114 lines
3.4 KiB
C++
114 lines
3.4 KiB
C++
/**
|
||
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
||
* SPDX-License-Identifier: Apache-2.0.
|
||
*/
|
||
|
||
#pragma once
|
||
#include <aws/rekognition/Rekognition_EXPORTS.h>
|
||
#include <aws/rekognition/model/GenderType.h>
|
||
#include <utility>
|
||
|
||
namespace Aws
|
||
{
|
||
namespace Utils
|
||
{
|
||
namespace Json
|
||
{
|
||
class JsonValue;
|
||
class JsonView;
|
||
} // namespace Json
|
||
} // namespace Utils
|
||
namespace Rekognition
|
||
{
|
||
namespace Model
|
||
{
|
||
|
||
/**
|
||
* <p>The predicted gender of a detected face. </p> <p>Amazon Rekognition makes
|
||
* gender binary (male/female) predictions based on the physical appearance of a
|
||
* face in a particular image. This kind of prediction is not designed to
|
||
* categorize a person’s gender identity, and you shouldn't use Amazon Rekognition
|
||
* to make such a determination. For example, a male actor wearing a long-haired
|
||
* wig and earrings for a role might be predicted as female.</p> <p>Using Amazon
|
||
* Rekognition to make gender binary predictions is best suited for use cases where
|
||
* aggregate gender distribution statistics need to be analyzed without identifying
|
||
* specific users. For example, the percentage of female users compared to male
|
||
* users on a social media platform. </p> <p>We don't recommend using gender binary
|
||
* predictions to make decisions that impact
 an individual's rights,
|
||
* privacy, or access to services.</p><p><h3>See Also:</h3> <a
|
||
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/Gender">AWS
|
||
* API Reference</a></p>
|
||
*/
|
||
class AWS_REKOGNITION_API Gender
|
||
{
|
||
public:
|
||
Gender();
|
||
Gender(Aws::Utils::Json::JsonView jsonValue);
|
||
Gender& operator=(Aws::Utils::Json::JsonView jsonValue);
|
||
Aws::Utils::Json::JsonValue Jsonize() const;
|
||
|
||
|
||
/**
|
||
* <p>The predicted gender of the face.</p>
|
||
*/
|
||
inline const GenderType& GetValue() const{ return m_value; }
|
||
|
||
/**
|
||
* <p>The predicted gender of the face.</p>
|
||
*/
|
||
inline bool ValueHasBeenSet() const { return m_valueHasBeenSet; }
|
||
|
||
/**
|
||
* <p>The predicted gender of the face.</p>
|
||
*/
|
||
inline void SetValue(const GenderType& value) { m_valueHasBeenSet = true; m_value = value; }
|
||
|
||
/**
|
||
* <p>The predicted gender of the face.</p>
|
||
*/
|
||
inline void SetValue(GenderType&& value) { m_valueHasBeenSet = true; m_value = std::move(value); }
|
||
|
||
/**
|
||
* <p>The predicted gender of the face.</p>
|
||
*/
|
||
inline Gender& WithValue(const GenderType& value) { SetValue(value); return *this;}
|
||
|
||
/**
|
||
* <p>The predicted gender of the face.</p>
|
||
*/
|
||
inline Gender& WithValue(GenderType&& value) { SetValue(std::move(value)); return *this;}
|
||
|
||
|
||
/**
|
||
* <p>Level of confidence in the prediction.</p>
|
||
*/
|
||
inline double GetConfidence() const{ return m_confidence; }
|
||
|
||
/**
|
||
* <p>Level of confidence in the prediction.</p>
|
||
*/
|
||
inline bool ConfidenceHasBeenSet() const { return m_confidenceHasBeenSet; }
|
||
|
||
/**
|
||
* <p>Level of confidence in the prediction.</p>
|
||
*/
|
||
inline void SetConfidence(double value) { m_confidenceHasBeenSet = true; m_confidence = value; }
|
||
|
||
/**
|
||
* <p>Level of confidence in the prediction.</p>
|
||
*/
|
||
inline Gender& WithConfidence(double value) { SetConfidence(value); return *this;}
|
||
|
||
private:
|
||
|
||
GenderType m_value;
|
||
bool m_valueHasBeenSet;
|
||
|
||
double m_confidence;
|
||
bool m_confidenceHasBeenSet;
|
||
};
|
||
|
||
} // namespace Model
|
||
} // namespace Rekognition
|
||
} // namespace Aws
|