diff --git a/pom.xml b/pom.xml
index 217901d..69d563f 100644
--- a/pom.xml
+++ b/pom.xml
@@ -6,7 +6,7 @@
com.zdjizhi
log-completion-schema
- 220209-ipLookup
+ 220308-IngestionTime
log-completion-schema
http://www.example.com
diff --git a/properties/default_config.properties b/properties/default_config.properties
index ebf7927..6a01de4 100644
--- a/properties/default_config.properties
+++ b/properties/default_config.properties
@@ -1,4 +1,4 @@
-#====================Kafka Consumer====================#
+#====================Kafka KafkaConsumer====================#
#kafka source connection timeout
session.timeout.ms=60000
@@ -7,7 +7,7 @@ max.poll.records=3000
#kafka source poll bytes
max.partition.fetch.bytes=31457280
-#====================Kafka Producer====================#
+#====================Kafka KafkaProducer====================#
#producer重试的次数设置
retries=0
@@ -28,12 +28,6 @@ buffer.memory=134217728
#10M
max.request.size=10485760
#====================kafka default====================#
-#kafka source protocol; SSL or SASL
-kafka.source.protocol=SASL
-
-#kafka sink protocol; SSL or SASL
-kafka.sink.protocol=SASL
-
#kafka SASL验证用户名
kafka.user=admin
@@ -47,8 +41,8 @@ hbase.table.name=tsg_galaxy:relation_framedip_account
#邮件默认编码
mail.default.charset=UTF-8
-#0不做任何校验,1强类型校验,2弱类型校验
-log.transform.type=2
+#0不做任何校验,1弱类型校验
+log.transform.type=0
#两个输出之间的最大时间(单位milliseconds)
buffer.timeout=5000
\ No newline at end of file
diff --git a/properties/service_flow_config.properties b/properties/service_flow_config.properties
index ddd10f6..df12fa7 100644
--- a/properties/service_flow_config.properties
+++ b/properties/service_flow_config.properties
@@ -1,23 +1,23 @@
#--------------------------------地址配置------------------------------#
#管理kafka地址
-source.kafka.servers=192.168.44.11:9094
+source.kafka.servers=192.168.44.12:9094
#管理输出kafka地址
-sink.kafka.servers=192.168.44.11:9094
+sink.kafka.servers=192.168.44.12:9094
#zookeeper 地址 用于配置log_id
-zookeeper.servers=192.168.44.11:2181
+zookeeper.servers=192.168.44.12:2181
#hbase zookeeper地址 用于连接HBase
-hbase.zookeeper.servers=192.168.44.11:2181
+hbase.zookeeper.servers=192.168.44.12:2181
#--------------------------------HTTP/定位库------------------------------#
#定位库地址
tools.library=D:\\workerspace\\dat\\
#网关的schema位置
-schema.http=http://192.168.44.67:9999/metadata/schema/v1/fields/session_record
+schema.http=http://192.168.44.12:9999/metadata/schema/v1/fields/session_record
#网关APP_ID 获取接口
app.id.http=http://192.168.44.67:9999/open-api/appDicList
@@ -31,7 +31,7 @@ source.kafka.topic=test
sink.kafka.topic=test-result
#读取topic,存储该spout id的消费offset信息,可通过该拓扑命名;具体存储offset的位置,确定下次读取不重复的数据;
-group.id=flink-test-1
+group.id=flinktest-1
#生产者压缩模式 none or snappy
producer.kafka.compression.type=none
diff --git a/src/main/java/com/zdjizhi/common/FlowWriteConfig.java b/src/main/java/com/zdjizhi/common/FlowWriteConfig.java
index e2d430a..ebc8eeb 100644
--- a/src/main/java/com/zdjizhi/common/FlowWriteConfig.java
+++ b/src/main/java/com/zdjizhi/common/FlowWriteConfig.java
@@ -52,8 +52,6 @@ public class FlowWriteConfig {
public static final String PRODUCER_ACK = FlowWriteConfigurations.getStringProperty(0, "producer.ack");
public static final String TOOLS_LIBRARY = FlowWriteConfigurations.getStringProperty(0, "tools.library");
public static final String PRODUCER_KAFKA_COMPRESSION_TYPE = FlowWriteConfigurations.getStringProperty(0, "producer.kafka.compression.type");
- public static final String KAFKA_SOURCE_PROTOCOL = FlowWriteConfigurations.getStringProperty(1, "kafka.source.protocol");
- public static final String KAFKA_SINK_PROTOCOL = FlowWriteConfigurations.getStringProperty(1, "kafka.sink.protocol");
public static final String KAFKA_USER = FlowWriteConfigurations.getStringProperty(1, "kafka.user");
public static final String KAFKA_PIN = FlowWriteConfigurations.getStringProperty(1, "kafka.pin");
diff --git a/src/main/java/com/zdjizhi/topology/LogFlowWriteTopology.java b/src/main/java/com/zdjizhi/topology/LogFlowWriteTopology.java
index 07e0407..2d42769 100644
--- a/src/main/java/com/zdjizhi/topology/LogFlowWriteTopology.java
+++ b/src/main/java/com/zdjizhi/topology/LogFlowWriteTopology.java
@@ -5,14 +5,15 @@ import cn.hutool.log.LogFactory;
import com.zdjizhi.common.FlowWriteConfig;
import com.zdjizhi.utils.functions.FilterNullFunction;
import com.zdjizhi.utils.functions.MapCompletedFunction;
-import com.zdjizhi.utils.functions.ObjectCompletedFunction;
import com.zdjizhi.utils.functions.TypeMapCompletedFunction;
-import com.zdjizhi.utils.kafka.Consumer;
-import com.zdjizhi.utils.kafka.Producer;
+import com.zdjizhi.utils.kafka.KafkaConsumer;
+import com.zdjizhi.utils.kafka.KafkaProducer;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
+import java.util.Map;
+
/**
* @author qidaijie
* @Package com.zdjizhi.topology
@@ -25,56 +26,48 @@ public class LogFlowWriteTopology {
public static void main(String[] args) {
final StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();
- //开启Checkpoint,interval用于指定checkpoint的触发间隔(单位milliseconds)
-// environment.enableCheckpointing(5000);
-
//两个输出之间的最大时间 (单位milliseconds)
environment.setBufferTimeout(FlowWriteConfig.BUFFER_TIMEOUT);
- DataStreamSource streamSource = environment.addSource(Consumer.getKafkaConsumer())
- .setParallelism(FlowWriteConfig.SOURCE_PARALLELISM);
-
if (FlowWriteConfig.LOG_NEED_COMPLETE == 1) {
+ DataStreamSource