This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files

114 lines
3.4 KiB
C
Raw Normal View History

/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include <aws/rekognition/Rekognition_EXPORTS.h>
#include <aws/rekognition/model/GenderType.h>
#include <utility>
namespace Aws
{
namespace Utils
{
namespace Json
{
class JsonValue;
class JsonView;
} // namespace Json
} // namespace Utils
namespace Rekognition
{
namespace Model
{
/**
* <p>The predicted gender of a detected face. </p> <p>Amazon Rekognition makes
* gender binary (male/female) predictions based on the physical appearance of a
* face in a particular image. This kind of prediction is not designed to
* categorize a persons gender identity, and you shouldn't use Amazon Rekognition
* to make such a determination. For example, a male actor wearing a long-haired
* wig and earrings for a role might be predicted as female.</p> <p>Using Amazon
* Rekognition to make gender binary predictions is best suited for use cases where
* aggregate gender distribution statistics need to be analyzed without identifying
* specific users. For example, the percentage of female users compared to male
* users on a social media platform. </p> <p>We don't recommend using gender binary
* predictions to make decisions that impact&#x2028; an individual's rights,
* privacy, or access to services.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/Gender">AWS
* API Reference</a></p>
*/
class AWS_REKOGNITION_API Gender
{
public:
Gender();
Gender(Aws::Utils::Json::JsonView jsonValue);
Gender& operator=(Aws::Utils::Json::JsonView jsonValue);
Aws::Utils::Json::JsonValue Jsonize() const;
/**
* <p>The predicted gender of the face.</p>
*/
inline const GenderType& GetValue() const{ return m_value; }
/**
* <p>The predicted gender of the face.</p>
*/
inline bool ValueHasBeenSet() const { return m_valueHasBeenSet; }
/**
* <p>The predicted gender of the face.</p>
*/
inline void SetValue(const GenderType& value) { m_valueHasBeenSet = true; m_value = value; }
/**
* <p>The predicted gender of the face.</p>
*/
inline void SetValue(GenderType&& value) { m_valueHasBeenSet = true; m_value = std::move(value); }
/**
* <p>The predicted gender of the face.</p>
*/
inline Gender& WithValue(const GenderType& value) { SetValue(value); return *this;}
/**
* <p>The predicted gender of the face.</p>
*/
inline Gender& WithValue(GenderType&& value) { SetValue(std::move(value)); return *this;}
/**
* <p>Level of confidence in the prediction.</p>
*/
inline double GetConfidence() const{ return m_confidence; }
/**
* <p>Level of confidence in the prediction.</p>
*/
inline bool ConfidenceHasBeenSet() const { return m_confidenceHasBeenSet; }
/**
* <p>Level of confidence in the prediction.</p>
*/
inline void SetConfidence(double value) { m_confidenceHasBeenSet = true; m_confidence = value; }
/**
* <p>Level of confidence in the prediction.</p>
*/
inline Gender& WithConfidence(double value) { SetConfidence(value); return *this;}
private:
GenderType m_value;
bool m_valueHasBeenSet;
double m_confidence;
bool m_confidenceHasBeenSet;
};
} // namespace Model
} // namespace Rekognition
} // namespace Aws