/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include Contains information about the location of input model artifacts, the name
* and shape of the expected data inputs, and the framework in which the model was
* trained.See Also:
AWS
* API Reference
The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix).
*/ inline const Aws::String& GetS3Uri() const{ return m_s3Uri; } /** *The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix).
*/ inline bool S3UriHasBeenSet() const { return m_s3UriHasBeenSet; } /** *The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix).
*/ inline void SetS3Uri(const Aws::String& value) { m_s3UriHasBeenSet = true; m_s3Uri = value; } /** *The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix).
*/ inline void SetS3Uri(Aws::String&& value) { m_s3UriHasBeenSet = true; m_s3Uri = std::move(value); } /** *The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix).
*/ inline void SetS3Uri(const char* value) { m_s3UriHasBeenSet = true; m_s3Uri.assign(value); } /** *The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix).
*/ inline InputConfig& WithS3Uri(const Aws::String& value) { SetS3Uri(value); return *this;} /** *The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix).
*/ inline InputConfig& WithS3Uri(Aws::String&& value) { SetS3Uri(std::move(value)); return *this;} /** *The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix).
*/ inline InputConfig& WithS3Uri(const char* value) { SetS3Uri(value); return *this;} /** *Specifies the name and shape of the expected data inputs for your trained * model with a JSON dictionary form. The data inputs are * InputConfig$Framework specific.
* TensorFlow: You must specify the name and shape (NHWC format) of
* the expected data inputs using a dictionary format for your trained model. The
* dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console,
* {"input":[1,1024,1024,3]}
If using the CLI,
* {\"input\":[1,1024,1024,3]}
Examples * for two inputs:
If using the console, {"data1":
* [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI,
* {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS: You must specify the name and
* shape (NCHW format) of expected data inputs using a dictionary format for your
* trained model. Note that while Keras model artifacts should be uploaded in NHWC
* (channel-last) format, DataInputConfig should be specified in NCHW
* (channel-first) format. The dictionary formats required for the console and CLI
* are different.
Examples for one input:
If
* using the console, {"input_1":[1,3,224,224]}
If
* using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console,
* {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}
* MXNET/ONNX: You must specify the name and shape (NCHW format) of
* the expected data inputs in order using a dictionary format for your trained
* model. The dictionary formats required for the console and CLI are
* different.
Examples for one input:
If using
* the console, {"data":[1,3,1024,1024]}
If using
* the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console,
* {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If
* using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.
Examples for one input in dictionary format:
If using the
* console, {"input0":[1,3,224,224]}
If using the
* CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using
* the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]}
Example for two
* inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST: input data name and shape are not
* needed.
Specifies the name and shape of the expected data inputs for your trained * model with a JSON dictionary form. The data inputs are * InputConfig$Framework specific.
* TensorFlow: You must specify the name and shape (NHWC format) of
* the expected data inputs using a dictionary format for your trained model. The
* dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console,
* {"input":[1,1024,1024,3]}
If using the CLI,
* {\"input\":[1,1024,1024,3]}
Examples * for two inputs:
If using the console, {"data1":
* [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI,
* {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS: You must specify the name and
* shape (NCHW format) of expected data inputs using a dictionary format for your
* trained model. Note that while Keras model artifacts should be uploaded in NHWC
* (channel-last) format, DataInputConfig should be specified in NCHW
* (channel-first) format. The dictionary formats required for the console and CLI
* are different.
Examples for one input:
If
* using the console, {"input_1":[1,3,224,224]}
If
* using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console,
* {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}
* MXNET/ONNX: You must specify the name and shape (NCHW format) of
* the expected data inputs in order using a dictionary format for your trained
* model. The dictionary formats required for the console and CLI are
* different.
Examples for one input:
If using
* the console, {"data":[1,3,1024,1024]}
If using
* the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console,
* {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If
* using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.
Examples for one input in dictionary format:
If using the
* console, {"input0":[1,3,224,224]}
If using the
* CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using
* the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]}
Example for two
* inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST: input data name and shape are not
* needed.
Specifies the name and shape of the expected data inputs for your trained * model with a JSON dictionary form. The data inputs are * InputConfig$Framework specific.
* TensorFlow: You must specify the name and shape (NHWC format) of
* the expected data inputs using a dictionary format for your trained model. The
* dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console,
* {"input":[1,1024,1024,3]}
If using the CLI,
* {\"input\":[1,1024,1024,3]}
Examples * for two inputs:
If using the console, {"data1":
* [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI,
* {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS: You must specify the name and
* shape (NCHW format) of expected data inputs using a dictionary format for your
* trained model. Note that while Keras model artifacts should be uploaded in NHWC
* (channel-last) format, DataInputConfig should be specified in NCHW
* (channel-first) format. The dictionary formats required for the console and CLI
* are different.
Examples for one input:
If
* using the console, {"input_1":[1,3,224,224]}
If
* using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console,
* {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}
* MXNET/ONNX: You must specify the name and shape (NCHW format) of
* the expected data inputs in order using a dictionary format for your trained
* model. The dictionary formats required for the console and CLI are
* different.
Examples for one input:
If using
* the console, {"data":[1,3,1024,1024]}
If using
* the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console,
* {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If
* using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.
Examples for one input in dictionary format:
If using the
* console, {"input0":[1,3,224,224]}
If using the
* CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using
* the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]}
Example for two
* inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST: input data name and shape are not
* needed.
Specifies the name and shape of the expected data inputs for your trained * model with a JSON dictionary form. The data inputs are * InputConfig$Framework specific.
* TensorFlow: You must specify the name and shape (NHWC format) of
* the expected data inputs using a dictionary format for your trained model. The
* dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console,
* {"input":[1,1024,1024,3]}
If using the CLI,
* {\"input\":[1,1024,1024,3]}
Examples * for two inputs:
If using the console, {"data1":
* [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI,
* {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS: You must specify the name and
* shape (NCHW format) of expected data inputs using a dictionary format for your
* trained model. Note that while Keras model artifacts should be uploaded in NHWC
* (channel-last) format, DataInputConfig should be specified in NCHW
* (channel-first) format. The dictionary formats required for the console and CLI
* are different.
Examples for one input:
If
* using the console, {"input_1":[1,3,224,224]}
If
* using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console,
* {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}
* MXNET/ONNX: You must specify the name and shape (NCHW format) of
* the expected data inputs in order using a dictionary format for your trained
* model. The dictionary formats required for the console and CLI are
* different.
Examples for one input:
If using
* the console, {"data":[1,3,1024,1024]}
If using
* the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console,
* {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If
* using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.
Examples for one input in dictionary format:
If using the
* console, {"input0":[1,3,224,224]}
If using the
* CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using
* the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]}
Example for two
* inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST: input data name and shape are not
* needed.
Specifies the name and shape of the expected data inputs for your trained * model with a JSON dictionary form. The data inputs are * InputConfig$Framework specific.
* TensorFlow: You must specify the name and shape (NHWC format) of
* the expected data inputs using a dictionary format for your trained model. The
* dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console,
* {"input":[1,1024,1024,3]}
If using the CLI,
* {\"input\":[1,1024,1024,3]}
Examples * for two inputs:
If using the console, {"data1":
* [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI,
* {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS: You must specify the name and
* shape (NCHW format) of expected data inputs using a dictionary format for your
* trained model. Note that while Keras model artifacts should be uploaded in NHWC
* (channel-last) format, DataInputConfig should be specified in NCHW
* (channel-first) format. The dictionary formats required for the console and CLI
* are different.
Examples for one input:
If
* using the console, {"input_1":[1,3,224,224]}
If
* using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console,
* {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}
* MXNET/ONNX: You must specify the name and shape (NCHW format) of
* the expected data inputs in order using a dictionary format for your trained
* model. The dictionary formats required for the console and CLI are
* different.
Examples for one input:
If using
* the console, {"data":[1,3,1024,1024]}
If using
* the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console,
* {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If
* using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.
Examples for one input in dictionary format:
If using the
* console, {"input0":[1,3,224,224]}
If using the
* CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using
* the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]}
Example for two
* inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST: input data name and shape are not
* needed.
Specifies the name and shape of the expected data inputs for your trained * model with a JSON dictionary form. The data inputs are * InputConfig$Framework specific.
* TensorFlow: You must specify the name and shape (NHWC format) of
* the expected data inputs using a dictionary format for your trained model. The
* dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console,
* {"input":[1,1024,1024,3]}
If using the CLI,
* {\"input\":[1,1024,1024,3]}
Examples * for two inputs:
If using the console, {"data1":
* [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI,
* {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS: You must specify the name and
* shape (NCHW format) of expected data inputs using a dictionary format for your
* trained model. Note that while Keras model artifacts should be uploaded in NHWC
* (channel-last) format, DataInputConfig should be specified in NCHW
* (channel-first) format. The dictionary formats required for the console and CLI
* are different.
Examples for one input:
If
* using the console, {"input_1":[1,3,224,224]}
If
* using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console,
* {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}
* MXNET/ONNX: You must specify the name and shape (NCHW format) of
* the expected data inputs in order using a dictionary format for your trained
* model. The dictionary formats required for the console and CLI are
* different.
Examples for one input:
If using
* the console, {"data":[1,3,1024,1024]}
If using
* the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console,
* {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If
* using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.
Examples for one input in dictionary format:
If using the
* console, {"input0":[1,3,224,224]}
If using the
* CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using
* the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]}
Example for two
* inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST: input data name and shape are not
* needed.
Specifies the name and shape of the expected data inputs for your trained * model with a JSON dictionary form. The data inputs are * InputConfig$Framework specific.
* TensorFlow: You must specify the name and shape (NHWC format) of
* the expected data inputs using a dictionary format for your trained model. The
* dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console,
* {"input":[1,1024,1024,3]}
If using the CLI,
* {\"input\":[1,1024,1024,3]}
Examples * for two inputs:
If using the console, {"data1":
* [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI,
* {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS: You must specify the name and
* shape (NCHW format) of expected data inputs using a dictionary format for your
* trained model. Note that while Keras model artifacts should be uploaded in NHWC
* (channel-last) format, DataInputConfig should be specified in NCHW
* (channel-first) format. The dictionary formats required for the console and CLI
* are different.
Examples for one input:
If
* using the console, {"input_1":[1,3,224,224]}
If
* using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console,
* {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}
* MXNET/ONNX: You must specify the name and shape (NCHW format) of
* the expected data inputs in order using a dictionary format for your trained
* model. The dictionary formats required for the console and CLI are
* different.
Examples for one input:
If using
* the console, {"data":[1,3,1024,1024]}
If using
* the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console,
* {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If
* using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.
Examples for one input in dictionary format:
If using the
* console, {"input0":[1,3,224,224]}
If using the
* CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using
* the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]}
Example for two
* inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST: input data name and shape are not
* needed.
Specifies the name and shape of the expected data inputs for your trained * model with a JSON dictionary form. The data inputs are * InputConfig$Framework specific.
* TensorFlow: You must specify the name and shape (NHWC format) of
* the expected data inputs using a dictionary format for your trained model. The
* dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console,
* {"input":[1,1024,1024,3]}
If using the CLI,
* {\"input\":[1,1024,1024,3]}
Examples * for two inputs:
If using the console, {"data1":
* [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI,
* {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS: You must specify the name and
* shape (NCHW format) of expected data inputs using a dictionary format for your
* trained model. Note that while Keras model artifacts should be uploaded in NHWC
* (channel-last) format, DataInputConfig should be specified in NCHW
* (channel-first) format. The dictionary formats required for the console and CLI
* are different.
Examples for one input:
If
* using the console, {"input_1":[1,3,224,224]}
If
* using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console,
* {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}
* MXNET/ONNX: You must specify the name and shape (NCHW format) of
* the expected data inputs in order using a dictionary format for your trained
* model. The dictionary formats required for the console and CLI are
* different.
Examples for one input:
If using
* the console, {"data":[1,3,1024,1024]}
If using
* the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console,
* {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If
* using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.
Examples for one input in dictionary format:
If using the
* console, {"input0":[1,3,224,224]}
If using the
* CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using
* the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]}
Example for two
* inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST: input data name and shape are not
* needed.
Identifies the framework in which the model was trained. For example: * TENSORFLOW.
*/ inline const Framework& GetFramework() const{ return m_framework; } /** *Identifies the framework in which the model was trained. For example: * TENSORFLOW.
*/ inline bool FrameworkHasBeenSet() const { return m_frameworkHasBeenSet; } /** *Identifies the framework in which the model was trained. For example: * TENSORFLOW.
*/ inline void SetFramework(const Framework& value) { m_frameworkHasBeenSet = true; m_framework = value; } /** *Identifies the framework in which the model was trained. For example: * TENSORFLOW.
*/ inline void SetFramework(Framework&& value) { m_frameworkHasBeenSet = true; m_framework = std::move(value); } /** *Identifies the framework in which the model was trained. For example: * TENSORFLOW.
*/ inline InputConfig& WithFramework(const Framework& value) { SetFramework(value); return *this;} /** *Identifies the framework in which the model was trained. For example: * TENSORFLOW.
*/ inline InputConfig& WithFramework(Framework&& value) { SetFramework(std::move(value)); return *this;} private: Aws::String m_s3Uri; bool m_s3UriHasBeenSet; Aws::String m_dataInputConfig; bool m_dataInputConfigHasBeenSet; Framework m_framework; bool m_frameworkHasBeenSet; }; } // namespace Model } // namespace SageMaker } // namespace Aws