1:增加kafka序列化类,用于获取日志写入kafka的时间戳。TSG-9844
2:删除kafka认证类型,通过连接端口判断。 3:删除强匹配模式;仅适用弱匹配和不匹配即可满足需求。
This commit is contained in:
@@ -5,14 +5,15 @@ import cn.hutool.log.LogFactory;
|
||||
import com.zdjizhi.common.FlowWriteConfig;
|
||||
import com.zdjizhi.utils.functions.FilterNullFunction;
|
||||
import com.zdjizhi.utils.functions.MapCompletedFunction;
|
||||
import com.zdjizhi.utils.functions.ObjectCompletedFunction;
|
||||
import com.zdjizhi.utils.functions.TypeMapCompletedFunction;
|
||||
import com.zdjizhi.utils.kafka.Consumer;
|
||||
import com.zdjizhi.utils.kafka.Producer;
|
||||
import com.zdjizhi.utils.kafka.KafkaConsumer;
|
||||
import com.zdjizhi.utils.kafka.KafkaProducer;
|
||||
import org.apache.flink.streaming.api.datastream.DataStream;
|
||||
import org.apache.flink.streaming.api.datastream.DataStreamSource;
|
||||
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
|
||||
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* @author qidaijie
|
||||
* @Package com.zdjizhi.topology
|
||||
@@ -25,56 +26,48 @@ public class LogFlowWriteTopology {
|
||||
public static void main(String[] args) {
|
||||
final StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();
|
||||
|
||||
//开启Checkpoint,interval用于指定checkpoint的触发间隔(单位milliseconds)
|
||||
// environment.enableCheckpointing(5000);
|
||||
|
||||
//两个输出之间的最大时间 (单位milliseconds)
|
||||
environment.setBufferTimeout(FlowWriteConfig.BUFFER_TIMEOUT);
|
||||
|
||||
DataStreamSource<String> streamSource = environment.addSource(Consumer.getKafkaConsumer())
|
||||
.setParallelism(FlowWriteConfig.SOURCE_PARALLELISM);
|
||||
|
||||
if (FlowWriteConfig.LOG_NEED_COMPLETE == 1) {
|
||||
DataStreamSource<Map<String, Object>> streamSource = environment.addSource(KafkaConsumer.myDeserializationConsumer())
|
||||
.setParallelism(FlowWriteConfig.SOURCE_PARALLELISM);
|
||||
|
||||
DataStream<String> cleaningLog;
|
||||
switch (FlowWriteConfig.LOG_TRANSFORM_TYPE) {
|
||||
case 0:
|
||||
//对原始日志进行处理补全转换等,不对日志字段类型做校验。
|
||||
cleaningLog = streamSource.map(new MapCompletedFunction()).name("MapCompletedFunction")
|
||||
.setParallelism(FlowWriteConfig.TRANSFORM_PARALLELISM);
|
||||
|
||||
break;
|
||||
case 1:
|
||||
//对原始日志进行处理补全转换等,强制要求日志字段类型与schema一致。
|
||||
cleaningLog = streamSource.map(new ObjectCompletedFunction()).name("ObjectCompletedFunction")
|
||||
.setParallelism(FlowWriteConfig.TRANSFORM_PARALLELISM);
|
||||
|
||||
break;
|
||||
case 2:
|
||||
//对原始日志进行处理补全转换等,对日志字段类型做若校验,可根据schema进行强转。
|
||||
cleaningLog = streamSource.map(new TypeMapCompletedFunction()).name("TypeMapCompletedFunction")
|
||||
.setParallelism(FlowWriteConfig.TRANSFORM_PARALLELISM);
|
||||
|
||||
break;
|
||||
default:
|
||||
//对原始日志进行处理补全转换等,不对日志字段类型做校验。
|
||||
cleaningLog = streamSource.map(new MapCompletedFunction()).name("MapCompletedFunction")
|
||||
.setParallelism(FlowWriteConfig.TRANSFORM_PARALLELISM);
|
||||
|
||||
}
|
||||
|
||||
// //过滤空数据不发送到Kafka内
|
||||
//过滤空数据不发送到Kafka内
|
||||
DataStream<String> result = cleaningLog.filter(new FilterNullFunction()).name("FilterAbnormalData")
|
||||
.setParallelism(FlowWriteConfig.TRANSFORM_PARALLELISM);
|
||||
|
||||
//发送数据到Kafka
|
||||
result.addSink(Producer.getKafkaProducer()).name("LogSinkKafka")
|
||||
result.addSink(KafkaProducer.getKafkaProducer()).name("LogSinkKafka")
|
||||
.setParallelism(FlowWriteConfig.SINK_PARALLELISM);
|
||||
} else {
|
||||
DataStreamSource<String> streamSource = environment.addSource(KafkaConsumer.flinkConsumer())
|
||||
.setParallelism(FlowWriteConfig.SOURCE_PARALLELISM);
|
||||
|
||||
//过滤空数据不发送到Kafka内
|
||||
DataStream<String> result = streamSource.filter(new FilterNullFunction()).name("FilterOriginalData")
|
||||
.setParallelism(FlowWriteConfig.TRANSFORM_PARALLELISM);
|
||||
|
||||
//发送数据到Kafka
|
||||
result.addSink(Producer.getKafkaProducer()).name("LogSinkKafka")
|
||||
result.addSink(KafkaProducer.getKafkaProducer()).name("LogSinkKafka")
|
||||
.setParallelism(FlowWriteConfig.SINK_PARALLELISM);
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user