closeConnection(tap->_Connections[i]->sock); } else if (n > 0) { DEBUG_INFO(" data read during connection check (%ld bytes)", n); tap->phyOnUnixData(tap->_Connections[i]->sock,tap->_phy.getuptr(tap->_Connections[i]->sock),&tmpbuf,n); } } } // Main TCP/ETHARP timer section if (since_tcp >= ZT_LWIP_TCP_TIMER_INTERVAL) { prev_tcp_time = now; stack->__tcp_tmr(); // FIXME: could be removed or refactored? // Makeshift poll for(size_t i=0;i_Connections.size();++i) { if(tap->_Connections[i]->txsz > 0){ lwip_handleWrite(tap, tap->_Connections[i]); } } } else { tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL - since_tcp; } if (since_discovery >= DISCOVERY_INTERVAL) { prev_discovery_time = now; #if defined(SDK_IPV4) stack->__etharp_tmr(); #endif #if defined(SDK_IPV6) stack->__nd6_tmr(); #endif } else { discovery_remaining = DISCOVERY_INTERVAL - since_discovery; } tap->_phy.poll((unsigned long)std::min(tcp_remaining,discovery_remaining)); } stack->close(); } void lwip_rx(NetconEthernetTap *tap, const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len) { // DEBUG_EXTRA(); lwIP_stack *stack = tap->lwipstack; struct pbuf *p,*q; if (!tap->_enabled) return; struct eth_hdr ethhdr; from.copyTo(ethhdr.src.addr, 6); to.copyTo(ethhdr.dest.addr, 6); ethhdr.type = Utils::hton((uint16_t)etherType); p = stack->__pbuf_alloc(PBUF_RAW, len+sizeof(struct eth_hdr), PBUF_POOL); if (p != NULL) { const char *dataptr = reinterpret_cast(data); // First pbuf gets ethernet header at start q = p; if (q->len < sizeof(ethhdr)) { DEBUG_ERROR("dropped packet: first pbuf smaller than ethernet header"); return; } memcpy(q->payload,ðhdr,sizeof(ethhdr)); memcpy((char*)q->payload + sizeof(ethhdr),dataptr,q->len - sizeof(ethhdr)); dataptr += q->len - sizeof(ethhdr); // Remaining pbufs (if any) get rest of data while ((q = q->next)) { memcpy(q->payload,dataptr,q->len); dataptr += q->len; } } else { DEBUG_ERROR("dropped packet: no pbufs available"); return; } { #if defined(SDK_IPV6) if(tap->interface6.input(p, &(tap->interface6)) != ERR_OK) { DEBUG_ERROR("error while feeding frame into stack interface6"); } #endif #if defined(SDK_IPV4) if(tap->interface.input(p, &(tap->interface)) != ERR_OK) { DEBUG_ERROR("error while feeding frame into stack interface"); } #endif } } // Create and set up a lwIP socket PCB and Connection object Connection *lwip_handleSocket(NetconEthernetTap *tap, PhySocket *sock, void **uptr, struct socket_st* socket_rpc) { lwIP_stack *stack = tap->lwipstack; struct udp_pcb *new_udp_PCB = NULL; struct tcp_pcb *new_tcp_PCB = NULL; if(socket_rpc->socket_type == SOCK_DGRAM) { DEBUG_EXTRA("SOCK_DGRAM"); Mutex::Lock _l(tap->_tcpconns_m); new_udp_PCB = stack->__udp_new(); } else if(socket_rpc->socket_type == SOCK_STREAM) { DEBUG_EXTRA("SOCK_STREAM"); Mutex::Lock _l(tap->_tcpconns_m); new_tcp_PCB = stack->__tcp_new(); } else if(socket_rpc->socket_type == SOCK_RAW) { DEBUG_ERROR("SOCK_RAW, not currently supported."); } if(new_udp_PCB || new_tcp_PCB) { Connection * newConn = new Connection(); *uptr = newConn; newConn->type = socket_rpc->socket_type; newConn->sock = sock; newConn->local_addr = NULL; newConn->peer_addr = NULL; if(newConn->type == SOCK_DGRAM) newConn->UDP_pcb = new_udp_PCB; if(newConn->type == SOCK_STREAM) newConn->TCP_pcb = new_tcp_PCB; tap->_Connections.push_back(newConn); return newConn; } DEBUG_ERROR(" memory not available for new PCB"); tap->sendReturnValue(tap->_phy.getDescriptor(sock), -1, ENOMEM); return NULL; } // Connection * lwip_handleSocketProxy(NetconEthernetTap *tap, PhySocket *sock, int socket_type) { /* Connection *conn = getConnection(sock); if(!conn){ DEBUG_ERROR("unable to locate Connection object for this PhySocket sock=%p", (void*)&sock); return NULL; } DEBUG_ATTN("sock=%p", (void*)&sock); struct udp_pcb *new_udp_PCB = NULL; struct tcp_pcb *new_tcp_PCB = NULL; if(socket_type == SOCK_DGRAM) { DEBUG_EXTRA("SOCK_DGRAM"); Mutex::Lock _l(_tcpconns_m); new_udp_PCB = lwipstack->__udp_new(); } else if(socket_type == SOCK_STREAM) { DEBUG_EXTRA("SOCK_STREAM"); Mutex::Lock _l(_tcpconns_m); new_tcp_PCB = lwipstack->__tcp_new(); } if(new_udp_PCB || new_tcp_PCB) { conn->sock = sock; conn->type = socket_type; conn->local_addr = NULL; conn->peer_addr = NULL; if(conn->type == SOCK_DGRAM) conn->UDP_pcb = new_udp_PCB; if(conn->type == SOCK_STREAM) conn->TCP_pcb = new_tcp_PCB; DEBUG_INFO(" updated sock=%p", (void*)&sock); return conn; } DEBUG_ERROR(" memory not available for new PCB"); */ return NULL; } // Connects an lwIP socket PCB to a remote host void lwip_handleConnect(NetconEthernetTap *tap, PhySocket *sock, PhySocket *rpcSock, Connection *conn, struct connect_st* connect_rpc) { lwIP_stack *stack = tap->lwipstack; ip_addr_t ba; char addrstr[INET6_ADDRSTRLEN]; struct sockaddr_in6 *rawAddr = (struct sockaddr_in6 *) &connect_rpc->addr; struct sockaddr *addr = (struct sockaddr*)rawAddr; int err, port = stack->__lwip_ntohs(rawAddr->sin6_port); // ipv4 #if defined(SDK_IPV4) if(addr->sa_family == AF_INET) { struct sockaddr_in *connaddr = (struct sockaddr_in *)addr; inet_ntop(AF_INET, &(connaddr->sin_addr), addrstr, INET_ADDRSTRLEN); sprintf(addrstr, "%s:%d", addrstr, stack->__lwip_ntohs(connaddr->sin_port)); } struct sockaddr_in *rawAddr4 = (struct sockaddr_in *) &connect_rpc->addr; ba = convert_ip(rawAddr4); port = stack->__lwip_ntohs(rawAddr4->sin_port); #endif // ipv6 #if defined(SDK_IPV6) struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&connect_rpc->addr; in6_to_ip6((ip6_addr *)&ba, in6); if(addr->sa_family == AF_INET6) { struct sockaddr_in6 *connaddr6 = (struct sockaddr_in6 *)addr; inet_ntop(AF_INET6, &(connaddr6->sin6_addr), addrstr, INET6_ADDRSTRLEN); sprintf(addrstr, "%s:%d", addrstr, stack->__lwip_ntohs(connaddr6->sin6_port)); } #endif DEBUG_INFO("addr=%s", addrstr); if(conn->type == SOCK_DGRAM) { // Generates no network traffic if((err = stack->__udp_connect(conn->UDP_pcb,(ip_addr_t *)&ba,port)) < 0) DEBUG_ERROR("error while connecting to with UDP"); stack->__udp_recv(conn->UDP_pcb, nc_udp_recved, new Larg(tap, conn)); tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), 0, ERR_OK); return; } if(conn != NULL) { stack->__tcp_sent(conn->TCP_pcb, nc_sent); stack->__tcp_recv(conn->TCP_pcb, nc_recved); stack->__tcp_err(conn->TCP_pcb, nc_err); stack->__tcp_poll(conn->TCP_pcb, nc_poll, APPLICATION_POLL_FREQ); stack->__tcp_arg(conn->TCP_pcb, new Larg(tap, conn)); DEBUG_EXTRA(" pcb->state=%x", conn->TCP_pcb->state); if(conn->TCP_pcb->state != CLOSED) { DEBUG_INFO(" cannot connect using this PCB, PCB!=CLOSED"); tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EAGAIN); return; } if((err = stack->__tcp_connect(conn->TCP_pcb,&ba,port,nc_connected)) < 0) { if(err == ERR_ISCONN) { tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EISCONN); // Already in connected state return; } if(err == ERR_USE) { tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EADDRINUSE); // Already in use return; } if(err == ERR_VAL) { tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EINVAL); // Invalid ipaddress parameter return; } if(err == ERR_RTE) { tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, ENETUNREACH); // No route to host return; } if(err == ERR_BUF) { tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EAGAIN); // No more ports available return; } if(err == ERR_MEM) { tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EAGAIN); // TODO: Doesn't describe the problem well, but closest match return; } // We should only return a value if failure happens immediately // Otherwise, we still need to wait for a callback from lwIP. // - This is because an ERR_OK from tcp_connect() only verifies // that the SYN packet was enqueued onto the stack properly, // that's it! // - Most instances of a retval for a connect() should happen // in the nc_connect() and nc_err() callbacks! DEBUG_ERROR(" unable to connect"); tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EAGAIN); } // Everything seems to be ok, but we don't have enough info to retval conn->listening=true; conn->rpcSock=rpcSock; // used for return value from lwip CB } else { DEBUG_ERROR(" could not locate PCB based on application-provided fd"); tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EBADF); } } // Connect to a remote hose via the built-in SOCKS5 proxy server int lwip_handleConnectProxy(NetconEthernetTap *tap, PhySocket *sock, struct sockaddr_in *rawAddr) { /* DEBUG_ATTN("sock=%p", (void*)&sock); Mutex::Lock _l(_tcpconns_m); int port = rawAddr->sin_port; ip_addr_t connAddr = convert_ip(rawAddr); int err = 0; Connection *conn = getConnection(sock); if(!conn) { DEBUG_INFO(" unable to locate Connection object for sock=%p", (void*)&sock); return -1; } if(conn->type == SOCK_DGRAM) { // Generates no network traffic if((err = lwipstack->__udp_connect(conn->UDP_pcb,&connAddr,port)) < 0) DEBUG_INFO("error while connecting to with UDP (sock=%p)", (void*)&sock); lwipstack->__udp_recv(conn->UDP_pcb, nc_udp_recved, new Larg(this, conn)); errno = ERR_OK; return 0; } if(conn != NULL) { lwipstack->__tcp_sent(conn->TCP_pcb, nc_sent); lwipstack->__tcp_recv(conn->TCP_pcb, nc_recved); lwipstack->__tcp_err(conn->TCP_pcb, nc_err); lwipstack->__tcp_poll(conn->TCP_pcb, nc_poll, APPLICATION_POLL_FREQ); lwipstack->__tcp_arg(conn->TCP_pcb, new Larg(this, conn)); int ip = rawAddr->sin_addr.s_addr; unsigned char d[4]; d[0] = ip & 0xFF; d[1] = (ip >> 8) & 0xFF; d[2] = (ip >> 16) & 0xFF; d[3] = (ip >> 24) & 0xFF; DEBUG_INFO(" addr=%d.%d.%d.%d:%d", d[0],d[1],d[2],d[3], port); DEBUG_INFO(" pcb->state=%x", conn->TCP_pcb->state); if(conn->TCP_pcb->state != CLOSED) { DEBUG_INFO(" cannot connect using this PCB, PCB!=CLOSED"); errno = EAGAIN; return -1; } if((err = lwipstack->__tcp_connect(conn->TCP_pcb,&connAddr,port,nc_connected_proxy)) < 0) { if(err == ERR_ISCONN) { errno = EISCONN; // Already in connected state return -1; } if(err == ERR_USE) { errno = EADDRINUSE; // Already in use return -1; } if(err == ERR_VAL) { errno = EINVAL; // Invalid ipaddress parameter return -1; } if(err == ERR_RTE) { errno = ENETUNREACH; // No route to host return -1; } if(err == ERR_BUF) { errno = EAGAIN; // No more ports available return -1; } if(err == ERR_MEM) { // Can occur for the following reasons: tcp_enqueue_flags() // 1) tcp_enqueue_flags is always called with either SYN or FIN in flags. // We need one available snd_buf byte to do that. // This means we can't send FIN while snd_buf==0. A better fix would be to // not include SYN and FIN sequence numbers in the snd_buf count. // 2) Cannot allocate new pbuf // 3) Cannot allocate new TCP segment errno = EAGAIN; // TODO: Doesn't describe the problem well, but closest match return -1; } // We should only return a value if failure happens immediately // Otherwise, we still need to wait for a callback from lwIP. // - This is because an ERR_OK from tcp_connect() only verifies // that the SYN packet was enqueued onto the stack properly, // that's it! // - Most instances of a retval for a connect() should happen // in the nc_connect() and nc_err() callbacks! DEBUG_ERROR(" unable to connect"); errno = EAGAIN; return -1; } // Everything seems to be ok, but we don't have enough info to retval conn->listening=true; return 0; } else { DEBUG_ERROR(" could not locate PCB based on application-provided fd"); errno = EBADF; return -1; } */ return -1; } void lwip_handleBind(NetconEthernetTap *tap, PhySocket *sock, PhySocket *rpcSock, void **uptr, struct bind_st *bind_rpc) { lwIP_stack *stack = tap->lwipstack; ip_addr_t ba; char addrstr[INET6_ADDRSTRLEN]; struct sockaddr_in6 *rawAddr = (struct sockaddr_in6 *) &bind_rpc->addr; struct sockaddr *addr = (struct sockaddr*)rawAddr; int err, port = stack->__lwip_ntohs(rawAddr->sin6_port); // ipv4 #if defined(SDK_IPV4) if(addr->sa_family == AF_INET) { struct sockaddr_in *connaddr = (struct sockaddr_in *)addr; inet_ntop(AF_INET, &(connaddr->sin_addr), addrstr, INET_ADDRSTRLEN); sprintf(addrstr, "%s:%d", addrstr, stack->__lwip_ntohs(connaddr->sin_port)); } struct sockaddr_in *rawAddr4 = (struct sockaddr_in *) &bind_rpc->addr; ba = convert_ip(rawAddr4); port = stack->__lwip_ntohs(rawAddr4->sin_port); #endif // ipv6 #if defined(SDK_IPV6) struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&bind_rpc->addr; in6_to_ip6((ip6_addr *)&ba, in6); if(addr->sa_family == AF_INET6) { struct sockaddr_in6 *connaddr6 = (struct sockaddr_in6 *)addr; inet_ntop(AF_INET6, &(connaddr6->sin6_addr), addrstr, INET6_ADDRSTRLEN); sprintf(addrstr, "%s:%d", addrstr, stack->__lwip_ntohs(connaddr6->sin6_port)); } #endif Connection *conn = tap->getConnection(sock); DEBUG_ATTN(" addr=%s, sock=%p, fd=%d", addrstr, (void*)&sock, bind_rpc->fd); if(conn) { if(conn->type == SOCK_DGRAM) { #if defined(__ANDROID__) err = stack->__udp_bind(conn->UDP_pcb, NULL, port); #else err = stack->__udp_bind(conn->UDP_pcb, (const ip_addr_t *)&ba, port); #endif if(err == ERR_USE) // port in use tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EADDRINUSE); else { stack->__udp_recv(conn->UDP_pcb, nc_udp_recved, new Larg(tap, conn)); struct sockaddr_in addr_in; memcpy(&addr_in, &bind_rpc->addr, sizeof(addr_in)); addr_in.sin_port = Utils::ntoh(conn->UDP_pcb->local_port); // Newly assigned port memcpy(&conn->local_addr, &addr_in, sizeof(addr_in)); tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), ERR_OK, ERR_OK); // Success } return; } else if (conn->type == SOCK_STREAM) { if(conn->TCP_pcb->state == CLOSED){ err = stack->__tcp_bind(conn->TCP_pcb, (const ip_addr_t *)&ba, port); if(err != ERR_OK) { DEBUG_ERROR("err=%d", err); if(err == ERR_USE) tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EADDRINUSE); if(err == ERR_MEM) tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, ENOMEM); if(err == ERR_BUF) tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, ENOMEM); } else { conn->local_addr = (struct sockaddr_storage *) &bind_rpc->addr; tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), ERR_OK, ERR_OK); // Success } } else { DEBUG_ERROR(" ignoring BIND request, PCB (conn=%p, pcb=%p) not in CLOSED state. ", (void*)&conn, (void*)&conn->TCP_pcb); tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EINVAL); } } } else { DEBUG_ERROR(" unable to locate Connection"); tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EBADF); } } void lwip_handleListen(NetconEthernetTap *tap, PhySocket *sock, PhySocket *rpcSock, void **uptr, struct listen_st *listen_rpc) { DEBUG_ATTN("sock=%p", (void*)&sock); lwIP_stack *stack = tap->lwipstack; Connection *conn = tap->getConnection(sock); if(conn->type==SOCK_DGRAM) { // FIX: Added sendReturnValue() call to fix listen() return bug on Android tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), ERR_OK, ERR_OK); return; } if(!conn) { DEBUG_ERROR(" unable to locate Connection"); tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, EBADF); return; } if(conn->TCP_pcb->state == LISTEN) { DEBUG_ERROR(" PCB is already in listening state"); tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), ERR_OK, ERR_OK); return; } struct tcp_pcb* listeningPCB; #ifdef TCP_LISTEN_BACKLOG listeningPCB = stack->__tcp_listen_with_backlog(conn->TCP_pcb, listen_rpc->backlog); #else listeningPCB = stack->__tcp_listen(conn->pcb); #endif if(listeningPCB != NULL) { conn->TCP_pcb = listeningPCB; stack->__tcp_accept(listeningPCB, nc_accept); stack->__tcp_arg(listeningPCB, new Larg(tap, conn)); fcntl(tap->_phy.getDescriptor(conn->sock), F_SETFL, O_NONBLOCK); conn->listening = true; tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), ERR_OK, ERR_OK); return; } tap->sendReturnValue(tap->_phy.getDescriptor(rpcSock), -1, -1); } // (RX packet) Read data from the RX buffer that lwIP just wrote to void lwip_handleRead(NetconEthernetTap *tap, PhySocket *sock, void **uptr, bool lwip_invoked) { DEBUG_EXTRA(); lwIP_stack *stack = tap->lwipstack; if(!lwip_invoked) { tap->_tcpconns_m.lock(); tap->_rx_buf_m.lock(); } Connection *conn = tap->getConnection(sock); if(conn && conn->rxsz) { float max = conn->type == SOCK_STREAM ? (float)DEFAULT_TCP_RX_BUF_SZ : (float)DEFAULT_UDP_RX_BUF_SZ; long n = tap->_phy.streamSend(conn->sock, conn->rxbuf, ZT_MAX_MTU); int payload_sz, addr_sz_offset = sizeof(struct sockaddr_storage); memcpy(&payload_sz, conn->rxbuf + addr_sz_offset, sizeof(int)); // OPT: // extract address struct sockaddr_storage addr; memcpy(&addr, conn->rxbuf, addr_sz_offset); if(n == ZT_MAX_MTU) { if(conn->rxsz-n > 0) // If more remains on buffer memcpy(conn->rxbuf, conn->rxbuf+ZT_MAX_MTU, conn->rxsz - ZT_MAX_MTU); conn->rxsz -= ZT_MAX_MTU; // DGRAM if(conn->type==SOCK_DGRAM){ tap->_phy.setNotifyWritable(conn->sock, false); #if DEBUG_LEVEL >= MSG_TRANSFER struct sockaddr_in * addr_in2 = (struct sockaddr_in *)&addr; int port = stack->__lwip_ntohs(addr_in2->sin_port); int ip = addr_in2->sin_addr.s_addr; unsigned char d[4]; d[0] = ip & 0xFF; d[1] = (ip >> 8) & 0xFF; d[2] = (ip >> 16) & 0xFF; d[3] = (ip >> 24) & 0xFF; DEBUG_TRANS("UDP RX <--- :: {TX: %.3f%%, RX: %d, sock=%p} :: payload = %d bytes (src_addr=%d.%d.%d.%d:%d)", (float)conn->txsz / max, conn->rxsz/* / max*/, (void*)conn->sock, payload_sz, d[0],d[1],d[2],d[3], port); #endif } // STREAM //DEBUG_INFO("phyOnUnixWritable(): tid = %d\n", pthread_mach_thread_np(pthread_self())); if(conn->type==SOCK_STREAM) { // Only acknolwedge receipt of TCP packets stack->__tcp_recved(conn->TCP_pcb, n); DEBUG_TRANS("TCP RX <--- :: {TX: %.3f%%, RX: %.3f%%, sock=%p} :: %ld bytes", (float)conn->txsz / max, (float)conn->rxsz / max, (void*)conn->sock, n); } } else { DEBUG_EXTRA(" errno = %d, rxsz = %d", errno, conn->rxsz); tap->_phy.setNotifyWritable(conn->sock, false); } } // If everything on the buffer has been written if(conn->rxsz == 0) { tap->_phy.setNotifyWritable(conn->sock, false); } if(!lwip_invoked) { tap->_tcpconns_m.unlock(); tap->_rx_buf_m.unlock(); } } // (TX packet) Write data from user app to network stack void lwip_handleWrite(NetconEthernetTap *tap, Connection *conn) { DEBUG_EXTRA("conn=%p", (void*)&conn); lwIP_stack *stack = tap->lwipstack; if(!conn || (!conn->TCP_pcb && !conn->UDP_pcb)) { DEBUG_ERROR(" invalid connection"); return; } if(conn->type == SOCK_DGRAM) { if(!conn->UDP_pcb) { DEBUG_ERROR(" invalid UDP_pcb, type=SOCK_DGRAM"); return; } // TODO: Packet re-assembly hasn't yet been tested with lwIP so UDP packets are limited to MTU-sized chunks int udp_trans_len = conn->txsz < ZT_UDP_DEFAULT_PAYLOAD_MTU ? conn->txsz : ZT_UDP_DEFAULT_PAYLOAD_MTU; DEBUG_EXTRA(" allocating pbuf chain of size=%d for UDP packet, txsz=%d", udp_trans_len, conn->txsz); struct pbuf * pb = stack->__pbuf_alloc(PBUF_TRANSPORT, udp_trans_len, PBUF_POOL); if(!pb){ DEBUG_ERROR(" unable to allocate new pbuf of size=%d", conn->txsz); return; } memcpy(pb->payload, conn->txbuf, udp_trans_len); int err = stack->__udp_send(conn->UDP_pcb, pb); if(err == ERR_MEM) { DEBUG_ERROR(" error sending packet. out of memory"); } else if(err == ERR_RTE) { DEBUG_ERROR(" could not find route to destinations address"); } else if(err != ERR_OK) { DEBUG_ERROR(" error sending packet - %d", err); } else { // Success int buf_remaining = (conn->txsz)-udp_trans_len; if(buf_remaining) memmove(&conn->txbuf, (conn->txbuf+udp_trans_len), buf_remaining); conn->txsz -= udp_trans_len; #if DEBUG_LEVEL >= MSG_TRANSFER struct sockaddr_in * addr_in2 = (struct sockaddr_in *)conn->peer_addr; int port = stack->__lwip_ntohs(addr_in2->sin_port); int ip = addr_in2->sin_addr.s_addr; unsigned char d[4]; d[0] = ip & 0xFF; d[1] = (ip >> 8) & 0xFF; d[2] = (ip >> 16) & 0xFF; d[3] = (ip >> 24) & 0xFF; DEBUG_TRANS("[UDP TX] ---> :: {TX: ------, RX: ------, sock=%p} :: %d bytes (dest_addr=%d.%d.%d.%d:%d)", (void*)conn->sock, udp_trans_len, d[0], d[1], d[2], d[3], port); #endif } stack->__pbuf_free(pb); return; } else if(conn->type == SOCK_STREAM) { if(!conn->TCP_pcb) { DEBUG_ERROR(" invalid TCP_pcb, type=SOCK_STREAM"); return; } // How much we are currently allowed to write to the connection int sndbuf = conn->TCP_pcb->snd_buf; int err, sz, r; if(!sndbuf) { // PCB send buffer is full, turn off readability notifications for the // corresponding PhySocket until nc_sent() is called and confirms that there is // now space on the buffer if(!conn->probation) { DEBUG_ERROR(" LWIP stack is full, sndbuf == 0"); tap->_phy.setNotifyReadable(conn->sock, false); conn->probation = true; } return; } if(conn->txsz <= 0) return; // Nothing to write if(!conn->listening) stack->__tcp_output(conn->TCP_pcb); if(conn->sock) { r = conn->txsz < sndbuf ? conn->txsz : sndbuf; // Writes data pulled from the client's socket buffer to LWIP. This merely sends the // data to LWIP to be enqueued and eventually sent to the network. if(r > 0) { err = stack->__tcp_write(conn->TCP_pcb, &conn->txbuf, r, TCP_WRITE_FLAG_COPY); stack->__tcp_output(conn->TCP_pcb); if(err != ERR_OK) { DEBUG_ERROR(" error while writing to PCB, err=%d", err); if(err == -1) DEBUG_ERROR("out of memory"); return; } else { // adjust buffer sz = (conn->txsz)-r; if(sz) memmove(&conn->txbuf, (conn->txbuf+r), sz); conn->txsz -= r; int max = conn->type == SOCK_STREAM ? DEFAULT_TCP_TX_BUF_SZ : DEFAULT_UDP_TX_BUF_SZ; DEBUG_TRANS("[TCP TX] ---> :: {TX: %.3f%%, RX: %.3f%%, sock=%p} :: %d bytes", (float)conn->txsz / (float)max, (float)conn->rxsz / max, (void*)&conn->sock, r); return; } } } } } void lwip_handleClose(NetconEthernetTap *tap, PhySocket *sock, Connection *conn) { DEBUG_ATTN(); lwIP_stack *stack = tap->lwipstack; if(conn->type==SOCK_DGRAM) { stack->__udp_remove(conn->UDP_pcb); } if(conn->TCP_pcb && conn->TCP_pcb->state != CLOSED) { DEBUG_EXTRA("conn=%p, sock=%p, PCB->state = %d", (void*)&conn, (void*)&sock, conn->TCP_pcb->state); if(conn->TCP_pcb->state == SYN_SENT /*|| conn->TCP_pcb->state == CLOSE_WAIT*/) { DEBUG_EXTRA("ignoring close request. invalid PCB state for this operation. sock=%p", (void*)&sock); return; } // DEBUG_BLANK("__tcp_close(...)"); if(stack->__tcp_close(conn->TCP_pcb) == ERR_OK) { // Unregister callbacks for this PCB stack->__tcp_arg(conn->TCP_pcb, NULL); stack->__tcp_recv(conn->TCP_pcb, NULL); stack->__tcp_err(conn->TCP_pcb, NULL); stack->__tcp_sent(conn->TCP_pcb, NULL); stack->__tcp_poll(conn->TCP_pcb, NULL, 1); } else { DEBUG_EXTRA("error while calling tcp_close() sock=%p", (void*)&sock); } } } /*------------------------------------------------------------------------------ -------------------------------- lwIP Callbacks -------------------------------- ------------------------------------------------------------------------------*/ err_t tapif_init(struct netif *netif) { // Actual init functionality is in addIp() of tap return ERR_OK; } /* * Outputs data from the pbuf queue to the interface */ err_t low_level_output(struct netif *netif, struct pbuf *p) { struct pbuf *q; char buf[ZT_MAX_MTU+32]; char *bufptr; int totalLength = 0; ZeroTier::NetconEthernetTap *tap = (ZeroTier::NetconEthernetTap*)netif->state; bufptr = buf; // Copy data from each pbuf, one at a time for(q = p; q != NULL; q = q->next) { memcpy(bufptr, q->payload, q->len); bufptr += q->len; totalLength += q->len; } // [Send packet to network] // Split ethernet header and feed into handler struct eth_hdr *ethhdr; ethhdr = (struct eth_hdr *)buf; ZeroTier::MAC src_mac; ZeroTier::MAC dest_mac; src_mac.setTo(ethhdr->src.addr, 6); dest_mac.setTo(ethhdr->dest.addr, 6); tap->_handler(tap->_arg,tap->_nwid,src_mac,dest_mac, Utils::ntoh((uint16_t)ethhdr->type),0,buf + sizeof(struct eth_hdr),totalLength - sizeof(struct eth_hdr)); return ERR_OK; } // err_t nc_recved(void *arg, struct tcp_pcb *PCB, struct pbuf *p, err_t err) { Larg *l = (Larg*)arg; DEBUG_EXTRA("conn=%p, pcb=%p", (void*)&(l->conn), (void*)&PCB); int tot = 0; struct pbuf* q = p; Mutex::Lock _l(l->tap->_tcpconns_m); if(!l->conn) { DEBUG_ERROR("no connection"); return ERR_OK; } if(p == NULL) { if(l->conn->TCP_pcb->state == CLOSE_WAIT){ l->tap->closeConnection(l->conn->sock); return ERR_ABRT; } return err; } Mutex::Lock _l2(l->tap->_rx_buf_m); // Cycle through pbufs and write them to the RX buffer // The RX buffer will be emptied via phyOnUnixWritable() while(p != NULL) { if(p->len <= 0) break; int avail = DEFAULT_TCP_RX_BUF_SZ - l->conn->rxsz; int len = p->len; if(avail < len) DEBUG_ERROR("not enough room (%d bytes) on RX buffer", avail); memcpy(l->conn->rxbuf + (l->conn->rxsz), p->payload, len); l->conn->rxsz += len; p = p->next; tot += len; } if(tot) { //#if defined(USE_SOCKS_PROXY) // l->tap->phyOnTcpWritable(l->conn->sock, NULL, true); //#else l->tap->phyOnUnixWritable(l->conn->sock, NULL, true); //#endif } l->tap->lwipstack->__pbuf_free(q); return ERR_OK; } // err_t nc_accept(void *arg, struct tcp_pcb *newPCB, err_t err) { DEBUG_ATTN("pcb=%p", (void*)&newPCB); Larg *l = (Larg*)arg; Mutex::Lock _l(l->tap->_tcpconns_m); Connection *conn = l->conn; NetconEthernetTap *tap = l->tap; if(!conn) return -1; if(conn->type==SOCK_DGRAM) return -1; if(!conn->sock) return -1; int fd = tap->_phy.getDescriptor(conn->sock); if(conn) { // create new socketpair ZT_PHY_SOCKFD_TYPE fds[2]; if(socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) { if(errno < 0) { // sendReturnValue(conn, -1, errno); DEBUG_ERROR("unable to create socketpair"); return ERR_MEM; } } // create and populate new Connection Connection *newTcpConn = new Connection(); l->tap->_Connections.push_back(newTcpConn); newTcpConn->TCP_pcb = newPCB; newTcpConn->type = SOCK_STREAM; newTcpConn->sock = tap->_phy.wrapSocket(fds[0], newTcpConn); if(sock_fd_write(fd, fds[1]) < 0) return -1; tap->lwipstack->__tcp_arg(newPCB, new Larg(tap, newTcpConn)); tap->lwipstack->__tcp_recv(newPCB, nc_recved); tap->lwipstack->__tcp_err(newPCB, nc_err); tap->lwipstack->__tcp_sent(newPCB, nc_sent); tap->lwipstack->__tcp_poll(newPCB, nc_poll, 1); if(conn->TCP_pcb->state == LISTEN) return ERR_OK; tcp_accepted(conn->TCP_pcb); // Let lwIP know that it can queue additional incoming connections return ERR_OK; } else DEBUG_ERROR("can't locate Connection object for PCB"); return -1; } // void nc_udp_recved(void * arg, struct udp_pcb * upcb, struct pbuf * p, ip_addr_t * addr, u16_t port) { Larg *l = (Larg*)arg; DEBUG_EXTRA("nc_udp_recved(conn=%p,pcb=%p,port=%d)\n", (void*)&(l->conn), (void*)&upcb, port); /* int tot = 0; unsigned char *addr_pos, *sz_pos, *payload_pos; struct pbuf* q = p; struct sockaddr_storage sockaddr_big; #if defined(LWIP_IPV6) struct sockaddr_in6 addr_in; addr_in.sin6_addr.s6_addr = addr->u_addr.ip6.addr; addr_in.sin6_port = port; #else // ipv4 struct sockaddr_in *addr_in = (struct sockaddr_in *)&sockaddr_big; addr_in->sin_addr.s_addr = addr->addr; addr_in->sin_port = port; #endif // TODO: Finish address treatment Mutex::Lock _l2(l->tap->_rx_buf_m); // Cycle through pbufs and write them to the RX buffer // The RX "buffer" will be emptied via phyOnUnixWritable() if(p) { // Intra-API "packetization" scheme: [addr_len|addr|payload_len|payload] if(l->conn->rxsz == DEFAULT_UDP_RX_BUF_SZ) { // if UDP buffer full DEBUG_INFO("UDP RX buffer full. Discarding oldest payload segment"); memmove(l->conn->rxbuf, l->conn->rxbuf + ZT_MAX_MTU, DEFAULT_UDP_RX_BUF_SZ - ZT_MAX_MTU); addr_pos = l->conn->rxbuf + (DEFAULT_UDP_RX_BUF_SZ - ZT_MAX_MTU); // TODO: sz_pos = addr_pos + sizeof(struct sockaddr_storage); l->conn->rxsz -= ZT_MAX_MTU; } else { addr_pos = l->conn->rxbuf + l->conn->rxsz; // where we'll prepend the size of the address sz_pos = addr_pos + sizeof(struct sockaddr_storage); } payload_pos = addr_pos + sizeof(struct sockaddr_storage) + sizeof(tot); // where we'll write the payload // write remote host address memcpy(addr_pos, &addr_in, sizeof(struct sockaddr_storage)); } while(p != NULL) { if(p->len <= 0) break; int len = p->len; memcpy(payload_pos, p->payload, len); payload_pos = payload_pos + len; p = p->next; tot += len; } if(tot) { l->conn->rxsz += ZT_MAX_MTU; memcpy(sz_pos, &tot, sizeof(tot)); //DEBUG_EXTRA(" nc_udp_recved(): data_len = %d, rxsz = %d, addr_info_len = %d\n", // tot, l->conn->rxsz, sizeof(u32_t) + sizeof(u16_t)); l->tap->phyOnUnixWritable(l->conn->sock, NULL, true); l->tap->_phy.setNotifyWritable(l->conn->sock, true); } l->tap->lwipstack->__pbuf_free(q); */ } // err_t nc_sent(void* arg, struct tcp_pcb *PCB, u16_t len) { DEBUG_EXTRA("pcb=%p", (void*)&PCB); Larg *l = (Larg*)arg; Mutex::Lock _l(l->tap->_tcpconns_m); if(l->conn->probation && l->conn->txsz == 0){ l->conn->probation = false; // TX buffer now empty, removing from probation } if(l && l->conn && len && !l->conn->probation) { int softmax = l->conn->type == SOCK_STREAM ? DEFAULT_TCP_TX_BUF_SZ : DEFAULT_UDP_TX_BUF_SZ; if(l->conn->txsz < softmax) { l->tap->_phy.setNotifyReadable(l->conn->sock, true); l->tap->_phy.whack(); } } return ERR_OK; } // err_t nc_connected_proxy(void *arg, struct tcp_pcb *PCB, err_t err) { DEBUG_INFO("pcb=%p", (void*)&PCB); return ERR_OK; } // err_t nc_connected(void *arg, struct tcp_pcb *PCB, err_t err) { DEBUG_ATTN("pcb=%p", (void*)&PCB); Larg *l = (Larg*)arg; if(l && l->conn) l->tap->sendReturnValue(l->tap->_phy.getDescriptor(l->conn->rpcSock), ERR_OK, 0); return ERR_OK; } // err_t nc_poll(void* arg, struct tcp_pcb *PCB) { return ERR_OK; } // void nc_err(void *arg, err_t err) { DEBUG_ERROR("err=%d", err); Larg *l = (Larg*)arg; Mutex::Lock _l(l->tap->_tcpconns_m); if(!l->conn) DEBUG_ERROR("conn==NULL"); int fd = l->tap->_phy.getDescriptor(l->conn->sock); switch(err) { case ERR_MEM: DEBUG_ERROR("ERR_MEM->ENOMEM"); l->tap->sendReturnValue(fd, -1, ENOMEM); break; case ERR_BUF: DEBUG_ERROR("ERR_BUF->ENOBUFS"); l->tap->sendReturnValue(fd, -1, ENOBUFS); break; case ERR_TIMEOUT: DEBUG_ERROR("ERR_TIMEOUT->ETIMEDOUT"); l->tap->sendReturnValue(fd, -1, ETIMEDOUT); break; case ERR_RTE: DEBUG_ERROR("ERR_RTE->ENETUNREACH"); l->tap->sendReturnValue(fd, -1, ENETUNREACH); break; case ERR_INPROGRESS: DEBUG_ERROR("ERR_INPROGRESS->EINPROGRESS"); l->tap->sendReturnValue(fd, -1, EINPROGRESS); break; case ERR_VAL: DEBUG_ERROR("ERR_VAL->EINVAL"); l->tap->sendReturnValue(fd, -1, EINVAL); break; case ERR_WOULDBLOCK: DEBUG_ERROR("ERR_WOULDBLOCK->EWOULDBLOCK"); l->tap->sendReturnValue(fd, -1, EWOULDBLOCK); break; case ERR_USE: DEBUG_ERROR("ERR_USE->EADDRINUSE"); l->tap->sendReturnValue(fd, -1, EADDRINUSE); break; case ERR_ISCONN: DEBUG_ERROR("ERR_ISCONN->EISCONN"); l->tap->sendReturnValue(fd, -1, EISCONN); break; case ERR_ABRT: DEBUG_ERROR("ERR_ABRT->ECONNREFUSED"); l->tap->sendReturnValue(fd, -1, ECONNREFUSED); break; // TODO: Below are errors which don't have a standard errno correlate case ERR_RST: l->tap->sendReturnValue(fd, -1, -1); break; case ERR_CLSD: l->tap->sendReturnValue(fd, -1, -1); break; case ERR_CONN: l->tap->sendReturnValue(fd, -1, -1); break; case ERR_ARG: l->tap->sendReturnValue(fd, -1, -1); break; case ERR_IF: l->tap->sendReturnValue(fd, -1, -1); break; default: break; } DEBUG_ERROR(" closing connection"); l->tap->closeConnection(l->conn); } }