This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files

114 lines
3.4 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include <aws/rekognition/Rekognition_EXPORTS.h>
#include <aws/rekognition/model/GenderType.h>
#include <utility>
namespace Aws
{
namespace Utils
{
namespace Json
{
class JsonValue;
class JsonView;
} // namespace Json
} // namespace Utils
namespace Rekognition
{
namespace Model
{
/**
* <p>The predicted gender of a detected face. </p> <p>Amazon Rekognition makes
* gender binary (male/female) predictions based on the physical appearance of a
* face in a particular image. This kind of prediction is not designed to
* categorize a persons gender identity, and you shouldn't use Amazon Rekognition
* to make such a determination. For example, a male actor wearing a long-haired
* wig and earrings for a role might be predicted as female.</p> <p>Using Amazon
* Rekognition to make gender binary predictions is best suited for use cases where
* aggregate gender distribution statistics need to be analyzed without identifying
* specific users. For example, the percentage of female users compared to male
* users on a social media platform. </p> <p>We don't recommend using gender binary
* predictions to make decisions that impact&#x2028; an individual's rights,
* privacy, or access to services.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/Gender">AWS
* API Reference</a></p>
*/
class AWS_REKOGNITION_API Gender
{
public:
Gender();
Gender(Aws::Utils::Json::JsonView jsonValue);
Gender& operator=(Aws::Utils::Json::JsonView jsonValue);
Aws::Utils::Json::JsonValue Jsonize() const;
/**
* <p>The predicted gender of the face.</p>
*/
inline const GenderType& GetValue() const{ return m_value; }
/**
* <p>The predicted gender of the face.</p>
*/
inline bool ValueHasBeenSet() const { return m_valueHasBeenSet; }
/**
* <p>The predicted gender of the face.</p>
*/
inline void SetValue(const GenderType& value) { m_valueHasBeenSet = true; m_value = value; }
/**
* <p>The predicted gender of the face.</p>
*/
inline void SetValue(GenderType&& value) { m_valueHasBeenSet = true; m_value = std::move(value); }
/**
* <p>The predicted gender of the face.</p>
*/
inline Gender& WithValue(const GenderType& value) { SetValue(value); return *this;}
/**
* <p>The predicted gender of the face.</p>
*/
inline Gender& WithValue(GenderType&& value) { SetValue(std::move(value)); return *this;}
/**
* <p>Level of confidence in the prediction.</p>
*/
inline double GetConfidence() const{ return m_confidence; }
/**
* <p>Level of confidence in the prediction.</p>
*/
inline bool ConfidenceHasBeenSet() const { return m_confidenceHasBeenSet; }
/**
* <p>Level of confidence in the prediction.</p>
*/
inline void SetConfidence(double value) { m_confidenceHasBeenSet = true; m_confidence = value; }
/**
* <p>Level of confidence in the prediction.</p>
*/
inline Gender& WithConfidence(double value) { SetConfidence(value); return *this;}
private:
GenderType m_value;
bool m_valueHasBeenSet;
double m_confidence;
bool m_confidenceHasBeenSet;
};
} // namespace Model
} // namespace Rekognition
} // namespace Aws