fix memory leak bugs

This commit is contained in:
崔一鸣
2018-09-07 17:42:57 +08:00
parent b6a2250786
commit b5a937bad6
10 changed files with 804 additions and 506 deletions

View File

@@ -1,4 +1,3 @@
add_library(common src/tfe_stat.cpp src/tfe_utils.cpp src/tfe_future.cpp src/tfe_http.cpp src/tfe_plugin.cpp)
add_library(common src/tfe_stat.cpp src/tfe_utils.cpp src/tfe_future.cpp src/tfe_http.cpp src/tfe_plugin.cpp src/tfe_rpc.cpp)
target_include_directories(common PUBLIC ${CMAKE_CURRENT_LIST_DIR}/include)
target_link_libraries(common MESA_handle_logger)
target_link_libraries(common MESA_handle_logger libevent-static libevent-static-openssl libevent-static-pthreads)

27
common/include/tfe_rpc.h Normal file
View File

@@ -0,0 +1,27 @@
#pragma once
#include "tfe_future.h"
#include "event2/event.h"
struct tfe_rpc_response_result{
int status_code;
const char* status_msg;
char* data;
int len;
};
enum TFE_RPC_FLAG
{
CHUNK_CB = 0,
DONE_CB,
};
enum TFE_RPC_METHOD
{
GET = 0,
POST,
};
struct tfe_rpc_response_result* tfe_rpc_release(void* result);
void tfe_rpc_async_ask(struct future* f, const char* url, enum TFE_RPC_METHOD method, enum TFE_RPC_FLAG flag, const char* data, int data_len, struct event_base * evbase);

View File

@@ -25,7 +25,7 @@ struct _future_promise_debug
int fsid_latency;
int fsid_failed;
long long succ_times;
struct timespec create_time;
struct timespec create_time;
};
struct future
{
@@ -52,7 +52,7 @@ void future_promise_library_init(void)
{
return;
}
int value=0;
memset(&g_FP_instance,0,sizeof(g_FP_instance));
MESA_htable_handle htable = MESA_htable_born();
@@ -90,7 +90,7 @@ void future_promise_library_init(void)
}
struct promise * future_to_promise(struct future * f)
{
{
return (struct promise *) f;
}
struct field_get_set_args
@@ -116,7 +116,7 @@ static long field_get_set_cb(void * data, const uchar * key, uint size, void * u
field_id[1]=FS_register(args->fs_handle, FS_STYLE_FIELD, FS_CALC_SPEED,buff);
args->fsid_failed=field_id[1];
ret = MESA_htable_add(args->htable, key, size, (void*)field_id);
assert(ret>=0);
assert(ret>=0);
}
else
{
@@ -134,7 +134,7 @@ struct future * future_create(const char* symbol, future_success_cb * cb_success
p->f.cb_success = cb_success;
p->f.cb_failed = cb_failed;
strncpy(p->f.symbol,symbol,sizeof(p->f.symbol));
clock_gettime(CLOCK_MONOTONIC,&p->debug.create_time);
long cb_ret=0;
struct field_get_set_args args={.htable = g_FP_instance.name_table, .fs_handle = g_FP_instance.fs_handle};

242
common/src/tfe_rpc.cpp Normal file
View File

@@ -0,0 +1,242 @@
#include "tfe_rpc.h"
#include "event2/http.h"
#include "event2/http_struct.h"
#include "event2/event.h"
#include "event2/buffer.h"
#include "event2/dns.h"
#include "event2/thread.h"
#include "tfe_utils.h"
#include "MESA/MESA_handle_logger.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <sys/queue.h>
#define MODULE_NAME "tfe_rpc"
struct tfe_rpc_ctx
{
struct event_base * evbase;
enum TFE_RPC_FLAG flag;
};
/*
//will be called after receiving and parsing the full header. It allows analyzing the header and possibly closing the connection by returning a value < 0.
int read_header_done_cb(struct evhttp_request* response, void* arg)
{
//struct promise* p = (struct promise*)arg;
printf("call read_header_done_cb!\n");
printf("< HTTP/1.1 %d %s\n", evhttp_request_get_response_code(response), evhttp_request_get_response_code_line(response));
return 0;
struct evkeyvalq* headers = evhttp_request_get_input_headers(response);
struct evkeyval* header;
TAILQ_FOREACH(header, headers, next){
MESA_handle_runtime_log(logger, RLOG_LV_INFO, MODULE_NAME, "< %s: %s\n", header->key, header->value);
}
MESA_handle_runtime_log(logger, RLOG_LV_INFO, MODULE_NAME, "< \n");
}
*/
static void tfe_rpc_promise_free_ctx(void* ctx)
{
free(ctx);
ctx = NULL;
return;
}
static void _wrapped_promise_success(struct promise* p, void* result)
{
struct tfe_rpc_ctx* ctx = (struct tfe_rpc_ctx*)promise_get_ctx(p);
struct tfe_rpc_response_result* _result = (struct tfe_rpc_response_result*)result;
if(ctx->flag == CHUNK_CB && _result->len > 0)
{
return;
}
if(ctx->evbase)
{
event_base_loopexit(ctx->evbase, 0);
}
//promise_dettach_ctx(p);
//tfe_rpc_promise_free_ctx(ctx);
promise_success(p, result);
return;
}
static void _wrapped_promise_failed(struct promise * p, enum e_future_error error, const char * what)
{
struct tfe_rpc_ctx* ctx = (struct tfe_rpc_ctx*)promise_get_ctx(p);
if(ctx->evbase)
{
event_base_loopexit(ctx->evbase, 0);
}
promise_failed(p, error, what);
//promise_dettach_ctx(p);
//ctx_destroy_cb(ctx);
return;
}
//will be called after every read of data with the same argument as the completion callback. Will never be called on an empty response. May drain the input buffer; it will be drained automatically on return.
//will drain automaticly
void read_chunk_cb(struct evhttp_request* response, void* arg)
{
struct promise* p = (struct promise*)arg;
//printf("call get_chunk_cb\n");
if(response == NULL)
{
return;
}
struct evbuffer* evbuf = evhttp_request_get_input_buffer(response);
if(evbuf == NULL)
{
return;
}
int evbuf_len = evbuffer_get_length(evbuf);
char* data = (char*)evbuffer_pullup(evbuf, evbuf_len);
//printf("data is %s\n", data==NULL ? "NULL":"NOT NULL");
struct tfe_rpc_response_result* result = ALLOC(struct tfe_rpc_response_result, 1);
result->status_code = evhttp_request_get_response_code(response);
result->status_msg = evhttp_request_get_response_code_line(response);
result->data = data;
result->len = evbuf_len;
_wrapped_promise_success(p, result);
free(result);
}
//The callback is executed when the request completed or an error occurred
void get_response_cb(struct evhttp_request* response, void* arg)
{
//printf("call get_response_cb\n");
read_chunk_cb(response, arg);
}
//On error, both the error callback and the regular callback will be called, error callback is called before the regular callback.
void request_error_cb(enum evhttp_request_error error, void* arg)
{
//printf("call request_error_cb\n");
struct promise* p = (struct promise*)arg;
switch(error)
{
case EVREQ_HTTP_TIMEOUT:
_wrapped_promise_failed(p, FUTURE_ERROR_TIMEOUT, "EVREQ_HTTP_TIMEOUT");
break;
case EVREQ_HTTP_EOF:
_wrapped_promise_failed(p, FUTURE_ERROR_EXCEPTION, "EVREQ_HTTP_EOF");
break;
case EVREQ_HTTP_INVALID_HEADER:
_wrapped_promise_failed(p, FUTURE_ERROR_EXCEPTION, "EVREQ_HTTP_INVALID_HEADER");
break;
case EVREQ_HTTP_BUFFER_ERROR:
_wrapped_promise_failed(p, FUTURE_ERROR_EXCEPTION, "EVREQ_HTTP_BUFFER_ERROR");
break;
case EVREQ_HTTP_REQUEST_CANCEL:
_wrapped_promise_failed(p, FUTURE_ERROR_CANCEL, "EVREQ_HTTP_REQUEST_CANCEL");
break;
case EVREQ_HTTP_DATA_TOO_LONG:
_wrapped_promise_failed(p, FUTURE_ERROR_EXCEPTION, "EVREQ_HTTP_DATA_TOO_LONG");
break;
default:
_wrapped_promise_failed(p, FUTURE_ERROR_EXCEPTION, "EVREQ_HTTP_UNKOWN_EXCEPTION");
break;
}
}
//when to close a connection ???
//Set a callback for connection close
void connection_close_cb(struct evhttp_connection* connection, void* arg)
{
//printf("call connection_close_cb\n");
}
//data is for POST. if method is GET, data should be NULL
void tfe_rpc_async_ask(struct future* f, const char* url, enum TFE_RPC_METHOD method, enum TFE_RPC_FLAG flag, const char* data, int data_len, struct event_base * evbase)
{
struct promise* p = future_to_promise(f);
struct tfe_rpc_ctx* ctx = ALLOC(struct tfe_rpc_ctx, 1);
ctx->evbase = evbase;
ctx->flag = flag;
promise_set_ctx(p, (void*)ctx, tfe_rpc_promise_free_ctx);
if(!evbase)
{
_wrapped_promise_failed(p, FUTURE_ERROR_EXCEPTION, "event base is NULL");
return;
}
struct evhttp_uri* uri = evhttp_uri_parse(url);
if(NULL == uri)
{
_wrapped_promise_failed(p, FUTURE_ERROR_EXCEPTION, "parse url failed!");
return;
}
const char* host = evhttp_uri_get_host(uri);
if(!host)
{
_wrapped_promise_failed(p, FUTURE_ERROR_EXCEPTION, "parse host failed!");
return;
}
int port = evhttp_uri_get_port(uri);
if(port < 0)
{
port = 80;
}
const char* path = evhttp_uri_get_path(uri);
const char* query = evhttp_uri_get_query(uri);
char request_url[TFE_STRING_MAX] = "";
if(path == NULL || strnlen(path, TFE_STRING_MAX) == 0)
{
snprintf(request_url, TFE_STRING_MAX, "/");
}
else
{
snprintf(request_url, TFE_STRING_MAX, "%s", path);
}
if(query && strnlen(query, TFE_STRING_MAX))
{
strncat(request_url, "?", TFE_STRING_MAX);
strncat(request_url, query, TFE_STRING_MAX);
}
//printf("url:%s host:%s port:%d path:%s query:%s request_url:%s\n", url, host, port, path, query, request_url);
struct evdns_base* dnsbase = evdns_base_new(evbase, EVDNS_BASE_INITIALIZE_NAMESERVERS);
if (!dnsbase)
{
_wrapped_promise_failed(p, FUTURE_ERROR_EXCEPTION, "create dns base failed!");
return;
}
struct evhttp_connection* connection = evhttp_connection_base_new(evbase, dnsbase, host, port);
if (!connection)
{
_wrapped_promise_failed(p, FUTURE_ERROR_EXCEPTION, "create connection failed!");
return;
}
evhttp_connection_set_closecb(connection, connection_close_cb, evbase);
struct evhttp_request* request = evhttp_request_new(get_response_cb, (void*)p);
//evhttp_request_set_header_cb(request, read_header_done_cb);
if(flag == CHUNK_CB)
{
evhttp_request_set_chunked_cb(request, read_chunk_cb);
}
evhttp_request_set_error_cb(request, request_error_cb);
evhttp_add_header(evhttp_request_get_output_headers(request), "Host", host);
switch(method)
{
case GET:
evhttp_make_request(connection, request, EVHTTP_REQ_GET, request_url);
break;
case POST:
evbuffer_add(request->output_buffer, data, data_len);
evhttp_make_request(connection, request, EVHTTP_REQ_POST, request_url);
break;
default:
_wrapped_promise_failed(p, FUTURE_ERROR_EXCEPTION, "method is invalid!");
return;
}
}
struct tfe_rpc_response_result* tfe_rpc_release(void* result)
{
struct tfe_rpc_response_result* response = (struct tfe_rpc_response_result*)result;
return response;
}

View File

@@ -1,4 +1,4 @@
add_executable(tfe src/key_keeper.cpp src/tfe_rpc.cpp src/kni_acceptor.cpp src/ssl_stream.cpp src/ssl_sess_cache.cpp src/ssl_utils.cc src/tcp_stream.cpp src/main.cpp src/proxy.cpp)
add_executable(tfe src/key_keeper.cpp src/kni_acceptor.cpp src/ssl_stream.cpp src/ssl_sess_cache.cpp src/ssl_utils.cc src/tcp_stream.cpp src/main.cpp src/proxy.cpp)
target_include_directories(tfe PUBLIC ${CMAKE_CURRENT_LIST_DIR}/include/external)
target_include_directories(tfe PRIVATE ${CMAKE_CURRENT_LIST_DIR}/include/internal)
@@ -12,6 +12,7 @@ target_link_libraries(tfe pthread dl
libevent-static-pthreads
MESA_handle_logger
MESA_prof_load
cjson
MESA_htable wiredcfg
MESA_field_stat)
@@ -20,7 +21,7 @@ target_link_libraries(tfe -Wl,--whole-archive http -Wl,--no-whole-archive)
install(TARGETS tfe RUNTIME DESTINATION ./)
### test_key_keeper
add_executable(test_key_keeper test/test_key_keeper.cpp src/key_keeper.cpp src/tfe_rpc.cpp src/ssl_stream.cpp src/ssl_sess_cache.cpp src/ssl_utils.cc src/tcp_stream.cpp)
add_executable(test_key_keeper test/test_key_keeper.cpp src/key_keeper.cpp src/ssl_sess_cache.cpp src/ssl_utils.cc )
target_include_directories(test_key_keeper PRIVATE ${CMAKE_CURRENT_LIST_DIR}/include/internal)
@@ -33,13 +34,14 @@ target_link_libraries(test_key_keeper pthread dl
libevent-static-pthreads
MESA_handle_logger
MESA_prof_load
cjson
MESA_htable wiredcfg
MESA_field_stat)
install(TARGETS test_key_keeper RUNTIME DESTINATION ./)
### test_tfe_rpc
add_executable(test_tfe_rpc test/test_tfe_rpc.cpp src/key_keeper.cpp src/tfe_rpc.cpp src/ssl_stream.cpp src/ssl_sess_cache.cpp src/ssl_utils.cc src/tcp_stream.cpp)
add_executable(test_tfe_rpc test/test_tfe_rpc.cpp src/key_keeper.cpp src/ssl_sess_cache.cpp src/ssl_utils.cc)
target_include_directories(test_tfe_rpc PRIVATE ${CMAKE_CURRENT_LIST_DIR}/include/internal)
@@ -53,6 +55,7 @@ target_link_libraries(test_tfe_rpc pthread dl
MESA_handle_logger
MESA_prof_load
MESA_htable wiredcfg
cjson
MESA_field_stat)
install(TARGETS test_tfe_rpc RUNTIME DESTINATION ./)

View File

@@ -1,35 +0,0 @@
#pragma once
#include "tfe_future.h"
#include "event2/event.h"
struct tfe_rpc_response_result{
int status_code;
const char* status_msg;
const char* data;
int len;
};
enum TFE_RPC_FLAG
{
CHUNK_CB = 0,
DONE_CB,
};
enum TFE_RPC_METHOD
{
GET = 0,
POST,
};
struct tfe_rpc
{
void* logger;
};
struct tfe_rpc* tfe_rpc_init(const char * profile, const char* section, void* logger);
struct tfe_rpc* tfe_rpc_destroy(struct tfe_rpc *rpc);
struct tfe_rpc_response_result* tfe_rpc_release(void* result);
void tfe_rpc_async_ask(struct future* f, struct tfe_rpc* rpc, const char* url, int method, int flag, const char* data, int data_len, struct event_base * evbase);

View File

@@ -6,15 +6,20 @@
#include "MESA/MESA_prof_load.h"
#include "tfe_rpc.h"
#include "event2/http.h"
#include "cjson/cJSON.h"
#define HTABLE_MAX_KEY_LEN 256
#define KEYRING_EXSITED 0
#define KEYRING_NOT_EXSITED -1
struct key_keeper
{
unsigned int mode;
char mode[TFE_STRING_MAX];
char ca_path[TFE_STRING_MAX];
char untrusted_ca_path[TFE_STRING_MAX];
char cert_store_host[TFE_STRING_MAX];
unsigned int cert_store_port;
unsigned int hash_slot_size;
unsigned int hash_expire_seconds;
MESA_htable_handle htable;
void* logger;
};
@@ -35,11 +40,18 @@ struct key_keeper_promise_ctx
{
void* logger;
MESA_htable_handle htable;
const uchar* key;
uchar* key;
struct future* f_certstore_rpc;
unsigned int key_len;
};
static const uchar* get_key_by_cert(X509* cert, int keyring_id, unsigned int* len);
static void key_keeper_promise_free_ctx(void* ctx)
{
struct key_keeper_promise_ctx* _ctx = (struct key_keeper_promise_ctx*)ctx;
free(_ctx->key);
_ctx->key = NULL;
free(_ctx);
}
static struct keyring_private* keyring_new(void)
{
@@ -60,7 +72,7 @@ static struct keyring_private* keyring_new(void)
* Passed OpenSSL objects are owned by cert_t; refcount will not be
* incremented, stack will not be duplicated.
*/
struct keyring* keyring_new3(EVP_PKEY *key, X509 *cert, STACK_OF(X509) *chain)
static struct keyring* keyring_new3(EVP_PKEY *key, X509 *cert, STACK_OF(X509) *chain)
{
struct keyring_private* kyr=NULL;
kyr=keyring_new();
@@ -88,7 +100,7 @@ struct keyring* keyring_new3(EVP_PKEY *key, X509 *cert, STACK_OF(X509) *chain)
}
// Increment reference count.
void keyring_ref_inc(struct keyring_private* kyr)
static void keyring_ref_inc(struct keyring_private* kyr)
{
pthread_mutex_lock(&kyr->mutex);
kyr->references++;
@@ -183,9 +195,116 @@ void key_keeper_free_keyring(struct keyring *kyr)
free(_kyr);
}
static X509* transform_cert_to_x509(const char* str)
{
BIO *bio;
X509 *cert;
bio = BIO_new(BIO_s_mem());
BIO_write(bio, (const void*)str, strnlen(str, TFE_STRING_MAX));
cert = PEM_read_bio_X509(bio, NULL, NULL, NULL);
BIO_free_all(bio);
return cert;
}
static EVP_PKEY* transform_key_to_EVP(const char* str)
{
BIO *mem;
mem = BIO_new_mem_buf(str, -1);
EVP_PKEY* key = PEM_read_bio_PrivateKey(mem, NULL, NULL, 0);
BIO_free(mem);
return key;
}
static void err_out(X509* cert, EVP_PKEY* key, STACK_OF(X509)* chain)
{
if(cert)
{
X509_free(cert);
}
if(key)
{
EVP_PKEY_free(key);
}
if(chain)
{
sk_X509_pop_free(chain, X509_free);
}
return;
}
static struct keyring* get_keyring_from_response(const char* data)
{
X509* cert = NULL;
EVP_PKEY* key = NULL;
STACK_OF(X509)* chain = NULL;
if(data == NULL)
{
return NULL;
}
cJSON* data_json = cJSON_Parse(data);
if(data_json == NULL)
{
return NULL;
}
cJSON* cert_json = NULL;
cJSON* key_json = NULL;
cJSON* chain_json = NULL;
cert_json = cJSON_GetObjectItemCaseSensitive(data_json, "CERTIFICATE");
key_json = cJSON_GetObjectItemCaseSensitive(data_json, "PRIVATE_KEY");
chain_json = cJSON_GetObjectItemCaseSensitive(data_json, "CERTIFICATE_CHAIN");
if (cert_json && cert_json->valuestring != NULL)
{
cert = transform_cert_to_x509(cert_json->valuestring);
}
if(cert == NULL)
{
err_out(cert, key, chain);
return NULL;
}
if (key_json && key_json->valuestring != NULL)
{
key = transform_key_to_EVP(key_json->valuestring);
}
if(key == NULL)
{
err_out(cert, key, chain);
return NULL;
}
if(chain_json == NULL)
{
err_out(cert, key, chain);
return NULL;
}
cJSON* chain_cert_json = NULL;
chain = sk_X509_new_null();
cJSON_ArrayForEach(chain_cert_json, chain_json)
{
X509* chain_cert = NULL;
if (chain_cert_json && chain_cert_json->valuestring != NULL)
{
chain_cert = transform_cert_to_x509(chain_cert_json->valuestring);
}
if(chain_cert == NULL)
{
err_out(cert, key, chain);
return NULL;
}
sk_X509_push(chain, chain_cert);
}
struct keyring_private* _kyr= keyring_new();
keyring_set_cert(_kyr, cert);
keyring_set_key(_kyr, key);
keyring_set_chain(_kyr, chain);
X509_free(cert);
EVP_PKEY_free(key);
sk_X509_pop_free(chain, X509_free);
return &(_kyr->head);
}
static long keyring_local_cache_query_cb(void * data, const uchar * key, uint size, void * user_arg)
{
//data is (struct keyring*)
struct keyring_private* kyr=(struct keyring_private*)data;
if(kyr == NULL)
{
@@ -198,11 +317,8 @@ static long keyring_local_cache_query_cb(void * data, const uchar * key, uint si
return KEYRING_EXSITED;
}
}
static void certstore_rpc_on_fail(enum e_future_error err, const char * what, void * user)
{
struct promise * p = (struct promise *) user;
promise_failed(p, err, what);
}
static struct keyring_private* generate_x509_keyring(X509* origin_cert, int keyring_id, const char* filename)
{
X509* ca = ssl_x509_load(filename);
@@ -212,198 +328,64 @@ static struct keyring_private* generate_x509_keyring(X509* origin_cert, int keyr
STACK_OF(X509)* chain = sk_X509_new_null();
sk_X509_push(chain, ca);
sk_X509_push(chain, forge_cert);
struct keyring_private* ring= keyring_new();
keyring_set_key(ring, forge_key);
keyring_set_cert(ring, forge_cert);
keyring_set_chain(ring, chain);
return ring;
}
//how to free
static X509* get_cert_from_response(const char* data, int len, void* logger)
{
BIO *bio;
X509 *cert;
bio = BIO_new(BIO_s_mem());
BIO_write(bio, (const void*)data, len);
cert = PEM_read_bio_X509(bio, NULL, NULL, NULL);
return cert;
}
static EVP_PKEY* get_key_from_response(const char* data, int len, void* logger)
{
return NULL;
}
static STACK_OF(X509)* get_chain_from_response(const char* data, int len, void* logger)
{
return NULL;
struct keyring_private* _kyr= keyring_new();
keyring_set_key(_kyr, forge_key);
keyring_set_cert(_kyr, forge_cert);
keyring_set_chain(_kyr, chain);
X509_free(ca);
EVP_PKEY_free(cakey);
X509_free(forge_cert);
EVP_PKEY_free(forge_key);
sk_X509_pop_free(chain, X509_free);
return _kyr;
}
static void certstore_rpc_on_succ(void* result, void* user)
{
//printf("call certstore_rpc_on_succ\n");
struct promise * p = (struct promise *) user;
struct key_keeper_promise_ctx* ctx = (struct key_keeper_promise_ctx*)promise_get_ctx(p);
MESA_htable_handle htable= ctx->htable;
const uchar* key = ctx->key;
unsigned int key_len = ctx->key_len;
//transform to x509
struct tfe_rpc_response_result* response = tfe_rpc_release(result);
int status_code = response->status_code;
const char* status_msg = response->status_msg;
const char* data = response->data;
char* data = response->data;
int len = response->len;
if(status_code == HTTP_OK)
{
struct keyring_private* ring= keyring_new();
X509* forge_cert = get_cert_from_response(data, len, NULL);
EVP_PKEY* forge_key = get_key_from_response(data, len, NULL);
STACK_OF(X509)* chain = get_chain_from_response(data, len, NULL);
keyring_set_key(ring, forge_key);
keyring_set_cert(ring, forge_cert);
keyring_set_chain(ring, chain);
promise_success(p, (void*)ring);
int ret = MESA_htable_add(htable, key, key_len, (void*)ring);
*(data+len) = '\0';
struct keyring* kyr= get_keyring_from_response(data);
promise_success(p, (void*)kyr);
int ret = MESA_htable_add(htable, key, key_len, (void*)kyr);
if(ret<0)
{
key_keeper_free_keyring((struct keyring*)ring);
key_keeper_free_keyring((struct keyring*)kyr);
}
}
else
{
promise_failed(p, FUTURE_ERROR_EXCEPTION, status_msg);
}
future_destroy(ctx->f_certstore_rpc);
//promise_dettach_ctx(p);
//ctx_destroy_cb((void*)ctx);
}
static void certstore_rpc_on_fail(enum e_future_error err, const char * what, void * user)
{
struct promise * p = (struct promise *) user;
promise_failed(p, err, what);
struct key_keeper_promise_ctx* ctx= (struct key_keeper_promise_ctx*)promise_get_ctx(p);
future_destroy(ctx->f_certstore_rpc);
//promise_dettach_ctx(p);
//ctx_destroy_cb((void*)ctx);
}
static int __wrapper_MESA_htable_set_opt(MESA_htable_handle table, enum MESA_htable_opt opt_type, unsigned int value);
static MESA_htable_handle create_hash_table(unsigned int slot_size, unsigned int expire_seconds);
static STACK_OF(X509)* get_chain_from_response(const char* data, int len, void* logger);
/*
* Certificate, including private key and keyring chain.
*/
struct key_keeper* key_keeper_init(const char * profile, const char* section, void* logger)
{
//load conf
//TODO free
struct key_keeper* keeper = ALLOC(struct key_keeper, 1);
keeper->logger = logger;
MESA_load_profile_uint_def(profile, section, "mode", &(keeper->mode), 1);
MESA_load_profile_string_def(profile, section, "cert_store_host", keeper->cert_store_host, sizeof(keeper->cert_store_host), "xxxxx");
MESA_load_profile_uint_def(profile, section, "cert_store_port", &(keeper->cert_store_port), 80);
//TODO: argument
keeper->htable = create_hash_table(16,16);
return keeper;
}
void key_keeper_destroy(struct key_keeper *keeper)
{
free(keeper);
keeper = NULL;
return;
}
struct keyring* key_keeper_release_keyring(future_result_t* result)
{
struct keyring_private* kyr=(struct keyring_private*)result;
keyring_ref_inc(kyr);
return &(kyr->head);
}
static void ctx_destory_cb(struct promise* p)
{
}
//TODO: cert_not_valid
void key_keeper_async_ask(struct future * f, struct key_keeper * keeper, const char* sni, int keyring_id, X509 * origin_cert, int is_cert_valid, struct event_base * evbase)
{
//get subject name from cert
//current promise, belong to key_keeper
struct promise* p = future_to_promise(f);
struct key_keeper_promise_ctx* ctx = ALLOC(struct key_keeper_promise_ctx, 1);
//TODO free ctx!!
unsigned int len = 0;
const uchar* key = get_key_by_cert(origin_cert, keyring_id, &len);
ctx->logger = keeper->logger;
ctx->htable = keeper->htable;
ctx->key = key;
ctx->key_len = len;
promise_set_ctx(p, (void*)ctx, ctx_destory_cb);
long int cb_rtn = 0;
MESA_htable_search_cb(ctx->htable, (const unsigned char*)(ctx->key), ctx->key_len, keyring_local_cache_query_cb, p, &cb_rtn);
printf(cb_rtn == KEYRING_EXSITED ? "KEYRING_EXSITED\n": "KEYRING_NOT_EXSITED\n");
if(cb_rtn == KEYRING_EXSITED)
{
return;
}
int mode = keeper->mode;
printf("mode is %s", mode == NORMAL ? "normal\n":"debug\n");
switch(mode){
case NORMAL:
{
struct future* f_tfe_rpc = future_create("tfe_rpc", certstore_rpc_on_succ, certstore_rpc_on_fail, p);
//TODO: init in main()? store in ctx
struct tfe_rpc* rpc = tfe_rpc_init(NULL, NULL, keeper->logger);
char url[TFE_STRING_MAX];
const char host[] = "www.baidu.com";
snprintf(url, TFE_STRING_MAX, "%s:%d?host=%s&flag=1&valid=1&kering_id=%d", keeper->cert_store_host, keeper->cert_store_port, host, keyring_id);
tfe_rpc_async_ask(f_tfe_rpc, rpc, url, GET, DONE_CB, NULL, 0, evbase);
break;
}
case DEBUG:
{
//TOOD: generate X509 cert
const char* filename = "./conf/mesalab-ca.pem";
struct keyring_private* ring = generate_x509_keyring(origin_cert, keyring_id, filename);
if(ring)
{
promise_success(p, (void*)ring);
int ret = MESA_htable_add(ctx->htable, ctx->key, ctx->key_len, (void*)ring);
if(ret<0)
{
key_keeper_free_keyring((struct keyring*)ring);
}
else
{
printf("key %s is added to hash table\n", ctx->key);
}
}
else
{
promise_failed(p, FUTURE_ERROR_EXCEPTION, "generate X509 cert failed");
}
break;
}
}
return;
}
static const uchar*
get_key_by_cert(X509* cert, int keyring_id, unsigned int* len)
{
char* cert_fgr = NULL;
cert_fgr = ssl_x509_fingerprint(cert, 0);
char* key = (char*)malloc(HTABLE_MAX_KEY_LEN);
*key = '\0';
if(cert == NULL)
{
return NULL;
}
snprintf(key, HTABLE_MAX_KEY_LEN, "%d:", keyring_id);
strncat(key, cert_fgr, HTABLE_MAX_KEY_LEN);
*len = strnlen(key, HTABLE_MAX_KEY_LEN);
return (const uchar*)key;
}
static int __wrapper_MESA_htable_set_opt(MESA_htable_handle table, enum MESA_htable_opt opt_type, unsigned int value)
{
int ret = MESA_htable_set_opt(table, opt_type, &value, (int)(sizeof(value)));
@@ -411,8 +393,7 @@ static int __wrapper_MESA_htable_set_opt(MESA_htable_handle table, enum MESA_hta
return ret;
}
static MESA_htable_handle
create_hash_table(unsigned int slot_size, unsigned int expire_seconds)
static MESA_htable_handle create_hash_table(unsigned int slot_size, unsigned int expire_seconds)
{
int ret = 0;
unsigned max_num = slot_size * 4;
@@ -435,5 +416,122 @@ create_hash_table(unsigned int slot_size, unsigned int expire_seconds)
return htable;
}
struct key_keeper* key_keeper_init(const char * profile, const char* section, void* logger)
{
struct key_keeper* keeper = ALLOC(struct key_keeper, 1);
keeper->logger = logger;
MESA_load_profile_string_def(profile, section, "mode", keeper->mode, sizeof(keeper->mode), "debug");
MESA_load_profile_string_def(profile, section, "ca_path", keeper->ca_path, sizeof(keeper->ca_path), "./conf/mesalab-ca.pem");
MESA_load_profile_string_def(profile, section, "untrusted_ca_path", keeper->untrusted_ca_path, sizeof(keeper->untrusted_ca_path), "./conf/mesalab-ca.pem");
MESA_load_profile_string_def(profile, section, "cert_store_host", keeper->cert_store_host, sizeof(keeper->cert_store_host), "xxxxx");
MESA_load_profile_uint_def(profile, section, "cert_store_port", &(keeper->cert_store_port), 80);
MESA_load_profile_uint_def(profile, section, "hash_slot_size", &(keeper->hash_slot_size), 16);
MESA_load_profile_uint_def(profile, section, "hash_expire_seconds", &(keeper->hash_expire_seconds), 16);
keeper->htable = create_hash_table(keeper->hash_slot_size, keeper->hash_expire_seconds);
return keeper;
}
void key_keeper_destroy(struct key_keeper *keeper)
{
MESA_htable_destroy(keeper->htable, NULL);
free(keeper);
keeper = NULL;
return;
}
struct keyring* key_keeper_release_keyring(future_result_t* result)
{
struct keyring_private* kyr=(struct keyring_private*)result;
keyring_ref_inc(kyr);
return &(kyr->head);
}
static uchar* get_key_by_cert(X509* cert, int keyring_id, unsigned int* len)
{
char* cert_fgr = NULL;
cert_fgr = ssl_x509_fingerprint(cert, 0);
char* key = (char*)malloc(HTABLE_MAX_KEY_LEN);
*key = '\0';
if(cert == NULL)
{
return NULL;
}
snprintf(key, HTABLE_MAX_KEY_LEN, "%d:", keyring_id);
strncat(key, cert_fgr, HTABLE_MAX_KEY_LEN);
*len = strnlen(key, HTABLE_MAX_KEY_LEN);
free(cert_fgr);
return (uchar*)key;
}
void key_keeper_async_ask(struct future * f, struct key_keeper * keeper, const char* sni, int keyring_id, X509 * origin_cert, int is_cert_valid, struct event_base * evbase)
{
struct promise* p = future_to_promise(f);
struct key_keeper_promise_ctx* ctx = ALLOC(struct key_keeper_promise_ctx, 1);
unsigned int len = 0;
uchar* key = get_key_by_cert(origin_cert, keyring_id, &len);
ctx->logger = keeper->logger;
ctx->htable = keeper->htable;
ctx->key = key;
ctx->key_len = len;
promise_set_ctx(p, (void*)ctx, key_keeper_promise_free_ctx);
long int cb_rtn = 0;
MESA_htable_search_cb(ctx->htable, (const unsigned char*)(ctx->key), ctx->key_len, keyring_local_cache_query_cb, p, &cb_rtn);
if(cb_rtn == KEYRING_EXSITED)
{
printf("KEYRING_EXSITED\n");
return;
}
int mode = 0;
if(strncmp(keeper->mode, "debug", TFE_STRING_MAX) == 0)
{
mode = 1;
}
switch(mode){
case NORMAL:
{
struct future* f_certstore_rpc = future_create("tfe_rpc", certstore_rpc_on_succ, certstore_rpc_on_fail, p);
ctx->f_certstore_rpc = f_certstore_rpc;
char url[TFE_STRING_MAX];
char _sni[TFE_STRING_MAX] = "www.baidu.com";
if(sni)
{
strncpy(_sni, sni, TFE_STRING_MAX);
}
snprintf(url, TFE_STRING_MAX, "http://%s:%d/ca?host=%s&flag=1&valid=1&keyring_id=%d", keeper->cert_store_host, keeper->cert_store_port, _sni, keyring_id);
printf("url is %s\n", url);
tfe_rpc_async_ask(f_certstore_rpc, url, GET, DONE_CB, NULL, 0, evbase);
break;
}
case DEBUG:
{
//TOOD: generate X509 cert
char* filename = NULL;
if(is_cert_valid == 1)
{
filename = keeper->ca_path;
}
else
{
filename = keeper->untrusted_ca_path;
}
struct keyring_private* ring = generate_x509_keyring(origin_cert, keyring_id, filename);
if(ring)
{
promise_success(p, (void*)ring);
int ret = MESA_htable_add(ctx->htable, ctx->key, ctx->key_len, (void*)ring);
if(ret<0)
{
key_keeper_free_keyring((struct keyring*)ring);
}
}
else
{
promise_failed(p, FUTURE_ERROR_EXCEPTION, "generate X509 cert failed");
}
break;
}
}
return;
}

View File

@@ -1,258 +0,0 @@
#include "tfe_rpc.h"
#include "event2/http.h"
#include "event2/http_struct.h"
#include "event2/event.h"
#include "event2/buffer.h"
#include "event2/dns.h"
#include "event2/thread.h"
#include "tfe_utils.h"
#include "MESA/MESA_handle_logger.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <sys/queue.h>
#define MODULE_NAME "tfe_rpc"
void promise_success_cb(const char* data, int len);
struct req_ctx
{
struct promise* promise;
void* logger;
};
//The callback is executed when the request completed or an error occurred
void
get_response_cb(struct evhttp_request* response, void* arg)
{
struct req_ctx* ctx = (struct req_ctx*)arg;
void* logger = ctx->logger;
struct promise* p = ctx->promise;
MESA_handle_runtime_log(logger, RLOG_LV_INFO, MODULE_NAME, "call get_response_cb!");
struct evbuffer* evbuf = evhttp_request_get_input_buffer(response);
int evbuf_len = evbuffer_get_length(evbuf);
char* data = (char*)evbuffer_pullup(evbuf, evbuf_len);
printf("data is %s\n", data==NULL ? "NULL":"NOT NULL");
//promise_success_cb(data, evbuf_len);
//TODO: free
struct tfe_rpc_response_result* result = ALLOC(struct tfe_rpc_response_result, 1);
result->status_code = evhttp_request_get_response_code(response);
result->status_msg = evhttp_request_get_response_code_line(response);
result->data = data;
result->len = evbuf_len;
promise_success(p, result);
}
//will be called after receiving and parsing the full header. It allows analyzing the header and possibly closing the connection by returning a value < 0.
int
read_header_done_cb(struct evhttp_request* response, void* arg)
{
struct req_ctx* ctx = (struct req_ctx*)arg;
void* logger = ctx->logger;
MESA_handle_runtime_log(logger, RLOG_LV_INFO, MODULE_NAME, "call read_header_done_cb!");
MESA_handle_runtime_log(logger, RLOG_LV_INFO, MODULE_NAME, "< HTTP/1.1 %d %s\n", evhttp_request_get_response_code(response), evhttp_request_get_response_code_line(response));
return 0;
/*
struct evkeyvalq* headers = evhttp_request_get_input_headers(response);
struct evkeyval* header;
TAILQ_FOREACH(header, headers, next){
MESA_handle_runtime_log(logger, RLOG_LV_INFO, MODULE_NAME, "< %s: %s\n", header->key, header->value);
}
MESA_handle_runtime_log(logger, RLOG_LV_INFO, MODULE_NAME, "< \n");
*/
}
//will be called after every read of data with the same argument as the completion callback. Will never be called on an empty response. May drain the input buffer; it will be drained automatically on return.
//will drain automaticly
void
read_chunk_cb(struct evhttp_request* response, void* arg)
{
struct req_ctx* ctx = (struct req_ctx*)arg;
void* logger = ctx->logger;
struct promise* p = ctx->promise;
MESA_handle_runtime_log(logger, RLOG_LV_INFO, MODULE_NAME, "call read_chunk_cb!");
struct evbuffer* evbuf = evhttp_request_get_input_buffer(response);
int evbuf_len = evbuffer_get_length(evbuf);
char* data = (char*)evbuffer_pullup(evbuf, evbuf_len);
struct tfe_rpc_response_result* result = ALLOC(struct tfe_rpc_response_result, 1);
result->status_code = evhttp_request_get_response_code(response);
result->status_msg = evhttp_request_get_response_code_line(response);
result->data = data;
result->len = evbuf_len;
promise_success(p, result);
}
void
promise_success_cb(const char* data, int len)
{
printf("len is %d, data is: \n", len);
char* data1 = (char*)malloc(len+1);
strncpy(data1, data, len);
data1[len] = '\0';
printf("%s", data1);
free(data1);
}
//On error, both the error callback and the regular callback will be called, error callback is called before the regular callback.
void
request_error_cb(enum evhttp_request_error error, void* arg)
{
struct req_ctx* ctx = (struct req_ctx*)arg;
void* logger = ctx->logger;
struct promise* p = ctx->promise;
MESA_handle_runtime_log(logger, RLOG_LV_FATAL, MODULE_NAME, "call request_error_cb, error code is %d!", error);
enum e_future_error error_map_table[6];
error_map_table[EVREQ_HTTP_TIMEOUT] = FUTURE_ERROR_TIMEOUT;
error_map_table[EVREQ_HTTP_EOF] = FUTURE_ERROR_EXCEPTION;
error_map_table[EVREQ_HTTP_INVALID_HEADER] = FUTURE_ERROR_EXCEPTION;
error_map_table[EVREQ_HTTP_BUFFER_ERROR] = FUTURE_ERROR_EXCEPTION;
error_map_table[EVREQ_HTTP_REQUEST_CANCEL] = FUTURE_ERROR_CANCEL;
error_map_table[EVREQ_HTTP_DATA_TOO_LONG] = FUTURE_ERROR_EXCEPTION;
promise_failed(p, error_map_table[error], NULL);
//promise_fail_cb();
}
//when to close a connection ???
//Set a callback for connection close
void
connection_close_cb(struct evhttp_connection* connection, void* arg)
{
struct req_ctx* ctx = (struct req_ctx*)arg;
void* logger = ctx->logger;
MESA_handle_runtime_log(logger, RLOG_LV_FATAL, MODULE_NAME, "call connection_close_cb!");
}
struct
tfe_rpc * tfe_rpc_init(const char * profile, const char* section, void* logger)
{
struct tfe_rpc* rpc = ALLOC(struct tfe_rpc, 1);
rpc->logger = logger;
return rpc;
}
//TODO: deep destory
struct tfe_rpc *
tfe_rpc_destroy(struct tfe_rpc *rpc)
{
free(rpc);
rpc = NULL;
return rpc;
}
//data is for POST. if method is GET, data should be NULL
void
tfe_rpc_async_ask(struct future* f, struct tfe_rpc* rpc, const char* url, int method, int flag, const char* data, int data_len, struct event_base * evbase)
{
struct promise* p = future_to_promise(f);
void* logger = rpc->logger;
struct req_ctx* ctx = ALLOC(struct req_ctx, 1);
ctx->promise = p;
ctx->logger = logger;
assert(logger);
if(!evbase)
{
MESA_handle_runtime_log(logger, RLOG_LV_FATAL, MODULE_NAME, "event base is NULL");
promise_failed(p, FUTURE_ERROR_EXCEPTION, "event base is NULL");
return;
}
struct evhttp_uri* uri = evhttp_uri_parse(url);
if(NULL == uri)
{
MESA_handle_runtime_log(logger, RLOG_LV_FATAL, MODULE_NAME, "parse url failed!");
promise_failed(p, FUTURE_ERROR_EXCEPTION, "parse url failed!");
return;
}
const char* host = evhttp_uri_get_host(uri);
if(!host)
{
MESA_handle_runtime_log(logger, RLOG_LV_FATAL, MODULE_NAME, "parse host failed!");
promise_failed(p, FUTURE_ERROR_EXCEPTION, "parse host failed!");
return;
}
int port = evhttp_uri_get_port(uri);
if(port < 0)
{
port = 80;
}
const char* path = evhttp_uri_get_path(uri);
const char* request_url = path;
if(path == NULL || strlen(path) == 0)
{
request_url = "/";
}
printf("url:%s host:%s port:%d path:%s request_url:%s\n", url, host, port, path, request_url);
struct evdns_base* dnsbase = evdns_base_new(evbase, EVDNS_BASE_INITIALIZE_NAMESERVERS);
if (!dnsbase)
{
MESA_handle_runtime_log(logger, RLOG_LV_FATAL, MODULE_NAME, "create dns base failed!");
promise_failed(p, FUTURE_ERROR_EXCEPTION, "create dns base failed!");
return;
}
struct evhttp_connection* connection = evhttp_connection_base_new(evbase, dnsbase, host, port);
if (!connection)
{
MESA_handle_runtime_log(logger, RLOG_LV_FATAL, MODULE_NAME, "create connection failed!");
promise_failed(p, FUTURE_ERROR_EXCEPTION, "create connection failed!");
return;
}
evhttp_connection_set_closecb(connection, connection_close_cb, evbase);
//TODO: free
struct evhttp_request* request = evhttp_request_new(get_response_cb, ctx);
evhttp_request_set_header_cb(request, read_header_done_cb);
if(flag == CHUNK_CB)
{
evhttp_request_set_chunked_cb(request, read_chunk_cb);
}
evhttp_request_set_error_cb(request, request_error_cb);
evhttp_add_header(evhttp_request_get_output_headers(request), "Host", host);
switch(method)
{
case GET:
evhttp_make_request(connection, request, EVHTTP_REQ_GET, request_url);
break;
case POST:
evbuffer_add(request->output_buffer, data, data_len);
evhttp_make_request(connection, request, EVHTTP_REQ_POST, request_url);
break;
default:
promise_failed(p, FUTURE_ERROR_EXCEPTION, "method is invalid!");
return;
}
}
struct
tfe_rpc_response_result* tfe_rpc_release(void* result)
{
struct tfe_rpc_response_result* response = (struct tfe_rpc_response_result*)result;
return response;
}
/*
int main(int argc, char** argv){
char* url = "http://localhost:80/download/test1.txt";
void* logger = MESA_create_runtime_log_handle_new("tfe_rpc_logger");
if(!logger){
printf("create runtime log handle failed!\n");
return -1;
}
int rtn = MESA_read_runtime_log_handle_conf(logger, "./conf/MESA_handle_logger.conf");
if(rtn == -1){
printf("read runtime log handle conf failed!\n");
return -1;
}
MESA_handle_runtime_log(logger, RLOG_LV_INFO, MODULE_NAME, "test log!\n");
struct event_base* base = event_base_new();
if(!base){
MESA_handle_runtime_log(logger, RLOG_LV_FATAL, MODULE_NAME, "create event base failed!\n");
return -1;
}
tfe_rpc(url, GET, CHUNK_CB, base, logger, NULL);
event_base_dispatch(base);
return 0;
}
*/

View File

@@ -1,37 +1,58 @@
#include "key_keeper.h"
#include "tfe_future.h"
#include "ssl_utils.h"
#include "event2/event.h"
#include "tfe_rpc.h"
void ask_key_keeper_on_succ(void* result, void* user);
void ask_key_keeper_on_fail(enum e_future_error error, const char * what, void * user);
int
main()
int main()
{
void* logger = NULL;
future_promise_library_init();
struct event_base* evbase = event_base_new();
struct key_keeper * keeper = key_keeper_init("./conf/tfe.conf", "key_keeper", logger);
struct promise* user = NULL;
struct future* f = future_create("key_keeper", ask_key_keeper_on_succ, ask_key_keeper_on_fail, user);
struct event_base* evbase = NULL;
X509* origin_cert = ssl_x509_load("./conf/origin_cert.pem");
printf("-------------------------------\n");
int i = 0;
for(i = 0;i<10;i++){
printf("-------------------------------\n");
printf("call key_keeper_async_ask, i = %d\n", i);
key_keeper_async_ask(f, keeper, NULL, 0, origin_cert, 0, evbase);
}
printf("call key_keeper_async_ask, i = %d\n", i);
key_keeper_async_ask(f, keeper, NULL, 0, origin_cert, 0, evbase);
event_base_dispatch(evbase);
struct event_base* evbase1 = event_base_new();
struct future* f1 = future_create("key_keeper", ask_key_keeper_on_succ, ask_key_keeper_on_fail, user);
key_keeper_async_ask(f1, keeper, NULL, 0, origin_cert, 0, evbase1);
event_base_dispatch(evbase1);
}
void
ask_key_keeper_on_succ(void* result, void* user)
void ask_key_keeper_on_succ(void* result, void* user)
{
printf("call ask_key_keeper_on_succ\n");
struct keyring* kyr = key_keeper_release_keyring(result);
X509* cert = kyr->cert;
EVP_PKEY* key = kyr->key;
STACK_OF(X509) * chain = kyr->chain;
if(cert)
{
printf("cert is not null\n");
}
if(key)
{
printf("key is not null\n");
}
if(chain)
{
printf("chain is not null\n");
}
return;
}
void
ask_key_keeper_on_fail(enum e_future_error error, const char * what, void * user)
void ask_key_keeper_on_fail(enum e_future_error error, const char * what, void * user)
{
printf("call ask_key_keeper_on_fail\n");
}

View File

@@ -3,9 +3,207 @@
#include "MESA/MESA_prof_load.h"
#include "MESA/MESA_handle_logger.h"
#include "string.h"
#include "cjson/cJSON.h"
#include "ssl_utils.h"
#include "key_keeper.h"
static void
tfe_rpc_on_succ(void* result, void* user)
struct keyring_private
{
struct keyring head;
pthread_mutex_t mutex;
size_t references;
};
static struct keyring_private* keyring_new(void)
{
struct keyring_private *kyr;
if (!(kyr = (struct keyring_private *)ALLOC(struct keyring_private, 1)))
{
return NULL;
}
if (pthread_mutex_init(&kyr->mutex, NULL)) {
free(kyr);
return NULL;
}
kyr->references = 1;
return kyr;
}
// Increment reference count.
static void keyring_ref_inc(struct keyring_private* kyr)
{
pthread_mutex_lock(&kyr->mutex);
kyr->references++;
pthread_mutex_unlock(&kyr->mutex);
}
/*
* Thread-safe setter functions; they copy the value (refcounts are inc'd).
*/
static void keyring_set_key(struct keyring_private* kyr, EVP_PKEY *key)
{
pthread_mutex_lock(&kyr->mutex);
if ((kyr->head).key)
{
EVP_PKEY_free((kyr->head).key);
}
(kyr->head).key = key;
if (key)
{
ssl_key_refcount_inc((kyr->head).key);
}
pthread_mutex_unlock(&kyr->mutex);
}
static void keyring_set_cert(struct keyring_private* kry, X509 *cert)
{
pthread_mutex_lock(&kry->mutex);
if ((kry->head).cert)
{
X509_free((kry->head).cert);
}
(kry->head).cert = cert;
if (cert)
{
ssl_x509_refcount_inc((kry->head).cert);
}
pthread_mutex_unlock(&kry->mutex);
}
static void keyring_set_chain(struct keyring_private* kyr, STACK_OF(X509) *chain)
{
pthread_mutex_lock(&kyr->mutex);
if ((kyr->head).chain)
{
sk_X509_pop_free((kyr->head).chain, X509_free);
}
if (chain)
{
(kyr->head).chain = sk_X509_dup(chain);
int i = 0;
for (i = 0; i < sk_X509_num((kyr->head).chain); i++)
{
ssl_x509_refcount_inc(sk_X509_value((kyr->head).chain, i));
}
} else
{
(kyr->head).chain = NULL;
}
pthread_mutex_unlock(&kyr->mutex);
}
static X509* transform_cert_to_x509(const char* str)
{
BIO *bio;
X509 *cert;
bio = BIO_new(BIO_s_mem());
BIO_write(bio, (const void*)str, strnlen(str, TFE_STRING_MAX));
cert = PEM_read_bio_X509(bio, NULL, NULL, NULL);
return cert;
}
static EVP_PKEY* transform_key_to_EVP(const char* str)
{
BIO *mem;
mem = BIO_new_mem_buf(str, -1);
EVP_PKEY* key = PEM_read_bio_PrivateKey(mem, NULL, NULL, 0);
return key;
}
static void err_out(X509* cert, EVP_PKEY* key, STACK_OF(X509)* chain)
{
if(cert)
{
X509_free(cert);
}
if(key)
{
EVP_PKEY_free(key);
}
if(chain)
{
sk_X509_pop_free(chain, X509_free);
}
return;
}
static struct keyring* get_keyring_from_response(const char* data)
{
X509* cert = NULL;
EVP_PKEY* key = NULL;
STACK_OF(X509)* chain = NULL;
if(data == NULL)
{
return NULL;
}
cJSON* data_json = cJSON_Parse(data);
if(data_json == NULL)
{
return NULL;
}
cJSON* cert_json = NULL;
cJSON* key_json = NULL;
cJSON* chain_json = NULL;
cert_json = cJSON_GetObjectItemCaseSensitive(data_json, "CERTIFICATE");
key_json = cJSON_GetObjectItemCaseSensitive(data_json, "PRIVATE_KEY");
chain_json = cJSON_GetObjectItemCaseSensitive(data_json, "CERTIFICATE_CHAIN");
if (cert_json && cert_json->valuestring != NULL)
{
cert = transform_cert_to_x509(cert_json->valuestring);
}
if(cert == NULL)
{
err_out(cert, key, chain);
return NULL;
}
if (key_json && key_json->valuestring != NULL)
{
key = transform_key_to_EVP(key_json->valuestring);
}
if(key == NULL)
{
err_out(cert, key, chain);
return NULL;
}
if(chain_json == NULL)
{
err_out(cert, key, chain);
return NULL;
}
cJSON* chain_cert_json = NULL;
chain = sk_X509_new_null();
cJSON_ArrayForEach(chain_cert_json, chain_json)
{
X509* chain_cert = NULL;
if (chain_cert_json && chain_cert_json->valuestring != NULL)
{
chain_cert = transform_cert_to_x509(chain_cert_json->valuestring);
}
if(chain_cert == NULL)
{
err_out(cert, key, chain);
return NULL;
}
if(chain_cert)
printf("push to chain\n");
sk_X509_push(chain, chain_cert);
}
struct keyring_private* _kyr= keyring_new();
printf("cert is %s", cert == NULL ? "null" : "not null\n");
printf("key is %s", key == NULL ? "null" : "not null\n");
printf("chain is %s", chain == NULL ? "null" : "not null\n");
keyring_set_cert(_kyr, cert);
keyring_set_key(_kyr, key);
keyring_set_chain(_kyr, chain);
X509_free(cert);
EVP_PKEY_free(key);
sk_X509_pop_free(chain, X509_free);
return &(_kyr->head);
}
static void tfe_rpc_on_succ(void* result, void* user)
{
struct tfe_rpc_response_result* response = tfe_rpc_release(result);
int status_code = response->status_code;
@@ -15,24 +213,28 @@ tfe_rpc_on_succ(void* result, void* user)
*(data+len) = '\0';
printf("status_code is %d\n", status_code);
printf("status_msg is %s\n", status_msg);
printf("data is %s\n", data);
//printf("data is %s\n", data);
printf("len is %d\n", len);
struct keyring* kyr = get_keyring_from_response(data);
//add to hash table
}
static void
tfe_rpc_on_fail(enum e_future_error err, const char * what, void * user){
static void tfe_rpc_on_fail(enum e_future_error err, const char * what, void * user){
printf("err is %d\n", err);
printf("what is %s\n", what);
printf("user is %s\n", user);
printf("user is %s\n", (char*)user);
}
int main()
{
char cert_store_host[TFE_STRING_MAX];
unsigned int cert_store_port;
const char* file_path = "./log/test_tfe_rpc.log",*host="localhost";
void * logger = MESA_create_runtime_log_handle(file_path, RLOG_LV_INFO);
future_promise_library_init();
//const char* file_path = "./log/test_tfe_rpc.log",*host="localhost";
//void * logger = MESA_create_runtime_log_handle(file_path, RLOG_LV_INFO);
const char* profile = "./conf/tfe.conf";
const char* section = "key_keeper";
int keyring_id = 0;
@@ -40,12 +242,11 @@ int main()
MESA_load_profile_uint_def(profile, section, "cert_store_port", &cert_store_port, 80);
struct event_base* evbase = event_base_new();
struct future* f_tfe_rpc = future_create("tfe_rpc", tfe_rpc_on_succ, tfe_rpc_on_fail, NULL);
struct tfe_rpc* rpc = tfe_rpc_init(NULL, NULL, logger);
char url[TFE_STRING_MAX];
strncpy(cert_store_host, "www.baidu.com", TFE_STRING_MAX);
snprintf(url, TFE_STRING_MAX, "http://%s:%d/ca?host=%s&flag=1&valid=1&kering_id=%d", cert_store_host, cert_store_port, host, keyring_id);
char sni[TFE_STRING_MAX] = "www.baidu.com";
snprintf(url, TFE_STRING_MAX, "http://%s:%d/ca?host=%s&flag=1&valid=1&kering_id=%d", cert_store_host, cert_store_port, sni, keyring_id);
printf("url is %s\n", url);
tfe_rpc_async_ask(f_tfe_rpc, rpc, url, GET, DONE_CB, NULL, 0, evbase);
event_base_dispatch(evbase);
tfe_rpc_async_ask(f_tfe_rpc, url, GET, DONE_CB, NULL, 0, evbase);
event_base_dispatch(evbase);
}