This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
pxz-hos-client-cpp-module/support/aws-sdk-cpp-master/aws-cpp-sdk-sagemaker/include/aws/sagemaker/model/InputConfig.h

576 lines
37 KiB
C++

/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include <aws/sagemaker/SageMaker_EXPORTS.h>
#include <aws/core/utils/memory/stl/AWSString.h>
#include <aws/sagemaker/model/Framework.h>
#include <utility>
namespace Aws
{
namespace Utils
{
namespace Json
{
class JsonValue;
class JsonView;
} // namespace Json
} // namespace Utils
namespace SageMaker
{
namespace Model
{
/**
* <p>Contains information about the location of input model artifacts, the name
* and shape of the expected data inputs, and the framework in which the model was
* trained.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/InputConfig">AWS
* API Reference</a></p>
*/
class AWS_SAGEMAKER_API InputConfig
{
public:
InputConfig();
InputConfig(Aws::Utils::Json::JsonView jsonValue);
InputConfig& operator=(Aws::Utils::Json::JsonView jsonValue);
Aws::Utils::Json::JsonValue Jsonize() const;
/**
* <p>The S3 path where the model artifacts, which result from model training, are
* stored. This path must point to a single gzip compressed tar archive (.tar.gz
* suffix).</p>
*/
inline const Aws::String& GetS3Uri() const{ return m_s3Uri; }
/**
* <p>The S3 path where the model artifacts, which result from model training, are
* stored. This path must point to a single gzip compressed tar archive (.tar.gz
* suffix).</p>
*/
inline bool S3UriHasBeenSet() const { return m_s3UriHasBeenSet; }
/**
* <p>The S3 path where the model artifacts, which result from model training, are
* stored. This path must point to a single gzip compressed tar archive (.tar.gz
* suffix).</p>
*/
inline void SetS3Uri(const Aws::String& value) { m_s3UriHasBeenSet = true; m_s3Uri = value; }
/**
* <p>The S3 path where the model artifacts, which result from model training, are
* stored. This path must point to a single gzip compressed tar archive (.tar.gz
* suffix).</p>
*/
inline void SetS3Uri(Aws::String&& value) { m_s3UriHasBeenSet = true; m_s3Uri = std::move(value); }
/**
* <p>The S3 path where the model artifacts, which result from model training, are
* stored. This path must point to a single gzip compressed tar archive (.tar.gz
* suffix).</p>
*/
inline void SetS3Uri(const char* value) { m_s3UriHasBeenSet = true; m_s3Uri.assign(value); }
/**
* <p>The S3 path where the model artifacts, which result from model training, are
* stored. This path must point to a single gzip compressed tar archive (.tar.gz
* suffix).</p>
*/
inline InputConfig& WithS3Uri(const Aws::String& value) { SetS3Uri(value); return *this;}
/**
* <p>The S3 path where the model artifacts, which result from model training, are
* stored. This path must point to a single gzip compressed tar archive (.tar.gz
* suffix).</p>
*/
inline InputConfig& WithS3Uri(Aws::String&& value) { SetS3Uri(std::move(value)); return *this;}
/**
* <p>The S3 path where the model artifacts, which result from model training, are
* stored. This path must point to a single gzip compressed tar archive (.tar.gz
* suffix).</p>
*/
inline InputConfig& WithS3Uri(const char* value) { SetS3Uri(value); return *this;}
/**
* <p>Specifies the name and shape of the expected data inputs for your trained
* model with a JSON dictionary form. The data inputs are
* <a>InputConfig$Framework</a> specific. </p> <ul> <li> <p>
* <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of
* the expected data inputs using a dictionary format for your trained model. The
* dictionary formats required for the console and CLI are different.</p> <ul> <li>
* <p>Examples for one input:</p> <ul> <li> <p>If using the console,
* <code>{"input":[1,1024,1024,3]}</code> </p> </li> <li> <p>If using the CLI,
* <code>{\"input\":[1,1024,1024,3]}</code> </p> </li> </ul> </li> <li> <p>Examples
* for two inputs:</p> <ul> <li> <p>If using the console, <code>{"data1":
* [1,28,28,1], "data2":[1,28,28,1]}</code> </p> </li> <li> <p>If using the CLI,
* <code>{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}</code> </p> </li> </ul>
* </li> </ul> </li> <li> <p> <code>KERAS</code>: You must specify the name and
* shape (NCHW format) of expected data inputs using a dictionary format for your
* trained model. Note that while Keras model artifacts should be uploaded in NHWC
* (channel-last) format, <code>DataInputConfig</code> should be specified in NCHW
* (channel-first) format. The dictionary formats required for the console and CLI
* are different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If
* using the console, <code>{"input_1":[1,3,224,224]}</code> </p> </li> <li> <p>If
* using the CLI, <code>{\"input_1\":[1,3,224,224]}</code> </p> </li> </ul> </li>
* <li> <p>Examples for two inputs:</p> <ul> <li> <p>If using the console,
* <code>{"input_1": [1,3,224,224], "input_2":[1,3,224,224]} </code> </p> </li>
* <li> <p>If using the CLI, <code>{\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}</code> </p> </li> </ul> </li> </ul> </li> <li> <p>
* <code>MXNET/ONNX</code>: You must specify the name and shape (NCHW format) of
* the expected data inputs in order using a dictionary format for your trained
* model. The dictionary formats required for the console and CLI are
* different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If using
* the console, <code>{"data":[1,3,1024,1024]}</code> </p> </li> <li> <p>If using
* the CLI, <code>{\"data\":[1,3,1024,1024]}</code> </p> </li> </ul> </li> <li>
* <p>Examples for two inputs:</p> <ul> <li> <p>If using the console,
* <code>{"var1": [1,1,28,28], "var2":[1,1,28,28]} </code> </p> </li> <li> <p>If
* using the CLI, <code>{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}</code> </p>
* </li> </ul> </li> </ul> </li> <li> <p> <code>PyTorch</code>: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.</p> <ul> <li>
* <p>Examples for one input in dictionary format:</p> <ul> <li> <p>If using the
* console, <code>{"input0":[1,3,224,224]}</code> </p> </li> <li> <p>If using the
* CLI, <code>{\"input0\":[1,3,224,224]}</code> </p> </li> </ul> </li> <li>
* <p>Example for one input in list format: <code>[[1,3,224,224]]</code> </p> </li>
* <li> <p>Examples for two inputs in dictionary format:</p> <ul> <li> <p>If using
* the console, <code>{"input0":[1,3,224,224], "input1":[1,3,224,224]}</code> </p>
* </li> <li> <p>If using the CLI, <code>{\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]} </code> </p> </li> </ul> </li> <li> <p>Example for two
* inputs in list format: <code>[[1,3,224,224], [1,3,224,224]]</code> </p> </li>
* </ul> </li> <li> <p> <code>XGBOOST</code>: input data name and shape are not
* needed.</p> </li> </ul>
*/
inline const Aws::String& GetDataInputConfig() const{ return m_dataInputConfig; }
/**
* <p>Specifies the name and shape of the expected data inputs for your trained
* model with a JSON dictionary form. The data inputs are
* <a>InputConfig$Framework</a> specific. </p> <ul> <li> <p>
* <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of
* the expected data inputs using a dictionary format for your trained model. The
* dictionary formats required for the console and CLI are different.</p> <ul> <li>
* <p>Examples for one input:</p> <ul> <li> <p>If using the console,
* <code>{"input":[1,1024,1024,3]}</code> </p> </li> <li> <p>If using the CLI,
* <code>{\"input\":[1,1024,1024,3]}</code> </p> </li> </ul> </li> <li> <p>Examples
* for two inputs:</p> <ul> <li> <p>If using the console, <code>{"data1":
* [1,28,28,1], "data2":[1,28,28,1]}</code> </p> </li> <li> <p>If using the CLI,
* <code>{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}</code> </p> </li> </ul>
* </li> </ul> </li> <li> <p> <code>KERAS</code>: You must specify the name and
* shape (NCHW format) of expected data inputs using a dictionary format for your
* trained model. Note that while Keras model artifacts should be uploaded in NHWC
* (channel-last) format, <code>DataInputConfig</code> should be specified in NCHW
* (channel-first) format. The dictionary formats required for the console and CLI
* are different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If
* using the console, <code>{"input_1":[1,3,224,224]}</code> </p> </li> <li> <p>If
* using the CLI, <code>{\"input_1\":[1,3,224,224]}</code> </p> </li> </ul> </li>
* <li> <p>Examples for two inputs:</p> <ul> <li> <p>If using the console,
* <code>{"input_1": [1,3,224,224], "input_2":[1,3,224,224]} </code> </p> </li>
* <li> <p>If using the CLI, <code>{\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}</code> </p> </li> </ul> </li> </ul> </li> <li> <p>
* <code>MXNET/ONNX</code>: You must specify the name and shape (NCHW format) of
* the expected data inputs in order using a dictionary format for your trained
* model. The dictionary formats required for the console and CLI are
* different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If using
* the console, <code>{"data":[1,3,1024,1024]}</code> </p> </li> <li> <p>If using
* the CLI, <code>{\"data\":[1,3,1024,1024]}</code> </p> </li> </ul> </li> <li>
* <p>Examples for two inputs:</p> <ul> <li> <p>If using the console,
* <code>{"var1": [1,1,28,28], "var2":[1,1,28,28]} </code> </p> </li> <li> <p>If
* using the CLI, <code>{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}</code> </p>
* </li> </ul> </li> </ul> </li> <li> <p> <code>PyTorch</code>: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.</p> <ul> <li>
* <p>Examples for one input in dictionary format:</p> <ul> <li> <p>If using the
* console, <code>{"input0":[1,3,224,224]}</code> </p> </li> <li> <p>If using the
* CLI, <code>{\"input0\":[1,3,224,224]}</code> </p> </li> </ul> </li> <li>
* <p>Example for one input in list format: <code>[[1,3,224,224]]</code> </p> </li>
* <li> <p>Examples for two inputs in dictionary format:</p> <ul> <li> <p>If using
* the console, <code>{"input0":[1,3,224,224], "input1":[1,3,224,224]}</code> </p>
* </li> <li> <p>If using the CLI, <code>{\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]} </code> </p> </li> </ul> </li> <li> <p>Example for two
* inputs in list format: <code>[[1,3,224,224], [1,3,224,224]]</code> </p> </li>
* </ul> </li> <li> <p> <code>XGBOOST</code>: input data name and shape are not
* needed.</p> </li> </ul>
*/
inline bool DataInputConfigHasBeenSet() const { return m_dataInputConfigHasBeenSet; }
/**
* <p>Specifies the name and shape of the expected data inputs for your trained
* model with a JSON dictionary form. The data inputs are
* <a>InputConfig$Framework</a> specific. </p> <ul> <li> <p>
* <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of
* the expected data inputs using a dictionary format for your trained model. The
* dictionary formats required for the console and CLI are different.</p> <ul> <li>
* <p>Examples for one input:</p> <ul> <li> <p>If using the console,
* <code>{"input":[1,1024,1024,3]}</code> </p> </li> <li> <p>If using the CLI,
* <code>{\"input\":[1,1024,1024,3]}</code> </p> </li> </ul> </li> <li> <p>Examples
* for two inputs:</p> <ul> <li> <p>If using the console, <code>{"data1":
* [1,28,28,1], "data2":[1,28,28,1]}</code> </p> </li> <li> <p>If using the CLI,
* <code>{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}</code> </p> </li> </ul>
* </li> </ul> </li> <li> <p> <code>KERAS</code>: You must specify the name and
* shape (NCHW format) of expected data inputs using a dictionary format for your
* trained model. Note that while Keras model artifacts should be uploaded in NHWC
* (channel-last) format, <code>DataInputConfig</code> should be specified in NCHW
* (channel-first) format. The dictionary formats required for the console and CLI
* are different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If
* using the console, <code>{"input_1":[1,3,224,224]}</code> </p> </li> <li> <p>If
* using the CLI, <code>{\"input_1\":[1,3,224,224]}</code> </p> </li> </ul> </li>
* <li> <p>Examples for two inputs:</p> <ul> <li> <p>If using the console,
* <code>{"input_1": [1,3,224,224], "input_2":[1,3,224,224]} </code> </p> </li>
* <li> <p>If using the CLI, <code>{\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}</code> </p> </li> </ul> </li> </ul> </li> <li> <p>
* <code>MXNET/ONNX</code>: You must specify the name and shape (NCHW format) of
* the expected data inputs in order using a dictionary format for your trained
* model. The dictionary formats required for the console and CLI are
* different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If using
* the console, <code>{"data":[1,3,1024,1024]}</code> </p> </li> <li> <p>If using
* the CLI, <code>{\"data\":[1,3,1024,1024]}</code> </p> </li> </ul> </li> <li>
* <p>Examples for two inputs:</p> <ul> <li> <p>If using the console,
* <code>{"var1": [1,1,28,28], "var2":[1,1,28,28]} </code> </p> </li> <li> <p>If
* using the CLI, <code>{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}</code> </p>
* </li> </ul> </li> </ul> </li> <li> <p> <code>PyTorch</code>: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.</p> <ul> <li>
* <p>Examples for one input in dictionary format:</p> <ul> <li> <p>If using the
* console, <code>{"input0":[1,3,224,224]}</code> </p> </li> <li> <p>If using the
* CLI, <code>{\"input0\":[1,3,224,224]}</code> </p> </li> </ul> </li> <li>
* <p>Example for one input in list format: <code>[[1,3,224,224]]</code> </p> </li>
* <li> <p>Examples for two inputs in dictionary format:</p> <ul> <li> <p>If using
* the console, <code>{"input0":[1,3,224,224], "input1":[1,3,224,224]}</code> </p>
* </li> <li> <p>If using the CLI, <code>{\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]} </code> </p> </li> </ul> </li> <li> <p>Example for two
* inputs in list format: <code>[[1,3,224,224], [1,3,224,224]]</code> </p> </li>
* </ul> </li> <li> <p> <code>XGBOOST</code>: input data name and shape are not
* needed.</p> </li> </ul>
*/
inline void SetDataInputConfig(const Aws::String& value) { m_dataInputConfigHasBeenSet = true; m_dataInputConfig = value; }
/**
* <p>Specifies the name and shape of the expected data inputs for your trained
* model with a JSON dictionary form. The data inputs are
* <a>InputConfig$Framework</a> specific. </p> <ul> <li> <p>
* <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of
* the expected data inputs using a dictionary format for your trained model. The
* dictionary formats required for the console and CLI are different.</p> <ul> <li>
* <p>Examples for one input:</p> <ul> <li> <p>If using the console,
* <code>{"input":[1,1024,1024,3]}</code> </p> </li> <li> <p>If using the CLI,
* <code>{\"input\":[1,1024,1024,3]}</code> </p> </li> </ul> </li> <li> <p>Examples
* for two inputs:</p> <ul> <li> <p>If using the console, <code>{"data1":
* [1,28,28,1], "data2":[1,28,28,1]}</code> </p> </li> <li> <p>If using the CLI,
* <code>{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}</code> </p> </li> </ul>
* </li> </ul> </li> <li> <p> <code>KERAS</code>: You must specify the name and
* shape (NCHW format) of expected data inputs using a dictionary format for your
* trained model. Note that while Keras model artifacts should be uploaded in NHWC
* (channel-last) format, <code>DataInputConfig</code> should be specified in NCHW
* (channel-first) format. The dictionary formats required for the console and CLI
* are different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If
* using the console, <code>{"input_1":[1,3,224,224]}</code> </p> </li> <li> <p>If
* using the CLI, <code>{\"input_1\":[1,3,224,224]}</code> </p> </li> </ul> </li>
* <li> <p>Examples for two inputs:</p> <ul> <li> <p>If using the console,
* <code>{"input_1": [1,3,224,224], "input_2":[1,3,224,224]} </code> </p> </li>
* <li> <p>If using the CLI, <code>{\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}</code> </p> </li> </ul> </li> </ul> </li> <li> <p>
* <code>MXNET/ONNX</code>: You must specify the name and shape (NCHW format) of
* the expected data inputs in order using a dictionary format for your trained
* model. The dictionary formats required for the console and CLI are
* different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If using
* the console, <code>{"data":[1,3,1024,1024]}</code> </p> </li> <li> <p>If using
* the CLI, <code>{\"data\":[1,3,1024,1024]}</code> </p> </li> </ul> </li> <li>
* <p>Examples for two inputs:</p> <ul> <li> <p>If using the console,
* <code>{"var1": [1,1,28,28], "var2":[1,1,28,28]} </code> </p> </li> <li> <p>If
* using the CLI, <code>{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}</code> </p>
* </li> </ul> </li> </ul> </li> <li> <p> <code>PyTorch</code>: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.</p> <ul> <li>
* <p>Examples for one input in dictionary format:</p> <ul> <li> <p>If using the
* console, <code>{"input0":[1,3,224,224]}</code> </p> </li> <li> <p>If using the
* CLI, <code>{\"input0\":[1,3,224,224]}</code> </p> </li> </ul> </li> <li>
* <p>Example for one input in list format: <code>[[1,3,224,224]]</code> </p> </li>
* <li> <p>Examples for two inputs in dictionary format:</p> <ul> <li> <p>If using
* the console, <code>{"input0":[1,3,224,224], "input1":[1,3,224,224]}</code> </p>
* </li> <li> <p>If using the CLI, <code>{\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]} </code> </p> </li> </ul> </li> <li> <p>Example for two
* inputs in list format: <code>[[1,3,224,224], [1,3,224,224]]</code> </p> </li>
* </ul> </li> <li> <p> <code>XGBOOST</code>: input data name and shape are not
* needed.</p> </li> </ul>
*/
inline void SetDataInputConfig(Aws::String&& value) { m_dataInputConfigHasBeenSet = true; m_dataInputConfig = std::move(value); }
/**
* <p>Specifies the name and shape of the expected data inputs for your trained
* model with a JSON dictionary form. The data inputs are
* <a>InputConfig$Framework</a> specific. </p> <ul> <li> <p>
* <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of
* the expected data inputs using a dictionary format for your trained model. The
* dictionary formats required for the console and CLI are different.</p> <ul> <li>
* <p>Examples for one input:</p> <ul> <li> <p>If using the console,
* <code>{"input":[1,1024,1024,3]}</code> </p> </li> <li> <p>If using the CLI,
* <code>{\"input\":[1,1024,1024,3]}</code> </p> </li> </ul> </li> <li> <p>Examples
* for two inputs:</p> <ul> <li> <p>If using the console, <code>{"data1":
* [1,28,28,1], "data2":[1,28,28,1]}</code> </p> </li> <li> <p>If using the CLI,
* <code>{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}</code> </p> </li> </ul>
* </li> </ul> </li> <li> <p> <code>KERAS</code>: You must specify the name and
* shape (NCHW format) of expected data inputs using a dictionary format for your
* trained model. Note that while Keras model artifacts should be uploaded in NHWC
* (channel-last) format, <code>DataInputConfig</code> should be specified in NCHW
* (channel-first) format. The dictionary formats required for the console and CLI
* are different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If
* using the console, <code>{"input_1":[1,3,224,224]}</code> </p> </li> <li> <p>If
* using the CLI, <code>{\"input_1\":[1,3,224,224]}</code> </p> </li> </ul> </li>
* <li> <p>Examples for two inputs:</p> <ul> <li> <p>If using the console,
* <code>{"input_1": [1,3,224,224], "input_2":[1,3,224,224]} </code> </p> </li>
* <li> <p>If using the CLI, <code>{\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}</code> </p> </li> </ul> </li> </ul> </li> <li> <p>
* <code>MXNET/ONNX</code>: You must specify the name and shape (NCHW format) of
* the expected data inputs in order using a dictionary format for your trained
* model. The dictionary formats required for the console and CLI are
* different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If using
* the console, <code>{"data":[1,3,1024,1024]}</code> </p> </li> <li> <p>If using
* the CLI, <code>{\"data\":[1,3,1024,1024]}</code> </p> </li> </ul> </li> <li>
* <p>Examples for two inputs:</p> <ul> <li> <p>If using the console,
* <code>{"var1": [1,1,28,28], "var2":[1,1,28,28]} </code> </p> </li> <li> <p>If
* using the CLI, <code>{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}</code> </p>
* </li> </ul> </li> </ul> </li> <li> <p> <code>PyTorch</code>: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.</p> <ul> <li>
* <p>Examples for one input in dictionary format:</p> <ul> <li> <p>If using the
* console, <code>{"input0":[1,3,224,224]}</code> </p> </li> <li> <p>If using the
* CLI, <code>{\"input0\":[1,3,224,224]}</code> </p> </li> </ul> </li> <li>
* <p>Example for one input in list format: <code>[[1,3,224,224]]</code> </p> </li>
* <li> <p>Examples for two inputs in dictionary format:</p> <ul> <li> <p>If using
* the console, <code>{"input0":[1,3,224,224], "input1":[1,3,224,224]}</code> </p>
* </li> <li> <p>If using the CLI, <code>{\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]} </code> </p> </li> </ul> </li> <li> <p>Example for two
* inputs in list format: <code>[[1,3,224,224], [1,3,224,224]]</code> </p> </li>
* </ul> </li> <li> <p> <code>XGBOOST</code>: input data name and shape are not
* needed.</p> </li> </ul>
*/
inline void SetDataInputConfig(const char* value) { m_dataInputConfigHasBeenSet = true; m_dataInputConfig.assign(value); }
/**
* <p>Specifies the name and shape of the expected data inputs for your trained
* model with a JSON dictionary form. The data inputs are
* <a>InputConfig$Framework</a> specific. </p> <ul> <li> <p>
* <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of
* the expected data inputs using a dictionary format for your trained model. The
* dictionary formats required for the console and CLI are different.</p> <ul> <li>
* <p>Examples for one input:</p> <ul> <li> <p>If using the console,
* <code>{"input":[1,1024,1024,3]}</code> </p> </li> <li> <p>If using the CLI,
* <code>{\"input\":[1,1024,1024,3]}</code> </p> </li> </ul> </li> <li> <p>Examples
* for two inputs:</p> <ul> <li> <p>If using the console, <code>{"data1":
* [1,28,28,1], "data2":[1,28,28,1]}</code> </p> </li> <li> <p>If using the CLI,
* <code>{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}</code> </p> </li> </ul>
* </li> </ul> </li> <li> <p> <code>KERAS</code>: You must specify the name and
* shape (NCHW format) of expected data inputs using a dictionary format for your
* trained model. Note that while Keras model artifacts should be uploaded in NHWC
* (channel-last) format, <code>DataInputConfig</code> should be specified in NCHW
* (channel-first) format. The dictionary formats required for the console and CLI
* are different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If
* using the console, <code>{"input_1":[1,3,224,224]}</code> </p> </li> <li> <p>If
* using the CLI, <code>{\"input_1\":[1,3,224,224]}</code> </p> </li> </ul> </li>
* <li> <p>Examples for two inputs:</p> <ul> <li> <p>If using the console,
* <code>{"input_1": [1,3,224,224], "input_2":[1,3,224,224]} </code> </p> </li>
* <li> <p>If using the CLI, <code>{\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}</code> </p> </li> </ul> </li> </ul> </li> <li> <p>
* <code>MXNET/ONNX</code>: You must specify the name and shape (NCHW format) of
* the expected data inputs in order using a dictionary format for your trained
* model. The dictionary formats required for the console and CLI are
* different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If using
* the console, <code>{"data":[1,3,1024,1024]}</code> </p> </li> <li> <p>If using
* the CLI, <code>{\"data\":[1,3,1024,1024]}</code> </p> </li> </ul> </li> <li>
* <p>Examples for two inputs:</p> <ul> <li> <p>If using the console,
* <code>{"var1": [1,1,28,28], "var2":[1,1,28,28]} </code> </p> </li> <li> <p>If
* using the CLI, <code>{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}</code> </p>
* </li> </ul> </li> </ul> </li> <li> <p> <code>PyTorch</code>: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.</p> <ul> <li>
* <p>Examples for one input in dictionary format:</p> <ul> <li> <p>If using the
* console, <code>{"input0":[1,3,224,224]}</code> </p> </li> <li> <p>If using the
* CLI, <code>{\"input0\":[1,3,224,224]}</code> </p> </li> </ul> </li> <li>
* <p>Example for one input in list format: <code>[[1,3,224,224]]</code> </p> </li>
* <li> <p>Examples for two inputs in dictionary format:</p> <ul> <li> <p>If using
* the console, <code>{"input0":[1,3,224,224], "input1":[1,3,224,224]}</code> </p>
* </li> <li> <p>If using the CLI, <code>{\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]} </code> </p> </li> </ul> </li> <li> <p>Example for two
* inputs in list format: <code>[[1,3,224,224], [1,3,224,224]]</code> </p> </li>
* </ul> </li> <li> <p> <code>XGBOOST</code>: input data name and shape are not
* needed.</p> </li> </ul>
*/
inline InputConfig& WithDataInputConfig(const Aws::String& value) { SetDataInputConfig(value); return *this;}
/**
* <p>Specifies the name and shape of the expected data inputs for your trained
* model with a JSON dictionary form. The data inputs are
* <a>InputConfig$Framework</a> specific. </p> <ul> <li> <p>
* <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of
* the expected data inputs using a dictionary format for your trained model. The
* dictionary formats required for the console and CLI are different.</p> <ul> <li>
* <p>Examples for one input:</p> <ul> <li> <p>If using the console,
* <code>{"input":[1,1024,1024,3]}</code> </p> </li> <li> <p>If using the CLI,
* <code>{\"input\":[1,1024,1024,3]}</code> </p> </li> </ul> </li> <li> <p>Examples
* for two inputs:</p> <ul> <li> <p>If using the console, <code>{"data1":
* [1,28,28,1], "data2":[1,28,28,1]}</code> </p> </li> <li> <p>If using the CLI,
* <code>{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}</code> </p> </li> </ul>
* </li> </ul> </li> <li> <p> <code>KERAS</code>: You must specify the name and
* shape (NCHW format) of expected data inputs using a dictionary format for your
* trained model. Note that while Keras model artifacts should be uploaded in NHWC
* (channel-last) format, <code>DataInputConfig</code> should be specified in NCHW
* (channel-first) format. The dictionary formats required for the console and CLI
* are different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If
* using the console, <code>{"input_1":[1,3,224,224]}</code> </p> </li> <li> <p>If
* using the CLI, <code>{\"input_1\":[1,3,224,224]}</code> </p> </li> </ul> </li>
* <li> <p>Examples for two inputs:</p> <ul> <li> <p>If using the console,
* <code>{"input_1": [1,3,224,224], "input_2":[1,3,224,224]} </code> </p> </li>
* <li> <p>If using the CLI, <code>{\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}</code> </p> </li> </ul> </li> </ul> </li> <li> <p>
* <code>MXNET/ONNX</code>: You must specify the name and shape (NCHW format) of
* the expected data inputs in order using a dictionary format for your trained
* model. The dictionary formats required for the console and CLI are
* different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If using
* the console, <code>{"data":[1,3,1024,1024]}</code> </p> </li> <li> <p>If using
* the CLI, <code>{\"data\":[1,3,1024,1024]}</code> </p> </li> </ul> </li> <li>
* <p>Examples for two inputs:</p> <ul> <li> <p>If using the console,
* <code>{"var1": [1,1,28,28], "var2":[1,1,28,28]} </code> </p> </li> <li> <p>If
* using the CLI, <code>{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}</code> </p>
* </li> </ul> </li> </ul> </li> <li> <p> <code>PyTorch</code>: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.</p> <ul> <li>
* <p>Examples for one input in dictionary format:</p> <ul> <li> <p>If using the
* console, <code>{"input0":[1,3,224,224]}</code> </p> </li> <li> <p>If using the
* CLI, <code>{\"input0\":[1,3,224,224]}</code> </p> </li> </ul> </li> <li>
* <p>Example for one input in list format: <code>[[1,3,224,224]]</code> </p> </li>
* <li> <p>Examples for two inputs in dictionary format:</p> <ul> <li> <p>If using
* the console, <code>{"input0":[1,3,224,224], "input1":[1,3,224,224]}</code> </p>
* </li> <li> <p>If using the CLI, <code>{\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]} </code> </p> </li> </ul> </li> <li> <p>Example for two
* inputs in list format: <code>[[1,3,224,224], [1,3,224,224]]</code> </p> </li>
* </ul> </li> <li> <p> <code>XGBOOST</code>: input data name and shape are not
* needed.</p> </li> </ul>
*/
inline InputConfig& WithDataInputConfig(Aws::String&& value) { SetDataInputConfig(std::move(value)); return *this;}
/**
* <p>Specifies the name and shape of the expected data inputs for your trained
* model with a JSON dictionary form. The data inputs are
* <a>InputConfig$Framework</a> specific. </p> <ul> <li> <p>
* <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of
* the expected data inputs using a dictionary format for your trained model. The
* dictionary formats required for the console and CLI are different.</p> <ul> <li>
* <p>Examples for one input:</p> <ul> <li> <p>If using the console,
* <code>{"input":[1,1024,1024,3]}</code> </p> </li> <li> <p>If using the CLI,
* <code>{\"input\":[1,1024,1024,3]}</code> </p> </li> </ul> </li> <li> <p>Examples
* for two inputs:</p> <ul> <li> <p>If using the console, <code>{"data1":
* [1,28,28,1], "data2":[1,28,28,1]}</code> </p> </li> <li> <p>If using the CLI,
* <code>{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}</code> </p> </li> </ul>
* </li> </ul> </li> <li> <p> <code>KERAS</code>: You must specify the name and
* shape (NCHW format) of expected data inputs using a dictionary format for your
* trained model. Note that while Keras model artifacts should be uploaded in NHWC
* (channel-last) format, <code>DataInputConfig</code> should be specified in NCHW
* (channel-first) format. The dictionary formats required for the console and CLI
* are different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If
* using the console, <code>{"input_1":[1,3,224,224]}</code> </p> </li> <li> <p>If
* using the CLI, <code>{\"input_1\":[1,3,224,224]}</code> </p> </li> </ul> </li>
* <li> <p>Examples for two inputs:</p> <ul> <li> <p>If using the console,
* <code>{"input_1": [1,3,224,224], "input_2":[1,3,224,224]} </code> </p> </li>
* <li> <p>If using the CLI, <code>{\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}</code> </p> </li> </ul> </li> </ul> </li> <li> <p>
* <code>MXNET/ONNX</code>: You must specify the name and shape (NCHW format) of
* the expected data inputs in order using a dictionary format for your trained
* model. The dictionary formats required for the console and CLI are
* different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If using
* the console, <code>{"data":[1,3,1024,1024]}</code> </p> </li> <li> <p>If using
* the CLI, <code>{\"data\":[1,3,1024,1024]}</code> </p> </li> </ul> </li> <li>
* <p>Examples for two inputs:</p> <ul> <li> <p>If using the console,
* <code>{"var1": [1,1,28,28], "var2":[1,1,28,28]} </code> </p> </li> <li> <p>If
* using the CLI, <code>{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}</code> </p>
* </li> </ul> </li> </ul> </li> <li> <p> <code>PyTorch</code>: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.</p> <ul> <li>
* <p>Examples for one input in dictionary format:</p> <ul> <li> <p>If using the
* console, <code>{"input0":[1,3,224,224]}</code> </p> </li> <li> <p>If using the
* CLI, <code>{\"input0\":[1,3,224,224]}</code> </p> </li> </ul> </li> <li>
* <p>Example for one input in list format: <code>[[1,3,224,224]]</code> </p> </li>
* <li> <p>Examples for two inputs in dictionary format:</p> <ul> <li> <p>If using
* the console, <code>{"input0":[1,3,224,224], "input1":[1,3,224,224]}</code> </p>
* </li> <li> <p>If using the CLI, <code>{\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]} </code> </p> </li> </ul> </li> <li> <p>Example for two
* inputs in list format: <code>[[1,3,224,224], [1,3,224,224]]</code> </p> </li>
* </ul> </li> <li> <p> <code>XGBOOST</code>: input data name and shape are not
* needed.</p> </li> </ul>
*/
inline InputConfig& WithDataInputConfig(const char* value) { SetDataInputConfig(value); return *this;}
/**
* <p>Identifies the framework in which the model was trained. For example:
* TENSORFLOW.</p>
*/
inline const Framework& GetFramework() const{ return m_framework; }
/**
* <p>Identifies the framework in which the model was trained. For example:
* TENSORFLOW.</p>
*/
inline bool FrameworkHasBeenSet() const { return m_frameworkHasBeenSet; }
/**
* <p>Identifies the framework in which the model was trained. For example:
* TENSORFLOW.</p>
*/
inline void SetFramework(const Framework& value) { m_frameworkHasBeenSet = true; m_framework = value; }
/**
* <p>Identifies the framework in which the model was trained. For example:
* TENSORFLOW.</p>
*/
inline void SetFramework(Framework&& value) { m_frameworkHasBeenSet = true; m_framework = std::move(value); }
/**
* <p>Identifies the framework in which the model was trained. For example:
* TENSORFLOW.</p>
*/
inline InputConfig& WithFramework(const Framework& value) { SetFramework(value); return *this;}
/**
* <p>Identifies the framework in which the model was trained. For example:
* TENSORFLOW.</p>
*/
inline InputConfig& WithFramework(Framework&& value) { SetFramework(std::move(value)); return *this;}
private:
Aws::String m_s3Uri;
bool m_s3UriHasBeenSet;
Aws::String m_dataInputConfig;
bool m_dataInputConfigHasBeenSet;
Framework m_framework;
bool m_frameworkHasBeenSet;
};
} // namespace Model
} // namespace SageMaker
} // namespace Aws