优化:getMaxIntermediateSize返回值初始化计算一次cache,getMaxIntermediateSize每行数据都会调用一次
This commit is contained in:
@@ -1,342 +1,348 @@
|
||||
package org.apache.druid.query.aggregation.sketch.HdrHistogram;
|
||||
|
||||
import com.fasterxml.jackson.annotation.JsonProperty;
|
||||
import org.HdrHistogram.HistogramSketch;
|
||||
import org.HdrHistogram.HistogramUnion;
|
||||
import org.apache.druid.java.util.common.IAE;
|
||||
import org.apache.druid.query.aggregation.*;
|
||||
import org.apache.druid.query.cache.CacheKeyBuilder;
|
||||
import org.apache.druid.segment.ColumnSelectorFactory;
|
||||
import org.apache.druid.segment.ColumnValueSelector;
|
||||
import org.apache.druid.segment.column.ColumnType;
|
||||
|
||||
import javax.annotation.Nullable;
|
||||
import java.util.Collections;
|
||||
import java.util.Comparator;
|
||||
import java.util.List;
|
||||
import java.util.Objects;
|
||||
|
||||
public class HdrHistogramAggregatorFactory extends AggregatorFactory {
|
||||
public static final long DEFAULT_LOWEST = 1;
|
||||
public static final long DEFAULT_HIGHEST = 2;
|
||||
public static final int DEFAULT_SIGNIFICANT = 3;
|
||||
public static final boolean DEFAULT_AUTO_RESIZE = true;
|
||||
public static final long BUFFER_AUTO_RESIZE_HIGHEST = 100000000L * 1000000L;
|
||||
public static final Comparator<HistogramSketch> COMPARATOR =
|
||||
Comparator.nullsFirst(Comparator.comparingLong(HistogramSketch::getTotalCount));
|
||||
|
||||
protected final String name;
|
||||
protected final String fieldName;
|
||||
protected final long lowestDiscernibleValue;
|
||||
protected final long highestTrackableValue;
|
||||
protected final int numberOfSignificantValueDigits;
|
||||
protected final boolean autoResize; //默认是false
|
||||
|
||||
public HdrHistogramAggregatorFactory(
|
||||
@JsonProperty("name") String name,
|
||||
@JsonProperty("fieldName") String fieldName,
|
||||
@JsonProperty("lowestDiscernibleValue") @Nullable Long lowestDiscernibleValue,
|
||||
@JsonProperty("highestTrackableValue") @Nullable Long highestTrackableValue,
|
||||
@JsonProperty("numberOfSignificantValueDigits") @Nullable Integer numberOfSignificantValueDigits,
|
||||
@JsonProperty("autoResize") @Nullable Boolean autoResize
|
||||
) {
|
||||
if (name == null) {
|
||||
throw new IAE("Must have a valid, non-null aggregator name");
|
||||
}
|
||||
if (fieldName == null) {
|
||||
throw new IAE("Parameter fieldName must be specified");
|
||||
}
|
||||
|
||||
if(lowestDiscernibleValue == null){
|
||||
lowestDiscernibleValue = DEFAULT_LOWEST;
|
||||
}
|
||||
// Verify argument validity
|
||||
if (lowestDiscernibleValue < 1) {
|
||||
throw new IAE("lowestDiscernibleValue must be >= 1");
|
||||
}
|
||||
if (lowestDiscernibleValue > Long.MAX_VALUE / 2) {
|
||||
// prevent subsequent multiplication by 2 for highestTrackableValue check from overflowing
|
||||
throw new IAE("lowestDiscernibleValue must be <= Long.MAX_VALUE / 2");
|
||||
}
|
||||
if(highestTrackableValue == null){
|
||||
highestTrackableValue = DEFAULT_HIGHEST;
|
||||
}
|
||||
if (highestTrackableValue < 2L * lowestDiscernibleValue) {
|
||||
throw new IAE("highestTrackableValue must be >= 2 * lowestDiscernibleValue");
|
||||
}
|
||||
if(numberOfSignificantValueDigits == null){
|
||||
numberOfSignificantValueDigits = DEFAULT_SIGNIFICANT;
|
||||
}
|
||||
if ((numberOfSignificantValueDigits < 0) || (numberOfSignificantValueDigits > 5)) {
|
||||
throw new IAE("numberOfSignificantValueDigits must be between 0 and 5");
|
||||
}
|
||||
if(autoResize == null){
|
||||
autoResize = DEFAULT_AUTO_RESIZE;
|
||||
}
|
||||
|
||||
this.name = name;
|
||||
this.fieldName = fieldName;
|
||||
this.lowestDiscernibleValue = lowestDiscernibleValue;
|
||||
this.highestTrackableValue = highestTrackableValue;
|
||||
this.numberOfSignificantValueDigits = numberOfSignificantValueDigits;
|
||||
this.autoResize = autoResize;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Aggregator factorize(ColumnSelectorFactory metricFactory) {
|
||||
return new HdrHistogramAggregator(
|
||||
metricFactory.makeColumnValueSelector(fieldName),
|
||||
lowestDiscernibleValue,
|
||||
highestTrackableValue,
|
||||
numberOfSignificantValueDigits,
|
||||
autoResize
|
||||
);
|
||||
}
|
||||
|
||||
@Override
|
||||
public BufferAggregator factorizeBuffered(ColumnSelectorFactory metricFactory) {
|
||||
return new HdrHistogramBufferAggregator(
|
||||
metricFactory.makeColumnValueSelector(fieldName),
|
||||
lowestDiscernibleValue,
|
||||
highestTrackableValue,
|
||||
numberOfSignificantValueDigits,
|
||||
autoResize,
|
||||
getMaxIntermediateSize()
|
||||
);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Comparator getComparator() {
|
||||
return COMPARATOR;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Object combine(Object lhs, Object rhs) {
|
||||
if(lhs == null){
|
||||
return rhs;
|
||||
}else if(rhs == null){
|
||||
return lhs;
|
||||
}else{
|
||||
final HistogramUnion union = new HistogramUnion(lowestDiscernibleValue,highestTrackableValue,numberOfSignificantValueDigits,autoResize);
|
||||
union.update((HistogramSketch) lhs);
|
||||
union.update((HistogramSketch) rhs);
|
||||
HistogramSketch result = union.getResult();
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public AggregateCombiner makeAggregateCombiner() {
|
||||
return new ObjectAggregateCombiner<HistogramSketch>() {
|
||||
private HistogramUnion union = null;
|
||||
|
||||
@Override
|
||||
public void reset(ColumnValueSelector selector) {
|
||||
//union.reset();
|
||||
union = null;
|
||||
fold(selector);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void fold(ColumnValueSelector selector) {
|
||||
HistogramSketch h = (HistogramSketch) selector.getObject();
|
||||
if(h != null){
|
||||
if(union == null){
|
||||
union = new HistogramUnion(lowestDiscernibleValue,highestTrackableValue,numberOfSignificantValueDigits,autoResize);
|
||||
}
|
||||
union.update(h);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public Class<HistogramSketch> classOfObject() {
|
||||
return HistogramSketch.class;
|
||||
}
|
||||
|
||||
@Nullable
|
||||
@Override
|
||||
public HistogramSketch getObject() {
|
||||
if(union == null){
|
||||
return null;
|
||||
}else{
|
||||
HistogramSketch result = union.getResult();
|
||||
/*if(result.getTotalCount() == 0){
|
||||
return null;
|
||||
}*/
|
||||
return result;
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/*public Histogram geneHistogram() {
|
||||
Histogram histogram = new Histogram(lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits);
|
||||
histogram.setAutoResize(autoResize);
|
||||
return histogram;
|
||||
}*/
|
||||
|
||||
@Override
|
||||
public AggregatorFactory getCombiningFactory() {
|
||||
return new HdrHistogramMergeAggregatorFactory(name, name, lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits, autoResize);
|
||||
}
|
||||
|
||||
@Override
|
||||
public AggregatorFactory getMergingFactory(AggregatorFactory other) throws AggregatorFactoryNotMergeableException {
|
||||
if (other.getName().equals(this.getName()) && other instanceof HdrHistogramAggregatorFactory) {
|
||||
HdrHistogramAggregatorFactory castedOther = (HdrHistogramAggregatorFactory) other;
|
||||
|
||||
return new HdrHistogramMergeAggregatorFactory(name, name,
|
||||
Math.min(lowestDiscernibleValue, castedOther.lowestDiscernibleValue),
|
||||
Math.max(highestTrackableValue, castedOther.highestTrackableValue),
|
||||
Math.max(numberOfSignificantValueDigits, castedOther.numberOfSignificantValueDigits),
|
||||
autoResize || castedOther.autoResize
|
||||
);
|
||||
} else {
|
||||
throw new AggregatorFactoryNotMergeableException(this, other);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public List<AggregatorFactory> getRequiredColumns() {
|
||||
return Collections.singletonList(
|
||||
new HdrHistogramAggregatorFactory(
|
||||
fieldName,
|
||||
fieldName,
|
||||
lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits, autoResize
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
@Override
|
||||
public AggregatorFactory withName(String newName) {
|
||||
return new HdrHistogramAggregatorFactory(newName, fieldName, lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits, autoResize);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Object deserialize(Object object) {
|
||||
if (object == null) {
|
||||
return null;
|
||||
}
|
||||
return HistogramUtils.deserializeHistogram(object);
|
||||
}
|
||||
|
||||
@Override
|
||||
public ColumnType getResultType() {
|
||||
//return ColumnType.LONG;
|
||||
return getIntermediateType();
|
||||
}
|
||||
|
||||
@Nullable
|
||||
@Override
|
||||
public Object finalizeComputation(@Nullable Object object) {
|
||||
//return object == null ? null : ((HistogramSketch) object).getTotalCount();
|
||||
return object;
|
||||
}
|
||||
|
||||
@Override
|
||||
@JsonProperty
|
||||
public String getName() {
|
||||
return name;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public String getFieldName() {
|
||||
return fieldName;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public long getLowestDiscernibleValue() {
|
||||
return lowestDiscernibleValue;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public long getHighestTrackableValue() {
|
||||
return highestTrackableValue;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public int getNumberOfSignificantValueDigits() {
|
||||
return numberOfSignificantValueDigits;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public boolean isAutoResize() {
|
||||
return autoResize;
|
||||
}
|
||||
|
||||
/*
|
||||
没这个方法了, 新版本需要实现getIntermediateType方法
|
||||
@Override
|
||||
public String getTypeName() {
|
||||
return HdrHistogramModule.HDRHISTOGRAM_TYPE_NAME;
|
||||
}*/
|
||||
|
||||
@Override
|
||||
public ColumnType getIntermediateType() {
|
||||
return HdrHistogramModule.TYPE;
|
||||
}
|
||||
|
||||
@Override
|
||||
public List<String> requiredFields() {
|
||||
return Collections.singletonList(fieldName);
|
||||
}
|
||||
|
||||
|
||||
@Override
|
||||
public int getMaxIntermediateSize() {
|
||||
if(!autoResize){
|
||||
/*Histogram histogram = new Histogram(lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits);
|
||||
histogram.setAutoResize(autoResize);
|
||||
return histogram.getNeededByteBufferCapacity();*/
|
||||
return HistogramSketch.getUpdatableSerializationBytes(lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits);
|
||||
}else{
|
||||
//return (1 << 10) * 512;
|
||||
return HistogramSketch.getUpdatableSerializationBytes(lowestDiscernibleValue, BUFFER_AUTO_RESIZE_HIGHEST, numberOfSignificantValueDigits);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] getCacheKey() {
|
||||
return new CacheKeyBuilder(HdrHistogramModule.CACHE_TYPE_ID_OFFSET).appendByte(HdrHistogramModule.QUANTILES_HDRHISTOGRAM_BUILD_CACHE_TYPE_ID)
|
||||
.appendString(name).appendString(fieldName)
|
||||
.appendDouble(lowestDiscernibleValue).appendDouble(highestTrackableValue)
|
||||
.appendInt(numberOfSignificantValueDigits).appendBoolean(autoResize)
|
||||
.build();
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(final Object o){
|
||||
if (this == o) {
|
||||
return true;
|
||||
}
|
||||
if (o == null || !getClass().equals(o.getClass())) {
|
||||
return false;
|
||||
}
|
||||
|
||||
HdrHistogramAggregatorFactory that = (HdrHistogramAggregatorFactory) o;
|
||||
return name.equals(that.name) && fieldName.equals(that.fieldName) &&
|
||||
lowestDiscernibleValue == that.lowestDiscernibleValue &&
|
||||
highestTrackableValue == that.highestTrackableValue &&
|
||||
numberOfSignificantValueDigits == that.numberOfSignificantValueDigits &&
|
||||
autoResize == that.autoResize
|
||||
;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode(){
|
||||
return Objects.hash(name, fieldName, lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits, autoResize);
|
||||
}
|
||||
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return getClass().getSimpleName() + "{" +
|
||||
"name='" + name + '\'' +
|
||||
", fieldName='" + fieldName + '\'' +
|
||||
", lowestDiscernibleValue=" + lowestDiscernibleValue +
|
||||
", highestTrackableValue=" + highestTrackableValue +
|
||||
", numberOfSignificantValueDigits=" + numberOfSignificantValueDigits +
|
||||
", autoResize=" + autoResize +
|
||||
'}';
|
||||
}
|
||||
}
|
||||
package org.apache.druid.query.aggregation.sketch.HdrHistogram;
|
||||
|
||||
import com.fasterxml.jackson.annotation.JsonProperty;
|
||||
import org.HdrHistogram.HistogramSketch;
|
||||
import org.HdrHistogram.HistogramUnion;
|
||||
import org.apache.druid.java.util.common.IAE;
|
||||
import org.apache.druid.query.aggregation.*;
|
||||
import org.apache.druid.query.cache.CacheKeyBuilder;
|
||||
import org.apache.druid.segment.ColumnSelectorFactory;
|
||||
import org.apache.druid.segment.ColumnValueSelector;
|
||||
import org.apache.druid.segment.column.ColumnType;
|
||||
|
||||
import javax.annotation.Nullable;
|
||||
import java.util.Collections;
|
||||
import java.util.Comparator;
|
||||
import java.util.List;
|
||||
import java.util.Objects;
|
||||
|
||||
public class HdrHistogramAggregatorFactory extends AggregatorFactory {
|
||||
public static final long DEFAULT_LOWEST = 1;
|
||||
public static final long DEFAULT_HIGHEST = 2;
|
||||
public static final int DEFAULT_SIGNIFICANT = 3;
|
||||
public static final boolean DEFAULT_AUTO_RESIZE = true;
|
||||
public static final long BUFFER_AUTO_RESIZE_HIGHEST = 100000000L * 1000000L;
|
||||
public static final Comparator<HistogramSketch> COMPARATOR =
|
||||
Comparator.nullsFirst(Comparator.comparingLong(HistogramSketch::getTotalCount));
|
||||
|
||||
protected final String name;
|
||||
protected final String fieldName;
|
||||
protected final long lowestDiscernibleValue;
|
||||
protected final long highestTrackableValue;
|
||||
protected final int numberOfSignificantValueDigits;
|
||||
protected final boolean autoResize; //默认是false
|
||||
protected final int updatableSerializationBytes;
|
||||
|
||||
public HdrHistogramAggregatorFactory(
|
||||
@JsonProperty("name") String name,
|
||||
@JsonProperty("fieldName") String fieldName,
|
||||
@JsonProperty("lowestDiscernibleValue") @Nullable Long lowestDiscernibleValue,
|
||||
@JsonProperty("highestTrackableValue") @Nullable Long highestTrackableValue,
|
||||
@JsonProperty("numberOfSignificantValueDigits") @Nullable Integer numberOfSignificantValueDigits,
|
||||
@JsonProperty("autoResize") @Nullable Boolean autoResize
|
||||
) {
|
||||
if (name == null) {
|
||||
throw new IAE("Must have a valid, non-null aggregator name");
|
||||
}
|
||||
if (fieldName == null) {
|
||||
throw new IAE("Parameter fieldName must be specified");
|
||||
}
|
||||
|
||||
if(lowestDiscernibleValue == null){
|
||||
lowestDiscernibleValue = DEFAULT_LOWEST;
|
||||
}
|
||||
// Verify argument validity
|
||||
if (lowestDiscernibleValue < 1) {
|
||||
throw new IAE("lowestDiscernibleValue must be >= 1");
|
||||
}
|
||||
if (lowestDiscernibleValue > Long.MAX_VALUE / 2) {
|
||||
// prevent subsequent multiplication by 2 for highestTrackableValue check from overflowing
|
||||
throw new IAE("lowestDiscernibleValue must be <= Long.MAX_VALUE / 2");
|
||||
}
|
||||
if(highestTrackableValue == null){
|
||||
highestTrackableValue = DEFAULT_HIGHEST;
|
||||
}
|
||||
if (highestTrackableValue < 2L * lowestDiscernibleValue) {
|
||||
throw new IAE("highestTrackableValue must be >= 2 * lowestDiscernibleValue");
|
||||
}
|
||||
if(numberOfSignificantValueDigits == null){
|
||||
numberOfSignificantValueDigits = DEFAULT_SIGNIFICANT;
|
||||
}
|
||||
if ((numberOfSignificantValueDigits < 0) || (numberOfSignificantValueDigits > 5)) {
|
||||
throw new IAE("numberOfSignificantValueDigits must be between 0 and 5");
|
||||
}
|
||||
if(autoResize == null){
|
||||
autoResize = DEFAULT_AUTO_RESIZE;
|
||||
}
|
||||
|
||||
this.name = name;
|
||||
this.fieldName = fieldName;
|
||||
this.lowestDiscernibleValue = lowestDiscernibleValue;
|
||||
this.highestTrackableValue = highestTrackableValue;
|
||||
this.numberOfSignificantValueDigits = numberOfSignificantValueDigits;
|
||||
this.autoResize = autoResize;
|
||||
this.updatableSerializationBytes = getUpdatableSerializationBytes();
|
||||
}
|
||||
|
||||
@Override
|
||||
public Aggregator factorize(ColumnSelectorFactory metricFactory) {
|
||||
return new HdrHistogramAggregator(
|
||||
metricFactory.makeColumnValueSelector(fieldName),
|
||||
lowestDiscernibleValue,
|
||||
highestTrackableValue,
|
||||
numberOfSignificantValueDigits,
|
||||
autoResize
|
||||
);
|
||||
}
|
||||
|
||||
@Override
|
||||
public BufferAggregator factorizeBuffered(ColumnSelectorFactory metricFactory) {
|
||||
return new HdrHistogramBufferAggregator(
|
||||
metricFactory.makeColumnValueSelector(fieldName),
|
||||
lowestDiscernibleValue,
|
||||
highestTrackableValue,
|
||||
numberOfSignificantValueDigits,
|
||||
autoResize,
|
||||
getMaxIntermediateSize()
|
||||
);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Comparator getComparator() {
|
||||
return COMPARATOR;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Object combine(Object lhs, Object rhs) {
|
||||
if(lhs == null){
|
||||
return rhs;
|
||||
}else if(rhs == null){
|
||||
return lhs;
|
||||
}else{
|
||||
final HistogramUnion union = new HistogramUnion(lowestDiscernibleValue,highestTrackableValue,numberOfSignificantValueDigits,autoResize);
|
||||
union.update((HistogramSketch) lhs);
|
||||
union.update((HistogramSketch) rhs);
|
||||
HistogramSketch result = union.getResult();
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public AggregateCombiner makeAggregateCombiner() {
|
||||
return new ObjectAggregateCombiner<HistogramSketch>() {
|
||||
private HistogramUnion union = null;
|
||||
|
||||
@Override
|
||||
public void reset(ColumnValueSelector selector) {
|
||||
//union.reset();
|
||||
union = null;
|
||||
fold(selector);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void fold(ColumnValueSelector selector) {
|
||||
HistogramSketch h = (HistogramSketch) selector.getObject();
|
||||
if(h != null){
|
||||
if(union == null){
|
||||
union = new HistogramUnion(lowestDiscernibleValue,highestTrackableValue,numberOfSignificantValueDigits,autoResize);
|
||||
}
|
||||
union.update(h);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public Class<HistogramSketch> classOfObject() {
|
||||
return HistogramSketch.class;
|
||||
}
|
||||
|
||||
@Nullable
|
||||
@Override
|
||||
public HistogramSketch getObject() {
|
||||
if(union == null){
|
||||
return null;
|
||||
}else{
|
||||
HistogramSketch result = union.getResult();
|
||||
/*if(result.getTotalCount() == 0){
|
||||
return null;
|
||||
}*/
|
||||
return result;
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/*public Histogram geneHistogram() {
|
||||
Histogram histogram = new Histogram(lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits);
|
||||
histogram.setAutoResize(autoResize);
|
||||
return histogram;
|
||||
}*/
|
||||
|
||||
@Override
|
||||
public AggregatorFactory getCombiningFactory() {
|
||||
return new HdrHistogramMergeAggregatorFactory(name, name, lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits, autoResize);
|
||||
}
|
||||
|
||||
@Override
|
||||
public AggregatorFactory getMergingFactory(AggregatorFactory other) throws AggregatorFactoryNotMergeableException {
|
||||
if (other.getName().equals(this.getName()) && other instanceof HdrHistogramAggregatorFactory) {
|
||||
HdrHistogramAggregatorFactory castedOther = (HdrHistogramAggregatorFactory) other;
|
||||
|
||||
return new HdrHistogramMergeAggregatorFactory(name, name,
|
||||
Math.min(lowestDiscernibleValue, castedOther.lowestDiscernibleValue),
|
||||
Math.max(highestTrackableValue, castedOther.highestTrackableValue),
|
||||
Math.max(numberOfSignificantValueDigits, castedOther.numberOfSignificantValueDigits),
|
||||
autoResize || castedOther.autoResize
|
||||
);
|
||||
} else {
|
||||
throw new AggregatorFactoryNotMergeableException(this, other);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public List<AggregatorFactory> getRequiredColumns() {
|
||||
return Collections.singletonList(
|
||||
new HdrHistogramAggregatorFactory(
|
||||
fieldName,
|
||||
fieldName,
|
||||
lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits, autoResize
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
@Override
|
||||
public AggregatorFactory withName(String newName) {
|
||||
return new HdrHistogramAggregatorFactory(newName, fieldName, lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits, autoResize);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Object deserialize(Object object) {
|
||||
if (object == null) {
|
||||
return null;
|
||||
}
|
||||
return HistogramUtils.deserializeHistogram(object);
|
||||
}
|
||||
|
||||
@Override
|
||||
public ColumnType getResultType() {
|
||||
//return ColumnType.LONG;
|
||||
return getIntermediateType();
|
||||
}
|
||||
|
||||
@Nullable
|
||||
@Override
|
||||
public Object finalizeComputation(@Nullable Object object) {
|
||||
//return object == null ? null : ((HistogramSketch) object).getTotalCount();
|
||||
return object;
|
||||
}
|
||||
|
||||
@Override
|
||||
@JsonProperty
|
||||
public String getName() {
|
||||
return name;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public String getFieldName() {
|
||||
return fieldName;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public long getLowestDiscernibleValue() {
|
||||
return lowestDiscernibleValue;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public long getHighestTrackableValue() {
|
||||
return highestTrackableValue;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public int getNumberOfSignificantValueDigits() {
|
||||
return numberOfSignificantValueDigits;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public boolean isAutoResize() {
|
||||
return autoResize;
|
||||
}
|
||||
|
||||
/*
|
||||
没这个方法了, 新版本需要实现getIntermediateType方法
|
||||
@Override
|
||||
public String getTypeName() {
|
||||
return HdrHistogramModule.HDRHISTOGRAM_TYPE_NAME;
|
||||
}*/
|
||||
|
||||
@Override
|
||||
public ColumnType getIntermediateType() {
|
||||
return HdrHistogramModule.TYPE;
|
||||
}
|
||||
|
||||
@Override
|
||||
public List<String> requiredFields() {
|
||||
return Collections.singletonList(fieldName);
|
||||
}
|
||||
|
||||
|
||||
@Override
|
||||
public int getMaxIntermediateSize() {
|
||||
return updatableSerializationBytes == 0? getUpdatableSerializationBytes():updatableSerializationBytes;
|
||||
}
|
||||
|
||||
private int getUpdatableSerializationBytes(){
|
||||
if(!autoResize){
|
||||
/*Histogram histogram = new Histogram(lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits);
|
||||
histogram.setAutoResize(autoResize);
|
||||
return histogram.getNeededByteBufferCapacity();*/
|
||||
return HistogramSketch.getUpdatableSerializationBytes(lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits);
|
||||
}else{
|
||||
//return (1 << 10) * 512;
|
||||
return HistogramSketch.getUpdatableSerializationBytes(lowestDiscernibleValue, BUFFER_AUTO_RESIZE_HIGHEST, numberOfSignificantValueDigits);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] getCacheKey() {
|
||||
return new CacheKeyBuilder(HdrHistogramModule.CACHE_TYPE_ID_OFFSET).appendByte(HdrHistogramModule.QUANTILES_HDRHISTOGRAM_BUILD_CACHE_TYPE_ID)
|
||||
.appendString(name).appendString(fieldName)
|
||||
.appendDouble(lowestDiscernibleValue).appendDouble(highestTrackableValue)
|
||||
.appendInt(numberOfSignificantValueDigits).appendBoolean(autoResize)
|
||||
.build();
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(final Object o){
|
||||
if (this == o) {
|
||||
return true;
|
||||
}
|
||||
if (o == null || !getClass().equals(o.getClass())) {
|
||||
return false;
|
||||
}
|
||||
|
||||
HdrHistogramAggregatorFactory that = (HdrHistogramAggregatorFactory) o;
|
||||
return name.equals(that.name) && fieldName.equals(that.fieldName) &&
|
||||
lowestDiscernibleValue == that.lowestDiscernibleValue &&
|
||||
highestTrackableValue == that.highestTrackableValue &&
|
||||
numberOfSignificantValueDigits == that.numberOfSignificantValueDigits &&
|
||||
autoResize == that.autoResize
|
||||
;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode(){
|
||||
return Objects.hash(name, fieldName, lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits, autoResize);
|
||||
}
|
||||
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return getClass().getSimpleName() + "{" +
|
||||
"name='" + name + '\'' +
|
||||
", fieldName='" + fieldName + '\'' +
|
||||
", lowestDiscernibleValue=" + lowestDiscernibleValue +
|
||||
", highestTrackableValue=" + highestTrackableValue +
|
||||
", numberOfSignificantValueDigits=" + numberOfSignificantValueDigits +
|
||||
", autoResize=" + autoResize +
|
||||
'}';
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,118 +1,121 @@
|
||||
package org.apache.druid.query.aggregation.sketch.HdrHistogram;
|
||||
|
||||
import com.fasterxml.jackson.annotation.JsonCreator;
|
||||
import com.fasterxml.jackson.annotation.JsonProperty;
|
||||
import com.google.common.collect.Sets;
|
||||
import org.HdrHistogram.HistogramSketch;
|
||||
import org.HdrHistogram.Percentile;
|
||||
import org.apache.druid.java.util.common.IAE;
|
||||
import org.apache.druid.query.aggregation.AggregatorFactory;
|
||||
import org.apache.druid.query.aggregation.PostAggregator;
|
||||
import org.apache.druid.query.cache.CacheKeyBuilder;
|
||||
import org.apache.druid.segment.ColumnInspector;
|
||||
import org.apache.druid.segment.column.ColumnType;
|
||||
|
||||
import javax.annotation.Nullable;
|
||||
import java.util.*;
|
||||
|
||||
public class HdrHistogramToPercentilesPostAggregator implements PostAggregator {
|
||||
private final String name;
|
||||
private final String fieldName;
|
||||
private final int percentileTicksPerHalfDistance;
|
||||
|
||||
@JsonCreator
|
||||
public HdrHistogramToPercentilesPostAggregator(
|
||||
@JsonProperty("name") String name,
|
||||
@JsonProperty("fieldName") String fieldName,
|
||||
@JsonProperty("percentileTicksPerHalfDistance") int percentileTicksPerHalfDistance
|
||||
){
|
||||
this.name = name;
|
||||
this.fieldName = fieldName;
|
||||
this.percentileTicksPerHalfDistance = percentileTicksPerHalfDistance;
|
||||
}
|
||||
|
||||
@Override
|
||||
public ColumnType getType(ColumnInspector signature){
|
||||
return ColumnType.STRING;
|
||||
}
|
||||
|
||||
@Override
|
||||
@JsonProperty
|
||||
public String getName() {
|
||||
return name;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public String getFieldName() {
|
||||
return fieldName;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public int getPercentileTicksPerHalfDistance() {
|
||||
return percentileTicksPerHalfDistance;
|
||||
}
|
||||
|
||||
@Nullable
|
||||
@Override
|
||||
public Object compute(Map<String, Object> values) {
|
||||
HistogramSketch histogram = (HistogramSketch) values.get(fieldName);
|
||||
List<Percentile> percentiles = histogram.percentileList(percentileTicksPerHalfDistance);
|
||||
return HdrHistogramModule.toJson(percentiles);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Comparator<double[]> getComparator()
|
||||
{
|
||||
throw new IAE("Comparing arrays of quantiles is not supported");
|
||||
}
|
||||
|
||||
@Override
|
||||
public Set<String> getDependentFields()
|
||||
{
|
||||
return Sets.newHashSet(fieldName);
|
||||
}
|
||||
|
||||
@Override
|
||||
public PostAggregator decorate(Map<String, AggregatorFactory> aggregators) {
|
||||
return this;
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] getCacheKey() {
|
||||
CacheKeyBuilder builder = new CacheKeyBuilder(HdrHistogramModule.CACHE_TYPE_ID_OFFSET).appendByte(HdrHistogramModule.QUANTILES_HDRHISTOGRAM_TO_PERCENTILES_CACHE_TYPE_ID)
|
||||
.appendString(fieldName);
|
||||
builder.appendInt(percentileTicksPerHalfDistance);
|
||||
return builder.build();
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(Object o) {
|
||||
if (this == o) {
|
||||
return true;
|
||||
}
|
||||
if (o == null || getClass() != o.getClass()) {
|
||||
return false;
|
||||
}
|
||||
HdrHistogramToPercentilesPostAggregator that = (HdrHistogramToPercentilesPostAggregator) o;
|
||||
|
||||
return percentileTicksPerHalfDistance == that.percentileTicksPerHalfDistance &&
|
||||
name.equals(that.name) &&
|
||||
fieldName.equals(that.fieldName);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
return Objects.hash(name, fieldName, percentileTicksPerHalfDistance);
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return "HdrHistogramToPercentilesPostAggregator{" +
|
||||
"name='" + name + '\'' +
|
||||
", fieldName='" + fieldName + '\'' +
|
||||
", probabilitys=" + percentileTicksPerHalfDistance +
|
||||
'}';
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
package org.apache.druid.query.aggregation.sketch.HdrHistogram;
|
||||
|
||||
import com.fasterxml.jackson.annotation.JsonCreator;
|
||||
import com.fasterxml.jackson.annotation.JsonProperty;
|
||||
import com.google.common.collect.Sets;
|
||||
import org.HdrHistogram.HistogramSketch;
|
||||
import org.HdrHistogram.Percentile;
|
||||
import org.apache.druid.java.util.common.IAE;
|
||||
import org.apache.druid.query.aggregation.AggregatorFactory;
|
||||
import org.apache.druid.query.aggregation.PostAggregator;
|
||||
import org.apache.druid.query.cache.CacheKeyBuilder;
|
||||
import org.apache.druid.segment.ColumnInspector;
|
||||
import org.apache.druid.segment.column.ColumnType;
|
||||
|
||||
import javax.annotation.Nullable;
|
||||
import java.util.*;
|
||||
|
||||
public class HdrHistogramToPercentilesPostAggregator implements PostAggregator {
|
||||
private final String name;
|
||||
private final String fieldName;
|
||||
private final int percentileTicksPerHalfDistance;
|
||||
|
||||
@JsonCreator
|
||||
public HdrHistogramToPercentilesPostAggregator(
|
||||
@JsonProperty("name") String name,
|
||||
@JsonProperty("fieldName") String fieldName,
|
||||
@JsonProperty("percentileTicksPerHalfDistance") int percentileTicksPerHalfDistance
|
||||
){
|
||||
this.name = name;
|
||||
this.fieldName = fieldName;
|
||||
this.percentileTicksPerHalfDistance = percentileTicksPerHalfDistance;
|
||||
}
|
||||
|
||||
@Override
|
||||
public ColumnType getType(ColumnInspector signature){
|
||||
return ColumnType.STRING;
|
||||
}
|
||||
|
||||
@Override
|
||||
@JsonProperty
|
||||
public String getName() {
|
||||
return name;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public String getFieldName() {
|
||||
return fieldName;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public int getPercentileTicksPerHalfDistance() {
|
||||
return percentileTicksPerHalfDistance;
|
||||
}
|
||||
|
||||
@Nullable
|
||||
@Override
|
||||
public Object compute(Map<String, Object> values) {
|
||||
HistogramSketch histogram = (HistogramSketch) values.get(fieldName);
|
||||
if(histogram == null){
|
||||
return "[]"; //"[]"
|
||||
}
|
||||
List<Percentile> percentiles = histogram.percentileList(percentileTicksPerHalfDistance);
|
||||
return HdrHistogramModule.toJson(percentiles);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Comparator<double[]> getComparator()
|
||||
{
|
||||
throw new IAE("Comparing arrays of quantiles is not supported");
|
||||
}
|
||||
|
||||
@Override
|
||||
public Set<String> getDependentFields()
|
||||
{
|
||||
return Sets.newHashSet(fieldName);
|
||||
}
|
||||
|
||||
@Override
|
||||
public PostAggregator decorate(Map<String, AggregatorFactory> aggregators) {
|
||||
return this;
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] getCacheKey() {
|
||||
CacheKeyBuilder builder = new CacheKeyBuilder(HdrHistogramModule.CACHE_TYPE_ID_OFFSET).appendByte(HdrHistogramModule.QUANTILES_HDRHISTOGRAM_TO_PERCENTILES_CACHE_TYPE_ID)
|
||||
.appendString(fieldName);
|
||||
builder.appendInt(percentileTicksPerHalfDistance);
|
||||
return builder.build();
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(Object o) {
|
||||
if (this == o) {
|
||||
return true;
|
||||
}
|
||||
if (o == null || getClass() != o.getClass()) {
|
||||
return false;
|
||||
}
|
||||
HdrHistogramToPercentilesPostAggregator that = (HdrHistogramToPercentilesPostAggregator) o;
|
||||
|
||||
return percentileTicksPerHalfDistance == that.percentileTicksPerHalfDistance &&
|
||||
name.equals(that.name) &&
|
||||
fieldName.equals(that.fieldName);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
return Objects.hash(name, fieldName, percentileTicksPerHalfDistance);
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return "HdrHistogramToPercentilesPostAggregator{" +
|
||||
"name='" + name + '\'' +
|
||||
", fieldName='" + fieldName + '\'' +
|
||||
", probabilitys=" + percentileTicksPerHalfDistance +
|
||||
'}';
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
@@ -1,125 +1,128 @@
|
||||
package org.apache.druid.query.aggregation.sketch.HdrHistogram;
|
||||
|
||||
import com.fasterxml.jackson.annotation.JsonCreator;
|
||||
import com.fasterxml.jackson.annotation.JsonProperty;
|
||||
import com.google.common.collect.Sets;
|
||||
import org.HdrHistogram.Histogram;
|
||||
import org.HdrHistogram.HistogramSketch;
|
||||
import org.apache.druid.java.util.common.IAE;
|
||||
import org.apache.druid.query.aggregation.AggregatorFactory;
|
||||
import org.apache.druid.query.aggregation.PostAggregator;
|
||||
import org.apache.druid.query.cache.CacheKeyBuilder;
|
||||
import org.apache.druid.segment.ColumnInspector;
|
||||
import org.apache.druid.segment.column.ColumnType;
|
||||
|
||||
import javax.annotation.Nullable;
|
||||
import java.util.Comparator;
|
||||
import java.util.Map;
|
||||
import java.util.Objects;
|
||||
import java.util.Set;
|
||||
|
||||
public class HdrHistogramToQuantilePostAggregator implements PostAggregator {
|
||||
private final String name;
|
||||
private final String fieldName;
|
||||
private final float probability;
|
||||
|
||||
@JsonCreator
|
||||
public HdrHistogramToQuantilePostAggregator(
|
||||
@JsonProperty("name") String name,
|
||||
@JsonProperty("fieldName") String fieldName,
|
||||
@JsonProperty("probability") float probability
|
||||
){
|
||||
this.name = name;
|
||||
this.fieldName = fieldName;
|
||||
this.probability = probability;
|
||||
|
||||
if (probability < 0 || probability > 1) {
|
||||
throw new IAE("Illegal probability[%s], must be strictly between 0 and 1", probability);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public ColumnType getType(ColumnInspector signature){
|
||||
return ColumnType.LONG;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Set<String> getDependentFields() {
|
||||
return Sets.newHashSet(fieldName);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Comparator getComparator() {
|
||||
return new Comparator<Long>(){
|
||||
@Override
|
||||
public int compare(final Long a, final Long b){
|
||||
return Long.compare(a, b);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
@Nullable
|
||||
@Override
|
||||
public Object compute(Map<String, Object> values) {
|
||||
HistogramSketch histogram = (HistogramSketch) values.get(fieldName);
|
||||
return histogram.getValueAtPercentile(probability * 100);
|
||||
}
|
||||
|
||||
@Override
|
||||
@JsonProperty
|
||||
public String getName() {
|
||||
return name;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public String getFieldName() {
|
||||
return fieldName;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public double getProbability() {
|
||||
return probability;
|
||||
}
|
||||
|
||||
@Override
|
||||
public PostAggregator decorate(Map<String, AggregatorFactory> aggregators) {
|
||||
return this;
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(Object o) {
|
||||
if (this == o) {
|
||||
return true;
|
||||
}
|
||||
if (o == null || getClass() != o.getClass()) {
|
||||
return false;
|
||||
}
|
||||
HdrHistogramToQuantilePostAggregator that = (HdrHistogramToQuantilePostAggregator) o;
|
||||
|
||||
return Float.compare(that.probability, probability) == 0 &&
|
||||
name.equals(that.name) &&
|
||||
fieldName.equals(that.fieldName);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
return Objects.hash(name, fieldName, probability);
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return "HdrHistogramToQuantilePostAggregator{" +
|
||||
"name='" + name + '\'' +
|
||||
", fieldName='" + fieldName + '\'' +
|
||||
", probability=" + probability +
|
||||
'}';
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] getCacheKey() {
|
||||
return new CacheKeyBuilder(HdrHistogramModule.CACHE_TYPE_ID_OFFSET).appendByte(HdrHistogramModule.QUANTILES_HDRHISTOGRAM_TO_QUANTILE_CACHE_TYPE_ID)
|
||||
.appendString(fieldName)
|
||||
.appendFloat(probability)
|
||||
.build();
|
||||
}
|
||||
}
|
||||
package org.apache.druid.query.aggregation.sketch.HdrHistogram;
|
||||
|
||||
import com.fasterxml.jackson.annotation.JsonCreator;
|
||||
import com.fasterxml.jackson.annotation.JsonProperty;
|
||||
import com.google.common.collect.Sets;
|
||||
import org.HdrHistogram.Histogram;
|
||||
import org.HdrHistogram.HistogramSketch;
|
||||
import org.apache.druid.java.util.common.IAE;
|
||||
import org.apache.druid.query.aggregation.AggregatorFactory;
|
||||
import org.apache.druid.query.aggregation.PostAggregator;
|
||||
import org.apache.druid.query.cache.CacheKeyBuilder;
|
||||
import org.apache.druid.segment.ColumnInspector;
|
||||
import org.apache.druid.segment.column.ColumnType;
|
||||
|
||||
import javax.annotation.Nullable;
|
||||
import java.util.Comparator;
|
||||
import java.util.Map;
|
||||
import java.util.Objects;
|
||||
import java.util.Set;
|
||||
|
||||
public class HdrHistogramToQuantilePostAggregator implements PostAggregator {
|
||||
private final String name;
|
||||
private final String fieldName;
|
||||
private final float probability;
|
||||
|
||||
@JsonCreator
|
||||
public HdrHistogramToQuantilePostAggregator(
|
||||
@JsonProperty("name") String name,
|
||||
@JsonProperty("fieldName") String fieldName,
|
||||
@JsonProperty("probability") float probability
|
||||
){
|
||||
this.name = name;
|
||||
this.fieldName = fieldName;
|
||||
this.probability = probability;
|
||||
|
||||
if (probability < 0 || probability > 1) {
|
||||
throw new IAE("Illegal probability[%s], must be strictly between 0 and 1", probability);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public ColumnType getType(ColumnInspector signature){
|
||||
return ColumnType.LONG;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Set<String> getDependentFields() {
|
||||
return Sets.newHashSet(fieldName);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Comparator getComparator() {
|
||||
return new Comparator<Long>(){
|
||||
@Override
|
||||
public int compare(final Long a, final Long b){
|
||||
return Long.compare(a, b);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
@Nullable
|
||||
@Override
|
||||
public Object compute(Map<String, Object> values) {
|
||||
HistogramSketch histogram = (HistogramSketch) values.get(fieldName);
|
||||
if(histogram == null){
|
||||
return null;
|
||||
}
|
||||
return histogram.getValueAtPercentile(probability * 100);
|
||||
}
|
||||
|
||||
@Override
|
||||
@JsonProperty
|
||||
public String getName() {
|
||||
return name;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public String getFieldName() {
|
||||
return fieldName;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public double getProbability() {
|
||||
return probability;
|
||||
}
|
||||
|
||||
@Override
|
||||
public PostAggregator decorate(Map<String, AggregatorFactory> aggregators) {
|
||||
return this;
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(Object o) {
|
||||
if (this == o) {
|
||||
return true;
|
||||
}
|
||||
if (o == null || getClass() != o.getClass()) {
|
||||
return false;
|
||||
}
|
||||
HdrHistogramToQuantilePostAggregator that = (HdrHistogramToQuantilePostAggregator) o;
|
||||
|
||||
return Float.compare(that.probability, probability) == 0 &&
|
||||
name.equals(that.name) &&
|
||||
fieldName.equals(that.fieldName);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
return Objects.hash(name, fieldName, probability);
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return "HdrHistogramToQuantilePostAggregator{" +
|
||||
"name='" + name + '\'' +
|
||||
", fieldName='" + fieldName + '\'' +
|
||||
", probability=" + probability +
|
||||
'}';
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] getCacheKey() {
|
||||
return new CacheKeyBuilder(HdrHistogramModule.CACHE_TYPE_ID_OFFSET).appendByte(HdrHistogramModule.QUANTILES_HDRHISTOGRAM_TO_QUANTILE_CACHE_TYPE_ID)
|
||||
.appendString(fieldName)
|
||||
.appendFloat(probability)
|
||||
.build();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,121 +1,125 @@
|
||||
package org.apache.druid.query.aggregation.sketch.HdrHistogram;
|
||||
|
||||
import com.fasterxml.jackson.annotation.JsonCreator;
|
||||
import com.fasterxml.jackson.annotation.JsonProperty;
|
||||
import com.google.common.collect.Sets;
|
||||
import org.HdrHistogram.Histogram;
|
||||
import org.HdrHistogram.HistogramSketch;
|
||||
import org.apache.druid.java.util.common.IAE;
|
||||
import org.apache.druid.query.aggregation.AggregatorFactory;
|
||||
import org.apache.druid.query.aggregation.PostAggregator;
|
||||
import org.apache.druid.query.cache.CacheKeyBuilder;
|
||||
import org.apache.druid.segment.ColumnInspector;
|
||||
import org.apache.druid.segment.column.ColumnType;
|
||||
|
||||
import javax.annotation.Nullable;
|
||||
import java.util.*;
|
||||
|
||||
public class HdrHistogramToQuantilesPostAggregator implements PostAggregator {
|
||||
private final String name;
|
||||
private final String fieldName;
|
||||
private final float[] probabilitys;
|
||||
|
||||
@JsonCreator
|
||||
public HdrHistogramToQuantilesPostAggregator(
|
||||
@JsonProperty("name") String name,
|
||||
@JsonProperty("fieldName") String fieldName,
|
||||
@JsonProperty("probabilitys") float[] probabilitys
|
||||
){
|
||||
this.name = name;
|
||||
this.fieldName = fieldName;
|
||||
this.probabilitys = probabilitys;
|
||||
}
|
||||
|
||||
@Override
|
||||
public ColumnType getType(ColumnInspector signature){
|
||||
return ColumnType.LONG_ARRAY;
|
||||
}
|
||||
|
||||
@Override
|
||||
@JsonProperty
|
||||
public String getName() {
|
||||
return name;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public String getFieldName() {
|
||||
return fieldName;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public float[] getProbabilitys() {
|
||||
return probabilitys;
|
||||
}
|
||||
|
||||
@Nullable
|
||||
@Override
|
||||
public Object compute(Map<String, Object> values) {
|
||||
HistogramSketch histogram = (HistogramSketch) values.get(fieldName);
|
||||
final long[] counts = new long[probabilitys.length];
|
||||
for (int i = 0; i < probabilitys.length; i++) {
|
||||
counts[i] = histogram.getValueAtPercentile(probabilitys[i] * 100);
|
||||
}
|
||||
return counts;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Comparator<double[]> getComparator()
|
||||
{
|
||||
throw new IAE("Comparing arrays of quantiles is not supported");
|
||||
}
|
||||
|
||||
@Override
|
||||
public Set<String> getDependentFields()
|
||||
{
|
||||
return Sets.newHashSet(fieldName);
|
||||
}
|
||||
|
||||
@Override
|
||||
public PostAggregator decorate(Map<String, AggregatorFactory> aggregators) {
|
||||
return this;
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] getCacheKey() {
|
||||
CacheKeyBuilder builder = new CacheKeyBuilder(HdrHistogramModule.CACHE_TYPE_ID_OFFSET).appendByte(HdrHistogramModule.QUANTILES_HDRHISTOGRAM_TO_QUANTILES_CACHE_TYPE_ID)
|
||||
.appendString(fieldName);
|
||||
for (float probability : probabilitys) {
|
||||
builder.appendFloat(probability);
|
||||
}
|
||||
return builder.build();
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(Object o) {
|
||||
if (this == o) {
|
||||
return true;
|
||||
}
|
||||
if (o == null || getClass() != o.getClass()) {
|
||||
return false;
|
||||
}
|
||||
HdrHistogramToQuantilesPostAggregator that = (HdrHistogramToQuantilesPostAggregator) o;
|
||||
|
||||
return Arrays.equals(probabilitys, that.probabilitys) &&
|
||||
name.equals(that.name) &&
|
||||
fieldName.equals(that.fieldName);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
return Objects.hash(name, fieldName, Arrays.hashCode(probabilitys));
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return "HdrHistogramToQuantilesPostAggregator{" +
|
||||
"name='" + name + '\'' +
|
||||
", fieldName='" + fieldName + '\'' +
|
||||
", probabilitys=" + Arrays.toString(probabilitys) +
|
||||
'}';
|
||||
}
|
||||
}
|
||||
package org.apache.druid.query.aggregation.sketch.HdrHistogram;
|
||||
|
||||
import com.fasterxml.jackson.annotation.JsonCreator;
|
||||
import com.fasterxml.jackson.annotation.JsonProperty;
|
||||
import com.google.common.collect.Sets;
|
||||
import org.HdrHistogram.Histogram;
|
||||
import org.HdrHistogram.HistogramSketch;
|
||||
import org.apache.druid.java.util.common.IAE;
|
||||
import org.apache.druid.query.aggregation.AggregatorFactory;
|
||||
import org.apache.druid.query.aggregation.PostAggregator;
|
||||
import org.apache.druid.query.cache.CacheKeyBuilder;
|
||||
import org.apache.druid.segment.ColumnInspector;
|
||||
import org.apache.druid.segment.column.ColumnType;
|
||||
|
||||
import javax.annotation.Nullable;
|
||||
import java.util.*;
|
||||
|
||||
public class HdrHistogramToQuantilesPostAggregator implements PostAggregator {
|
||||
private final String name;
|
||||
private final String fieldName;
|
||||
private final float[] probabilitys;
|
||||
|
||||
@JsonCreator
|
||||
public HdrHistogramToQuantilesPostAggregator(
|
||||
@JsonProperty("name") String name,
|
||||
@JsonProperty("fieldName") String fieldName,
|
||||
@JsonProperty("probabilitys") float[] probabilitys
|
||||
){
|
||||
this.name = name;
|
||||
this.fieldName = fieldName;
|
||||
this.probabilitys = probabilitys;
|
||||
}
|
||||
|
||||
@Override
|
||||
public ColumnType getType(ColumnInspector signature){
|
||||
return ColumnType.LONG_ARRAY;
|
||||
}
|
||||
|
||||
@Override
|
||||
@JsonProperty
|
||||
public String getName() {
|
||||
return name;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public String getFieldName() {
|
||||
return fieldName;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public float[] getProbabilitys() {
|
||||
return probabilitys;
|
||||
}
|
||||
|
||||
@Nullable
|
||||
@Override
|
||||
public Object compute(Map<String, Object> values) {
|
||||
HistogramSketch histogram = (HistogramSketch) values.get(fieldName);
|
||||
if(histogram == null){
|
||||
//return null;
|
||||
return new Long[probabilitys.length];
|
||||
}
|
||||
final Long[] counts = new Long[probabilitys.length];
|
||||
for (int i = 0; i < probabilitys.length; i++) {
|
||||
counts[i] = histogram.getValueAtPercentile(probabilitys[i] * 100);
|
||||
}
|
||||
return counts;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Comparator<double[]> getComparator()
|
||||
{
|
||||
throw new IAE("Comparing arrays of quantiles is not supported");
|
||||
}
|
||||
|
||||
@Override
|
||||
public Set<String> getDependentFields()
|
||||
{
|
||||
return Sets.newHashSet(fieldName);
|
||||
}
|
||||
|
||||
@Override
|
||||
public PostAggregator decorate(Map<String, AggregatorFactory> aggregators) {
|
||||
return this;
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] getCacheKey() {
|
||||
CacheKeyBuilder builder = new CacheKeyBuilder(HdrHistogramModule.CACHE_TYPE_ID_OFFSET).appendByte(HdrHistogramModule.QUANTILES_HDRHISTOGRAM_TO_QUANTILES_CACHE_TYPE_ID)
|
||||
.appendString(fieldName);
|
||||
for (float probability : probabilitys) {
|
||||
builder.appendFloat(probability);
|
||||
}
|
||||
return builder.build();
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(Object o) {
|
||||
if (this == o) {
|
||||
return true;
|
||||
}
|
||||
if (o == null || getClass() != o.getClass()) {
|
||||
return false;
|
||||
}
|
||||
HdrHistogramToQuantilesPostAggregator that = (HdrHistogramToQuantilesPostAggregator) o;
|
||||
|
||||
return Arrays.equals(probabilitys, that.probabilitys) &&
|
||||
name.equals(that.name) &&
|
||||
fieldName.equals(that.fieldName);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
return Objects.hash(name, fieldName, Arrays.hashCode(probabilitys));
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return "HdrHistogramToQuantilesPostAggregator{" +
|
||||
"name='" + name + '\'' +
|
||||
", fieldName='" + fieldName + '\'' +
|
||||
", probabilitys=" + Arrays.toString(probabilitys) +
|
||||
'}';
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,281 +1,287 @@
|
||||
package org.apache.druid.query.aggregation.sketch.hlld;
|
||||
|
||||
import com.fasterxml.jackson.annotation.JsonProperty;
|
||||
import com.zdjz.galaxy.sketch.hlld.Hll;
|
||||
import com.zdjz.galaxy.sketch.hlld.HllUnion;
|
||||
import org.apache.druid.java.util.common.IAE;
|
||||
import org.apache.druid.java.util.common.logger.Logger;
|
||||
import org.apache.druid.query.aggregation.*;
|
||||
import org.apache.druid.query.cache.CacheKeyBuilder;
|
||||
import org.apache.druid.segment.ColumnSelectorFactory;
|
||||
import org.apache.druid.segment.ColumnValueSelector;
|
||||
import org.apache.druid.segment.column.ColumnType;
|
||||
|
||||
import javax.annotation.Nullable;
|
||||
import java.util.Collections;
|
||||
import java.util.Comparator;
|
||||
import java.util.List;
|
||||
import java.util.Objects;
|
||||
|
||||
public class HllAggregatorFactory extends AggregatorFactory {
|
||||
private static final Logger LOG = new Logger(HllAggregatorFactory.class);
|
||||
public static final boolean DEFAULT_ROUND = false;
|
||||
public static final int DEFAULT_PRECISION = 12;
|
||||
|
||||
static final Comparator<Hll> COMPARATOR = Comparator.nullsFirst(Comparator.comparingDouble(Hll::size));
|
||||
|
||||
protected final String name;
|
||||
protected final String fieldName;
|
||||
protected final int precision;
|
||||
protected final boolean round;
|
||||
|
||||
public HllAggregatorFactory(
|
||||
@JsonProperty("name") final String name,
|
||||
@JsonProperty("fieldName") final String fieldName,
|
||||
@JsonProperty("precision") @Nullable final Integer precision,
|
||||
@JsonProperty("round") @Nullable final Boolean round
|
||||
) {
|
||||
if (name == null) {
|
||||
throw new IAE("Must have a valid, non-null aggregator name");
|
||||
}
|
||||
if (fieldName == null) {
|
||||
throw new IAE("Parameter fieldName must be specified");
|
||||
}
|
||||
this.name = name;
|
||||
this.fieldName = fieldName;
|
||||
this.precision = precision == null ? DEFAULT_PRECISION : precision;
|
||||
this.round = round == null ? DEFAULT_ROUND : round;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Aggregator factorize(ColumnSelectorFactory columnSelectorFactory) {
|
||||
final ColumnValueSelector<Object> selector = columnSelectorFactory.makeColumnValueSelector(fieldName);
|
||||
return new HllAggregator(selector, precision);
|
||||
}
|
||||
|
||||
@Override
|
||||
public BufferAggregator factorizeBuffered(ColumnSelectorFactory columnSelectorFactory) {
|
||||
final ColumnValueSelector<Object> selector = columnSelectorFactory.makeColumnValueSelector(fieldName);
|
||||
return new HllBufferAggregator(
|
||||
selector,
|
||||
precision
|
||||
);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Comparator getComparator() {
|
||||
return COMPARATOR;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Object combine(Object lhs, Object rhs) {
|
||||
if(lhs == null){
|
||||
return rhs;
|
||||
}else if(rhs == null){
|
||||
return lhs;
|
||||
}else{
|
||||
final HllUnion union = new HllUnion(precision);
|
||||
union.update((Hll) lhs);
|
||||
union.update((Hll) rhs);
|
||||
Hll result = union.getResult();
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public AggregateCombiner makeAggregateCombiner() {
|
||||
return new ObjectAggregateCombiner<Hll>() {
|
||||
private HllUnion union = null;
|
||||
|
||||
@Override
|
||||
public void reset(ColumnValueSelector selector) {
|
||||
//LOG.error("HllAggregateCombiner reset:" + "-" + Thread.currentThread().getId() + "-" + this);
|
||||
//union.reset();
|
||||
union = null;
|
||||
fold(selector);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void fold(ColumnValueSelector selector) {
|
||||
//LOG.error("HllAggregateCombiner fold:" + "-" + Thread.currentThread().getId() + "-" + this);
|
||||
final Hll hll = (Hll) selector.getObject();
|
||||
if(hll != null){
|
||||
if(union == null){
|
||||
union = new HllUnion(precision);
|
||||
}
|
||||
union.update(hll);
|
||||
}else{
|
||||
//LOG.error("HllAggregateCombiner fold_null:" + "-" + Thread.currentThread().getId() + "-" + this);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public Class<Hll> classOfObject() {
|
||||
return Hll.class;
|
||||
}
|
||||
|
||||
@Nullable
|
||||
@Override
|
||||
public Hll getObject() {
|
||||
//LOG.error("HllAggregateCombiner get:" + "-" + Thread.currentThread().getId() + "-" + this);
|
||||
if(union == null){
|
||||
return null;
|
||||
}else{
|
||||
Hll result = union.getResult();
|
||||
/*if(result.size() == 0){
|
||||
return null;
|
||||
}*/
|
||||
return result;
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
@Override
|
||||
public AggregatorFactory getCombiningFactory() {
|
||||
// 千万不能写错,好大一个坑
|
||||
return new HllMergeAggregatorFactory(name, name, precision, round);
|
||||
}
|
||||
|
||||
@Override
|
||||
public AggregatorFactory getMergingFactory(AggregatorFactory other) throws AggregatorFactoryNotMergeableException {
|
||||
if (other.getName().equals(this.getName()) && other instanceof HllAggregatorFactory) {
|
||||
HllAggregatorFactory castedOther = (HllAggregatorFactory) other;
|
||||
|
||||
return new HllMergeAggregatorFactory(name, name,
|
||||
Math.max(precision, castedOther.precision),
|
||||
round || castedOther.round
|
||||
);
|
||||
}
|
||||
|
||||
throw new AggregatorFactoryNotMergeableException(this, other);
|
||||
}
|
||||
|
||||
@Override
|
||||
public List<AggregatorFactory> getRequiredColumns() {
|
||||
return Collections.singletonList(
|
||||
new HllAggregatorFactory(fieldName, fieldName, precision, round)
|
||||
);
|
||||
}
|
||||
|
||||
@Override
|
||||
public AggregatorFactory withName(String newName) {
|
||||
return new HllAggregatorFactory(newName, fieldName, precision, round);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Object deserialize(Object object) {
|
||||
if (object == null) {
|
||||
return null;
|
||||
}
|
||||
return HllUtils.deserializeHll(object);
|
||||
}
|
||||
|
||||
@Override
|
||||
public ColumnType getResultType() {
|
||||
//return round ? ColumnType.LONG : ColumnType.DOUBLE;
|
||||
return getIntermediateType();
|
||||
}
|
||||
|
||||
@Nullable
|
||||
@Override
|
||||
public Object finalizeComputation(@Nullable Object object) {
|
||||
if (object == null) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return object;
|
||||
|
||||
/*final Hll hll = (Hll) object;
|
||||
final double estimate = hll.size();
|
||||
|
||||
if (round) {
|
||||
return Math.round(estimate);
|
||||
} else {
|
||||
return estimate;
|
||||
}*/
|
||||
}
|
||||
|
||||
@Override
|
||||
@JsonProperty
|
||||
public String getName() {
|
||||
return name;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public String getFieldName() {
|
||||
return fieldName;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public int getPrecision() {
|
||||
return precision;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public boolean isRound() {
|
||||
return round;
|
||||
}
|
||||
|
||||
/*
|
||||
没这个方法了, 新版本需要实现getIntermediateType方法
|
||||
@Override
|
||||
public String getTypeName() {
|
||||
return HllModule.HLLD_BUILD_TYPE_NAME;
|
||||
}*/
|
||||
|
||||
@Override
|
||||
public ColumnType getIntermediateType() {
|
||||
return HllModule.BUILD_TYPE;
|
||||
}
|
||||
|
||||
@Override
|
||||
public List<String> requiredFields() {
|
||||
return Collections.singletonList(fieldName);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int getMaxIntermediateSize() {
|
||||
return Hll.getUpdatableSerializationBytes(precision);
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] getCacheKey() {
|
||||
return new CacheKeyBuilder(HllModule.CACHE_TYPE_ID_OFFSET).appendByte(HllModule.HLLD_BUILD_CACHE_TYPE_ID)
|
||||
.appendString(name).appendString(fieldName)
|
||||
.appendInt(precision).appendBoolean(round)
|
||||
.build();
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(final Object o){
|
||||
if (this == o) {
|
||||
return true;
|
||||
}
|
||||
if (o == null || !getClass().equals(o.getClass())) {
|
||||
return false;
|
||||
}
|
||||
|
||||
HllAggregatorFactory that = (HllAggregatorFactory) o;
|
||||
return name.equals(that.name) && fieldName.equals(that.fieldName) &&
|
||||
precision == that.precision &&
|
||||
round == that.round
|
||||
;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode(){
|
||||
return Objects.hash(name, fieldName, precision, round);
|
||||
}
|
||||
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return getClass().getSimpleName() + "{" +
|
||||
"name='" + name + '\'' +
|
||||
", fieldName='" + fieldName + '\'' +
|
||||
", precision=" + precision +
|
||||
", round=" + round +
|
||||
'}';
|
||||
}
|
||||
}
|
||||
package org.apache.druid.query.aggregation.sketch.hlld;
|
||||
|
||||
import com.fasterxml.jackson.annotation.JsonProperty;
|
||||
import com.zdjz.galaxy.sketch.hlld.Hll;
|
||||
import com.zdjz.galaxy.sketch.hlld.HllUnion;
|
||||
import org.apache.druid.java.util.common.IAE;
|
||||
import org.apache.druid.java.util.common.logger.Logger;
|
||||
import org.apache.druid.query.aggregation.*;
|
||||
import org.apache.druid.query.cache.CacheKeyBuilder;
|
||||
import org.apache.druid.segment.ColumnSelectorFactory;
|
||||
import org.apache.druid.segment.ColumnValueSelector;
|
||||
import org.apache.druid.segment.column.ColumnType;
|
||||
|
||||
import javax.annotation.Nullable;
|
||||
import java.util.Collections;
|
||||
import java.util.Comparator;
|
||||
import java.util.List;
|
||||
import java.util.Objects;
|
||||
|
||||
public class HllAggregatorFactory extends AggregatorFactory {
|
||||
private static final Logger LOG = new Logger(HllAggregatorFactory.class);
|
||||
public static final boolean DEFAULT_ROUND = false;
|
||||
public static final int DEFAULT_PRECISION = 12;
|
||||
|
||||
static final Comparator<Hll> COMPARATOR = Comparator.nullsFirst(Comparator.comparingDouble(Hll::size));
|
||||
|
||||
protected final String name;
|
||||
protected final String fieldName;
|
||||
protected final int precision;
|
||||
protected final boolean round;
|
||||
protected final int updatableSerializationBytes;
|
||||
|
||||
public HllAggregatorFactory(
|
||||
@JsonProperty("name") final String name,
|
||||
@JsonProperty("fieldName") final String fieldName,
|
||||
@JsonProperty("precision") @Nullable final Integer precision,
|
||||
@JsonProperty("round") @Nullable final Boolean round
|
||||
) {
|
||||
if (name == null) {
|
||||
throw new IAE("Must have a valid, non-null aggregator name");
|
||||
}
|
||||
if (fieldName == null) {
|
||||
throw new IAE("Parameter fieldName must be specified");
|
||||
}
|
||||
this.name = name;
|
||||
this.fieldName = fieldName;
|
||||
this.precision = precision == null ? DEFAULT_PRECISION : precision;
|
||||
this.round = round == null ? DEFAULT_ROUND : round;
|
||||
this.updatableSerializationBytes = getUpdatableSerializationBytes();
|
||||
}
|
||||
|
||||
@Override
|
||||
public Aggregator factorize(ColumnSelectorFactory columnSelectorFactory) {
|
||||
final ColumnValueSelector<Object> selector = columnSelectorFactory.makeColumnValueSelector(fieldName);
|
||||
return new HllAggregator(selector, precision);
|
||||
}
|
||||
|
||||
@Override
|
||||
public BufferAggregator factorizeBuffered(ColumnSelectorFactory columnSelectorFactory) {
|
||||
final ColumnValueSelector<Object> selector = columnSelectorFactory.makeColumnValueSelector(fieldName);
|
||||
return new HllBufferAggregator(
|
||||
selector,
|
||||
precision
|
||||
);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Comparator getComparator() {
|
||||
return COMPARATOR;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Object combine(Object lhs, Object rhs) {
|
||||
if(lhs == null){
|
||||
return rhs;
|
||||
}else if(rhs == null){
|
||||
return lhs;
|
||||
}else{
|
||||
final HllUnion union = new HllUnion(precision);
|
||||
union.update((Hll) lhs);
|
||||
union.update((Hll) rhs);
|
||||
Hll result = union.getResult();
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public AggregateCombiner makeAggregateCombiner() {
|
||||
return new ObjectAggregateCombiner<Hll>() {
|
||||
private HllUnion union = null;
|
||||
|
||||
@Override
|
||||
public void reset(ColumnValueSelector selector) {
|
||||
//LOG.error("HllAggregateCombiner reset:" + "-" + Thread.currentThread().getId() + "-" + this);
|
||||
//union.reset();
|
||||
union = null;
|
||||
fold(selector);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void fold(ColumnValueSelector selector) {
|
||||
//LOG.error("HllAggregateCombiner fold:" + "-" + Thread.currentThread().getId() + "-" + this);
|
||||
final Hll hll = (Hll) selector.getObject();
|
||||
if(hll != null){
|
||||
if(union == null){
|
||||
union = new HllUnion(precision);
|
||||
}
|
||||
union.update(hll);
|
||||
}else{
|
||||
//LOG.error("HllAggregateCombiner fold_null:" + "-" + Thread.currentThread().getId() + "-" + this);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public Class<Hll> classOfObject() {
|
||||
return Hll.class;
|
||||
}
|
||||
|
||||
@Nullable
|
||||
@Override
|
||||
public Hll getObject() {
|
||||
//LOG.error("HllAggregateCombiner get:" + "-" + Thread.currentThread().getId() + "-" + this);
|
||||
if(union == null){
|
||||
return null;
|
||||
}else{
|
||||
Hll result = union.getResult();
|
||||
/*if(result.size() == 0){
|
||||
return null;
|
||||
}*/
|
||||
return result;
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
@Override
|
||||
public AggregatorFactory getCombiningFactory() {
|
||||
// 千万不能写错,好大一个坑
|
||||
return new HllMergeAggregatorFactory(name, name, precision, round);
|
||||
}
|
||||
|
||||
@Override
|
||||
public AggregatorFactory getMergingFactory(AggregatorFactory other) throws AggregatorFactoryNotMergeableException {
|
||||
if (other.getName().equals(this.getName()) && other instanceof HllAggregatorFactory) {
|
||||
HllAggregatorFactory castedOther = (HllAggregatorFactory) other;
|
||||
|
||||
return new HllMergeAggregatorFactory(name, name,
|
||||
Math.max(precision, castedOther.precision),
|
||||
round || castedOther.round
|
||||
);
|
||||
}
|
||||
|
||||
throw new AggregatorFactoryNotMergeableException(this, other);
|
||||
}
|
||||
|
||||
@Override
|
||||
public List<AggregatorFactory> getRequiredColumns() {
|
||||
return Collections.singletonList(
|
||||
new HllAggregatorFactory(fieldName, fieldName, precision, round)
|
||||
);
|
||||
}
|
||||
|
||||
@Override
|
||||
public AggregatorFactory withName(String newName) {
|
||||
return new HllAggregatorFactory(newName, fieldName, precision, round);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Object deserialize(Object object) {
|
||||
if (object == null) {
|
||||
return null;
|
||||
}
|
||||
return HllUtils.deserializeHll(object);
|
||||
}
|
||||
|
||||
@Override
|
||||
public ColumnType getResultType() {
|
||||
//return round ? ColumnType.LONG : ColumnType.DOUBLE;
|
||||
return getIntermediateType();
|
||||
}
|
||||
|
||||
@Nullable
|
||||
@Override
|
||||
public Object finalizeComputation(@Nullable Object object) {
|
||||
if (object == null) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return object;
|
||||
|
||||
/*final Hll hll = (Hll) object;
|
||||
final double estimate = hll.size();
|
||||
|
||||
if (round) {
|
||||
return Math.round(estimate);
|
||||
} else {
|
||||
return estimate;
|
||||
}*/
|
||||
}
|
||||
|
||||
@Override
|
||||
@JsonProperty
|
||||
public String getName() {
|
||||
return name;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public String getFieldName() {
|
||||
return fieldName;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public int getPrecision() {
|
||||
return precision;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public boolean isRound() {
|
||||
return round;
|
||||
}
|
||||
|
||||
/*
|
||||
没这个方法了, 新版本需要实现getIntermediateType方法
|
||||
@Override
|
||||
public String getTypeName() {
|
||||
return HllModule.HLLD_BUILD_TYPE_NAME;
|
||||
}*/
|
||||
|
||||
@Override
|
||||
public ColumnType getIntermediateType() {
|
||||
return HllModule.BUILD_TYPE;
|
||||
}
|
||||
|
||||
@Override
|
||||
public List<String> requiredFields() {
|
||||
return Collections.singletonList(fieldName);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int getMaxIntermediateSize() {
|
||||
return updatableSerializationBytes == 0? getUpdatableSerializationBytes():updatableSerializationBytes;
|
||||
}
|
||||
|
||||
protected int getUpdatableSerializationBytes(){
|
||||
return Hll.getUpdatableSerializationBytes(precision);
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] getCacheKey() {
|
||||
return new CacheKeyBuilder(HllModule.CACHE_TYPE_ID_OFFSET).appendByte(HllModule.HLLD_BUILD_CACHE_TYPE_ID)
|
||||
.appendString(name).appendString(fieldName)
|
||||
.appendInt(precision).appendBoolean(round)
|
||||
.build();
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(final Object o){
|
||||
if (this == o) {
|
||||
return true;
|
||||
}
|
||||
if (o == null || !getClass().equals(o.getClass())) {
|
||||
return false;
|
||||
}
|
||||
|
||||
HllAggregatorFactory that = (HllAggregatorFactory) o;
|
||||
return name.equals(that.name) && fieldName.equals(that.fieldName) &&
|
||||
precision == that.precision &&
|
||||
round == that.round
|
||||
;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode(){
|
||||
return Objects.hash(name, fieldName, precision, round);
|
||||
}
|
||||
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return getClass().getSimpleName() + "{" +
|
||||
"name='" + name + '\'' +
|
||||
", fieldName='" + fieldName + '\'' +
|
||||
", precision=" + precision +
|
||||
", round=" + round +
|
||||
'}';
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,73 +1,73 @@
|
||||
package org.apache.druid.query.aggregation.sketch.hlld;
|
||||
|
||||
import com.fasterxml.jackson.annotation.JsonProperty;
|
||||
import com.zdjz.galaxy.sketch.hlld.Hll;
|
||||
import com.zdjz.galaxy.sketch.hlld.HllUnion;
|
||||
import org.apache.druid.query.aggregation.Aggregator;
|
||||
import org.apache.druid.query.aggregation.AggregatorFactory;
|
||||
import org.apache.druid.query.aggregation.BufferAggregator;
|
||||
import org.apache.druid.query.cache.CacheKeyBuilder;
|
||||
import org.apache.druid.segment.ColumnSelectorFactory;
|
||||
import org.apache.druid.segment.ColumnValueSelector;
|
||||
import org.apache.druid.segment.column.ColumnType;
|
||||
|
||||
import javax.annotation.Nullable;
|
||||
|
||||
public class HllMergeAggregatorFactory extends HllAggregatorFactory{
|
||||
public HllMergeAggregatorFactory(
|
||||
@JsonProperty("name") final String name,
|
||||
@JsonProperty("fieldName") final String fieldName,
|
||||
@JsonProperty("precision") @Nullable final Integer precision,
|
||||
@JsonProperty("round") @Nullable final Boolean round
|
||||
) {
|
||||
super(name, fieldName, precision, round);
|
||||
}
|
||||
|
||||
/*
|
||||
没这个方法了, 新版本需要实现getIntermediateType方法
|
||||
@Override
|
||||
public String getTypeName(){
|
||||
return HllModule.HLLD_TYPE_NAME;
|
||||
}*/
|
||||
|
||||
@Override
|
||||
public ColumnType getIntermediateType() {
|
||||
return HllModule.TYPE;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Aggregator factorize(ColumnSelectorFactory metricFactory) {
|
||||
final ColumnValueSelector<Hll> selector = metricFactory.makeColumnValueSelector(getFieldName());
|
||||
return new HllMergeAggregator(
|
||||
selector,
|
||||
precision
|
||||
);
|
||||
}
|
||||
|
||||
@Override
|
||||
public BufferAggregator factorizeBuffered(ColumnSelectorFactory columnSelectorFactory) {
|
||||
final ColumnValueSelector<Hll> selector = columnSelectorFactory.makeColumnValueSelector(getFieldName());
|
||||
return new HllMergeBufferAggregator(
|
||||
selector,
|
||||
precision
|
||||
);
|
||||
}
|
||||
|
||||
@Override
|
||||
public AggregatorFactory withName(String newName) {
|
||||
return new HllMergeAggregatorFactory(newName, fieldName, precision, round);
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] getCacheKey() {
|
||||
return new CacheKeyBuilder(HllModule.CACHE_TYPE_ID_OFFSET).appendByte(HllModule.HLLD_MERGE_CACHE_TYPE_ID)
|
||||
.appendString(name).appendString(fieldName)
|
||||
.appendInt(precision).appendBoolean(round)
|
||||
.build();
|
||||
}
|
||||
|
||||
@Override
|
||||
public int getMaxIntermediateSize() {
|
||||
return HllUnion.getUpdatableSerializationBytes(precision);
|
||||
}
|
||||
}
|
||||
package org.apache.druid.query.aggregation.sketch.hlld;
|
||||
|
||||
import com.fasterxml.jackson.annotation.JsonProperty;
|
||||
import com.zdjz.galaxy.sketch.hlld.Hll;
|
||||
import com.zdjz.galaxy.sketch.hlld.HllUnion;
|
||||
import org.apache.druid.query.aggregation.Aggregator;
|
||||
import org.apache.druid.query.aggregation.AggregatorFactory;
|
||||
import org.apache.druid.query.aggregation.BufferAggregator;
|
||||
import org.apache.druid.query.cache.CacheKeyBuilder;
|
||||
import org.apache.druid.segment.ColumnSelectorFactory;
|
||||
import org.apache.druid.segment.ColumnValueSelector;
|
||||
import org.apache.druid.segment.column.ColumnType;
|
||||
|
||||
import javax.annotation.Nullable;
|
||||
|
||||
public class HllMergeAggregatorFactory extends HllAggregatorFactory{
|
||||
public HllMergeAggregatorFactory(
|
||||
@JsonProperty("name") final String name,
|
||||
@JsonProperty("fieldName") final String fieldName,
|
||||
@JsonProperty("precision") @Nullable final Integer precision,
|
||||
@JsonProperty("round") @Nullable final Boolean round
|
||||
) {
|
||||
super(name, fieldName, precision, round);
|
||||
}
|
||||
|
||||
/*
|
||||
没这个方法了, 新版本需要实现getIntermediateType方法
|
||||
@Override
|
||||
public String getTypeName(){
|
||||
return HllModule.HLLD_TYPE_NAME;
|
||||
}*/
|
||||
|
||||
@Override
|
||||
public ColumnType getIntermediateType() {
|
||||
return HllModule.TYPE;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Aggregator factorize(ColumnSelectorFactory metricFactory) {
|
||||
final ColumnValueSelector<Hll> selector = metricFactory.makeColumnValueSelector(getFieldName());
|
||||
return new HllMergeAggregator(
|
||||
selector,
|
||||
precision
|
||||
);
|
||||
}
|
||||
|
||||
@Override
|
||||
public BufferAggregator factorizeBuffered(ColumnSelectorFactory columnSelectorFactory) {
|
||||
final ColumnValueSelector<Hll> selector = columnSelectorFactory.makeColumnValueSelector(getFieldName());
|
||||
return new HllMergeBufferAggregator(
|
||||
selector,
|
||||
precision
|
||||
);
|
||||
}
|
||||
|
||||
@Override
|
||||
public AggregatorFactory withName(String newName) {
|
||||
return new HllMergeAggregatorFactory(newName, fieldName, precision, round);
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] getCacheKey() {
|
||||
return new CacheKeyBuilder(HllModule.CACHE_TYPE_ID_OFFSET).appendByte(HllModule.HLLD_MERGE_CACHE_TYPE_ID)
|
||||
.appendString(name).appendString(fieldName)
|
||||
.appendInt(precision).appendBoolean(round)
|
||||
.build();
|
||||
}
|
||||
|
||||
@Override
|
||||
protected int getUpdatableSerializationBytes() {
|
||||
return HllUnion.getUpdatableSerializationBytes(precision);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,111 +1,114 @@
|
||||
package org.apache.druid.query.aggregation.sketch.hlld;
|
||||
|
||||
import com.fasterxml.jackson.annotation.JsonCreator;
|
||||
import com.fasterxml.jackson.annotation.JsonProperty;
|
||||
import com.zdjz.galaxy.sketch.hlld.Hll;
|
||||
import org.apache.druid.query.aggregation.AggregatorFactory;
|
||||
import org.apache.druid.query.aggregation.PostAggregator;
|
||||
import org.apache.druid.query.aggregation.post.ArithmeticPostAggregator;
|
||||
import org.apache.druid.query.cache.CacheKeyBuilder;
|
||||
import org.apache.druid.segment.ColumnInspector;
|
||||
import org.apache.druid.segment.column.ColumnType;
|
||||
|
||||
import java.util.Comparator;
|
||||
import java.util.Map;
|
||||
import java.util.Objects;
|
||||
import java.util.Set;
|
||||
|
||||
public class HllToEstimatePostAggregator implements PostAggregator {
|
||||
private final String name;
|
||||
private final PostAggregator field;
|
||||
private final boolean round;
|
||||
|
||||
@JsonCreator
|
||||
public HllToEstimatePostAggregator(
|
||||
@JsonProperty("name") final String name,
|
||||
@JsonProperty("field") final PostAggregator field,
|
||||
@JsonProperty("round") boolean round
|
||||
) {
|
||||
this.name = name;
|
||||
this.field = field;
|
||||
this.round = round;
|
||||
}
|
||||
|
||||
// 新版本需要实现的方法
|
||||
@Override
|
||||
public ColumnType getType(ColumnInspector signature) {
|
||||
return round ? ColumnType.LONG : ColumnType.DOUBLE;
|
||||
}
|
||||
|
||||
@Override
|
||||
@JsonProperty
|
||||
public String getName() {
|
||||
return name;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public PostAggregator getField() {
|
||||
return field;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public boolean isRound() {
|
||||
return round;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Set<String> getDependentFields() {
|
||||
return field.getDependentFields();
|
||||
}
|
||||
|
||||
@Override
|
||||
public Comparator<Double> getComparator() {
|
||||
return ArithmeticPostAggregator.DEFAULT_COMPARATOR;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Object compute(final Map<String, Object> combinedAggregators) {
|
||||
final Hll sketch = (Hll) field.compute(combinedAggregators);
|
||||
return round ? Math.round(sketch.size()) : sketch.size();
|
||||
}
|
||||
|
||||
@Override
|
||||
public PostAggregator decorate(final Map<String, AggregatorFactory> aggregators) {
|
||||
return this;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return "HllToEstimatePostAggregator{" +
|
||||
"name='" + name + '\'' +
|
||||
", field=" + field +
|
||||
", round=" + round +
|
||||
'}';
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(final Object o) {
|
||||
if (this == o) {
|
||||
return true;
|
||||
}
|
||||
if (!(o instanceof HllToEstimatePostAggregator)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
final HllToEstimatePostAggregator that = (HllToEstimatePostAggregator) o;
|
||||
return name.equals(that.name) && field.equals(that.field) && round == that.round;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
return Objects.hash(name, field, round);
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] getCacheKey() {
|
||||
CacheKeyBuilder builder = new CacheKeyBuilder(HllModule.CACHE_TYPE_ID_OFFSET).appendByte(HllModule.HLLD_TO_ESTIMATE_CACHE_TYPE_ID)
|
||||
.appendCacheable(field).appendBoolean(round);
|
||||
return builder.build();
|
||||
}
|
||||
|
||||
}
|
||||
package org.apache.druid.query.aggregation.sketch.hlld;
|
||||
|
||||
import com.fasterxml.jackson.annotation.JsonCreator;
|
||||
import com.fasterxml.jackson.annotation.JsonProperty;
|
||||
import com.zdjz.galaxy.sketch.hlld.Hll;
|
||||
import org.apache.druid.query.aggregation.AggregatorFactory;
|
||||
import org.apache.druid.query.aggregation.PostAggregator;
|
||||
import org.apache.druid.query.aggregation.post.ArithmeticPostAggregator;
|
||||
import org.apache.druid.query.cache.CacheKeyBuilder;
|
||||
import org.apache.druid.segment.ColumnInspector;
|
||||
import org.apache.druid.segment.column.ColumnType;
|
||||
|
||||
import java.util.Comparator;
|
||||
import java.util.Map;
|
||||
import java.util.Objects;
|
||||
import java.util.Set;
|
||||
|
||||
public class HllToEstimatePostAggregator implements PostAggregator {
|
||||
private final String name;
|
||||
private final PostAggregator field;
|
||||
private final boolean round;
|
||||
|
||||
@JsonCreator
|
||||
public HllToEstimatePostAggregator(
|
||||
@JsonProperty("name") final String name,
|
||||
@JsonProperty("field") final PostAggregator field,
|
||||
@JsonProperty("round") boolean round
|
||||
) {
|
||||
this.name = name;
|
||||
this.field = field;
|
||||
this.round = round;
|
||||
}
|
||||
|
||||
// 新版本需要实现的方法
|
||||
@Override
|
||||
public ColumnType getType(ColumnInspector signature) {
|
||||
return round ? ColumnType.LONG : ColumnType.DOUBLE;
|
||||
}
|
||||
|
||||
@Override
|
||||
@JsonProperty
|
||||
public String getName() {
|
||||
return name;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public PostAggregator getField() {
|
||||
return field;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public boolean isRound() {
|
||||
return round;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Set<String> getDependentFields() {
|
||||
return field.getDependentFields();
|
||||
}
|
||||
|
||||
@Override
|
||||
public Comparator<Double> getComparator() {
|
||||
return ArithmeticPostAggregator.DEFAULT_COMPARATOR;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Object compute(final Map<String, Object> combinedAggregators) {
|
||||
final Hll sketch = (Hll) field.compute(combinedAggregators);
|
||||
if(sketch == null){
|
||||
return round ? 0L: 0D;
|
||||
}
|
||||
return round ? Math.round(sketch.size()) : sketch.size();
|
||||
}
|
||||
|
||||
@Override
|
||||
public PostAggregator decorate(final Map<String, AggregatorFactory> aggregators) {
|
||||
return this;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return "HllToEstimatePostAggregator{" +
|
||||
"name='" + name + '\'' +
|
||||
", field=" + field +
|
||||
", round=" + round +
|
||||
'}';
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(final Object o) {
|
||||
if (this == o) {
|
||||
return true;
|
||||
}
|
||||
if (!(o instanceof HllToEstimatePostAggregator)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
final HllToEstimatePostAggregator that = (HllToEstimatePostAggregator) o;
|
||||
return name.equals(that.name) && field.equals(that.field) && round == that.round;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
return Objects.hash(name, field, round);
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] getCacheKey() {
|
||||
CacheKeyBuilder builder = new CacheKeyBuilder(HllModule.CACHE_TYPE_ID_OFFSET).appendByte(HllModule.HLLD_TO_ESTIMATE_CACHE_TYPE_ID)
|
||||
.appendCacheable(field).appendBoolean(round);
|
||||
return builder.build();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@@ -1,396 +1,429 @@
|
||||
package org.apache.druid.query.aggregation.sketch.hlld.sql;
|
||||
|
||||
|
||||
import com.alibaba.fastjson2.JSON;
|
||||
import com.fasterxml.jackson.databind.Module;
|
||||
import com.google.inject.Injector;
|
||||
import org.apache.druid.guice.DruidInjectorBuilder;
|
||||
import org.apache.druid.query.QueryRunnerFactoryConglomerate;
|
||||
import org.apache.druid.query.aggregation.sketch.hlld.HllModule;
|
||||
import org.apache.druid.segment.QueryableIndex;
|
||||
import org.apache.druid.segment.TestHelper;
|
||||
import org.apache.druid.segment.join.JoinableFactoryWrapper;
|
||||
import org.apache.druid.sql.calcite.BaseCalciteQueryTest;
|
||||
import org.apache.druid.sql.calcite.QueryTestBuilder;
|
||||
import org.apache.druid.sql.calcite.QueryTestRunner;
|
||||
import org.apache.druid.sql.calcite.util.CalciteTests;
|
||||
import org.apache.druid.sql.calcite.util.SpecificSegmentsQuerySegmentWalker;
|
||||
import org.apache.druid.timeline.DataSegment;
|
||||
import org.apache.druid.timeline.partition.LinearShardSpec;
|
||||
import org.junit.*;
|
||||
|
||||
import java.io.File;
|
||||
import java.io.IOException;
|
||||
import java.util.*;
|
||||
|
||||
// 新版本父类直接变了,实现更简单了
|
||||
public class HllApproxCountDistinctSqlAggregatorTest extends BaseCalciteQueryTest {
|
||||
private static final boolean ROUND = true;
|
||||
|
||||
@Override
|
||||
public void gatherProperties(Properties properties)
|
||||
{
|
||||
super.gatherProperties(properties);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void configureGuice(DruidInjectorBuilder builder)
|
||||
{
|
||||
super.configureGuice(builder);
|
||||
builder.addModule(new HllModule());
|
||||
}
|
||||
|
||||
|
||||
|
||||
@SuppressWarnings("resource")
|
||||
@Override
|
||||
public SpecificSegmentsQuerySegmentWalker createQuerySegmentWalker(
|
||||
final QueryRunnerFactoryConglomerate conglomerate,
|
||||
final JoinableFactoryWrapper joinableFactory,
|
||||
final Injector injector
|
||||
) throws IOException
|
||||
{
|
||||
HllModule.registerSerde();
|
||||
for (Module mod : new HllModule().getJacksonModules()) {
|
||||
CalciteTests.getJsonMapper().registerModule(mod);
|
||||
TestHelper.JSON_MAPPER.registerModule(mod);
|
||||
}
|
||||
|
||||
final QueryableIndex index = TestHelper.getTestIndexIO().loadIndex(new File("D:/doc/datas/testIndex-1369101812"));
|
||||
//final QueryableIndex index = TestHelper.getTestIndexIO().loadIndex(new File("D:/doc/datas/9_index"));
|
||||
/*final QueryableIndex index = IndexBuilder.create()
|
||||
.tmpDir(temporaryFolder.newFolder())
|
||||
.segmentWriteOutMediumFactory(OffHeapMemorySegmentWriteOutMediumFactory.instance())
|
||||
.schema(
|
||||
new IncrementalIndexSchema.Builder()
|
||||
.withMetrics(
|
||||
new CountAggregatorFactory("cnt"),
|
||||
new DoubleSumAggregatorFactory("m1", "m1"),
|
||||
new HllAggregatorFactory(
|
||||
"hll_dim1",
|
||||
"dim1",
|
||||
null,
|
||||
ROUND
|
||||
)
|
||||
)
|
||||
.withRollup(false)
|
||||
.build()
|
||||
)
|
||||
.rows(TestDataBuilder.ROWS1)
|
||||
.buildMMappedIndex();*/
|
||||
|
||||
return new SpecificSegmentsQuerySegmentWalker(conglomerate).add(
|
||||
DataSegment.builder()
|
||||
.dataSource(CalciteTests.DATASOURCE1)
|
||||
.interval(index.getDataInterval())
|
||||
.version("1")
|
||||
.shardSpec(new LinearShardSpec(0))
|
||||
.size(0)
|
||||
.build(),
|
||||
index
|
||||
);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery() throws Exception {
|
||||
// Can't vectorize due to SUBSTRING expression.
|
||||
cannotVectorize();
|
||||
String[] columns = new String[]{"__time", "dim1", "dim2", "dim3", "cnt", "hll_dim1", "m1"};
|
||||
|
||||
String sql = "select " + String.join(",", columns) + " from druid.foo";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql);
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
Map row = new LinkedHashMap();
|
||||
for (int i = 0; i < result.length; i++) {
|
||||
row.put(columns[i], result[i]);
|
||||
}
|
||||
System.out.println(JSON.toJSONString(row));
|
||||
// System.out.println(Arrays.toString(result));
|
||||
}
|
||||
|
||||
for (int i = 0; i < columns.length; i++) {
|
||||
Object[] values = new Object[results.size()];
|
||||
for (int j = 0; j < results.size(); j++) {
|
||||
values[j] = results.get(j)[i];
|
||||
}
|
||||
System.out.println(columns[i] + ":" + Arrays.toString(values));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery1() throws Exception {
|
||||
// Can't vectorize due to SUBSTRING expression.
|
||||
cannotVectorize();
|
||||
|
||||
String sql = "select dim1 from druid.foo";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql);
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery2() throws Exception {
|
||||
//cannotVectorize();
|
||||
//String sql = "select HLLD_ESTIMATE(HLLD(hll_dim1)) from druid.foo where dim1 = '1'";
|
||||
// Caused by: org.apache.calcite.sql.validate.SqlValidatorException: Aggregate expressions cannot be nested
|
||||
//String sql = "select HLLD_ESTIMATE(HLLD(hll_dim1)), APPROX_COUNT_DISTINCT_HLLD(HLLD(hll_dim1)), HLLD(hll_dim1) from druid.foo";
|
||||
String sql = "select HLLD_ESTIMATE(HLLD(hll_dim1)), APPROX_COUNT_DISTINCT_HLLD(hll_dim1), HLLD(hll_dim1) from (select HLLD(hll_dim1) hll_dim1 from druid.foo) t";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery3() throws Exception {
|
||||
//cannotVectorize();
|
||||
//String sql = "select HLLD_ESTIMATE(HLLD(hll_dim1)) from druid.foo where dim1 = ''";
|
||||
String sql = "select APPROX_COUNT_DISTINCT_HLLD(hll, 12) from (select HLLD(hll_dim1) hll from druid.foo where dim1 = '1') t ";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery4() throws Exception {
|
||||
//cannotVectorize();
|
||||
//String sql = "select HLLD_ESTIMATE(HLLD(hll_dim1)) from druid.foo where dim1 = ''";
|
||||
String sql = "select APPROX_COUNT_DISTINCT_HLLD(hll, 12) from (select HLLD(hll_dim1) hll from druid.foo where dim1 = '1') t ";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery5() throws Exception {
|
||||
//cannotVectorize();
|
||||
//String sql = "select HLLD_ESTIMATE(HLLD(hll_dim1)) from druid.foo where dim1 = ''";
|
||||
String sql = "select dim1,APPROX_COUNT_DISTINCT_HLLD(hll, 12) from (select dim1,HLLD(hll_dim1) hll from druid.foo where dim1 = '1' group by dim1) t group by dim1";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery6() throws Exception {
|
||||
//cannotVectorize();
|
||||
//String sql = "select HLLD_ESTIMATE(HLLD(hll_dim1)) from druid.foo where dim1 = ''";
|
||||
String sql = "select dim1,APPROX_COUNT_DISTINCT_HLLD(hll, 12) from (select dim1,HLLD(dim1) hll from druid.foo where dim1 = '1' group by dim1 limit 10) t group by dim1";
|
||||
//String sql = "select dim1,HLLD_ESTIMATE(HLLD(hll), false) from (select dim1,HLLD(dim1) hll from druid.foo where dim1 = '1' group by dim1 limit 10) t group by dim1";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery62() throws Exception {
|
||||
//cannotVectorize();
|
||||
//String sql = "select HLLD_ESTIMATE(HLLD(hll_dim1)) from druid.foo where dim1 = ''";
|
||||
String sql = "select dim1,APPROX_COUNT_DISTINCT_HLLD(hll) from (select dim1,HLLD(dim1) hll from druid.foo where dim1 = '1' group by dim1 limit 10) t group by dim1";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery7() throws Exception {
|
||||
//cannotVectorize();
|
||||
//String sql = "select HLLD_ESTIMATE(HLLD(hll_dim1)) from druid.foo where dim1 = ''";
|
||||
String sql = "select dim1,APPROX_COUNT_DISTINCT_HLLD(hll, 12) from (select dim1,HLLD(dim1) hll from druid.foo where dim1 = '1' group by dim1) t group by dim1 limit 10";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testAgg() throws Exception {
|
||||
final String sql = "SELECT\n"
|
||||
+ " SUM(cnt),\n"
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(hll_dim1)\n"
|
||||
+ "FROM druid.foo";
|
||||
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDistinct() throws Exception {
|
||||
final String sql = "SELECT\n"
|
||||
+ " SUM(cnt),\n"
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(dim2),\n" // uppercase
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(dim2) FILTER(WHERE dim2 <> ''),\n" // lowercase; also, filtered
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(SUBSTRING(dim2, 1, 1)),\n" // on extractionFn
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(SUBSTRING(dim2, 1, 1) || 'x'),\n" // on expression
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(hll_dim1, 16),\n" // on native HllSketch column
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(hll_dim1)\n" // on native HllSketch column
|
||||
+ "FROM druid.foo";
|
||||
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDistinct2() throws Exception {
|
||||
final String sql = "SELECT\n"
|
||||
+ " SUM(cnt),\n"
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(dim2),\n"
|
||||
+ " HLLD(dim2),\n"
|
||||
+ " HLLD(hll_dim1),\n"
|
||||
+ " HLLD_ESTIMATE(HLLD(dim2)),\n"
|
||||
+ " HLLD_ESTIMATE(HLLD(dim2), true),\n"
|
||||
+ " HLLD_ESTIMATE(HLLD(dim1), true),\n"
|
||||
+ " HLLD_ESTIMATE(HLLD(hll_dim1)),\n" // on native HllSketch column
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(hll_dim1)\n" // on native HllSketch column
|
||||
+ "FROM druid.foo";
|
||||
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDistinctDebug2() throws Exception {
|
||||
final String sql = "SELECT\n"
|
||||
+ " dim1, dim2\n"
|
||||
+ "FROM druid.foo";
|
||||
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDistinctDebug() throws Exception {
|
||||
final String sql = "SELECT\n"
|
||||
+ " SUM(cnt),\n"
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(dim2)\n"
|
||||
+ "FROM druid.foo";
|
||||
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDeser() throws Exception {
|
||||
final String sql = "SELECT\n"
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(hll_dim1) cnt\n"
|
||||
+ "FROM druid.foo";
|
||||
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
@Test
|
||||
public void testGroupBy() throws Exception {
|
||||
final String sql = "SELECT cnt,\n"
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(hll_dim1, 14) cnt2\n"
|
||||
+ "FROM druid.foo group by cnt";
|
||||
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGroupBy1() throws Exception {
|
||||
final String sql = "SELECT __time,\n"
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(hll_dim1, 14) cnt\n"
|
||||
+ "FROM druid.foo group by __time";
|
||||
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGroupBy2() throws Exception {
|
||||
final String sql = "SELECT __time,\n"
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(hll_dim1, 14) cnt\n"
|
||||
+ "FROM druid.foo group by __time order by cnt desc";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
package org.apache.druid.query.aggregation.sketch.hlld.sql;
|
||||
|
||||
|
||||
import com.alibaba.fastjson2.JSON;
|
||||
import com.fasterxml.jackson.databind.Module;
|
||||
import com.google.inject.Injector;
|
||||
import org.apache.druid.guice.DruidInjectorBuilder;
|
||||
import org.apache.druid.query.QueryRunnerFactoryConglomerate;
|
||||
import org.apache.druid.query.aggregation.sketch.hlld.HllModule;
|
||||
import org.apache.druid.segment.QueryableIndex;
|
||||
import org.apache.druid.segment.TestHelper;
|
||||
import org.apache.druid.segment.join.JoinableFactoryWrapper;
|
||||
import org.apache.druid.sql.calcite.BaseCalciteQueryTest;
|
||||
import org.apache.druid.sql.calcite.QueryTestBuilder;
|
||||
import org.apache.druid.sql.calcite.QueryTestRunner;
|
||||
import org.apache.druid.sql.calcite.util.CalciteTests;
|
||||
import org.apache.druid.sql.calcite.util.SpecificSegmentsQuerySegmentWalker;
|
||||
import org.apache.druid.timeline.DataSegment;
|
||||
import org.apache.druid.timeline.partition.LinearShardSpec;
|
||||
import org.junit.*;
|
||||
|
||||
import java.io.File;
|
||||
import java.io.IOException;
|
||||
import java.util.*;
|
||||
|
||||
// 新版本父类直接变了,实现更简单了
|
||||
public class HllApproxCountDistinctSqlAggregatorTest extends BaseCalciteQueryTest {
|
||||
private static final boolean ROUND = true;
|
||||
|
||||
@Override
|
||||
public void gatherProperties(Properties properties)
|
||||
{
|
||||
super.gatherProperties(properties);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void configureGuice(DruidInjectorBuilder builder)
|
||||
{
|
||||
super.configureGuice(builder);
|
||||
builder.addModule(new HllModule());
|
||||
}
|
||||
|
||||
|
||||
|
||||
@SuppressWarnings("resource")
|
||||
@Override
|
||||
public SpecificSegmentsQuerySegmentWalker createQuerySegmentWalker(
|
||||
final QueryRunnerFactoryConglomerate conglomerate,
|
||||
final JoinableFactoryWrapper joinableFactory,
|
||||
final Injector injector
|
||||
) throws IOException
|
||||
{
|
||||
HllModule.registerSerde();
|
||||
for (Module mod : new HllModule().getJacksonModules()) {
|
||||
CalciteTests.getJsonMapper().registerModule(mod);
|
||||
TestHelper.JSON_MAPPER.registerModule(mod);
|
||||
}
|
||||
|
||||
final QueryableIndex index = TestHelper.getTestIndexIO().loadIndex(new File("D:/doc/datas/testIndex-1369101812"));
|
||||
//final QueryableIndex index = TestHelper.getTestIndexIO().loadIndex(new File("D:/doc/datas/9_index"));
|
||||
/*final QueryableIndex index = IndexBuilder.create()
|
||||
.tmpDir(temporaryFolder.newFolder())
|
||||
.segmentWriteOutMediumFactory(OffHeapMemorySegmentWriteOutMediumFactory.instance())
|
||||
.schema(
|
||||
new IncrementalIndexSchema.Builder()
|
||||
.withMetrics(
|
||||
new CountAggregatorFactory("cnt"),
|
||||
new DoubleSumAggregatorFactory("m1", "m1"),
|
||||
new HllAggregatorFactory(
|
||||
"hll_dim1",
|
||||
"dim1",
|
||||
null,
|
||||
ROUND
|
||||
)
|
||||
)
|
||||
.withRollup(false)
|
||||
.build()
|
||||
)
|
||||
.rows(TestDataBuilder.ROWS1)
|
||||
.buildMMappedIndex();*/
|
||||
|
||||
return new SpecificSegmentsQuerySegmentWalker(conglomerate).add(
|
||||
DataSegment.builder()
|
||||
.dataSource(CalciteTests.DATASOURCE1)
|
||||
.interval(index.getDataInterval())
|
||||
.version("1")
|
||||
.shardSpec(new LinearShardSpec(0))
|
||||
.size(0)
|
||||
.build(),
|
||||
index
|
||||
);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery() throws Exception {
|
||||
// Can't vectorize due to SUBSTRING expression.
|
||||
cannotVectorize();
|
||||
|
||||
String[] columns = new String[]{"__time", "dim1", "dim2", "dim3", "cnt", "hll_dim1", "m1"};
|
||||
|
||||
String sql = "select " + String.join(",", columns) + " from druid.foo";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql);
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
Map row = new LinkedHashMap();
|
||||
for (int i = 0; i < result.length; i++) {
|
||||
row.put(columns[i], result[i]);
|
||||
}
|
||||
System.out.println(JSON.toJSONString(row));
|
||||
// System.out.println(Arrays.toString(result));
|
||||
}
|
||||
|
||||
for (int i = 0; i < columns.length; i++) {
|
||||
Object[] values = new Object[results.size()];
|
||||
for (int j = 0; j < results.size(); j++) {
|
||||
values[j] = results.get(j)[i];
|
||||
}
|
||||
System.out.println(columns[i] + ":" + Arrays.toString(values));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery11() throws Exception {
|
||||
// Can't vectorize due to SUBSTRING expression.
|
||||
//cannotVectorize();
|
||||
|
||||
|
||||
String sql = "select HLLD(hll_dim1) hll_dim1 from (select hll_dim1 from druid.foo limit 5) t ";
|
||||
//sql = "select HLLD(hll_dim1) hll_dim1 from druid.foo t ";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();;
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery12() throws Exception {
|
||||
// Can't vectorize due to SUBSTRING expression.
|
||||
cannotVectorize();
|
||||
|
||||
String sql = "select * from (select * from druid.foo limit 6) t where __time >= '1970-12-15 07:00:28' and __time < '2023-12-15 08:10:28' ";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql);
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery1() throws Exception {
|
||||
// Can't vectorize due to SUBSTRING expression.
|
||||
cannotVectorize();
|
||||
|
||||
String sql = "select dim1 from druid.foo";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql);
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery2() throws Exception {
|
||||
//cannotVectorize();
|
||||
//String sql = "select HLLD_ESTIMATE(HLLD(hll_dim1)) from druid.foo where dim1 = '1'";
|
||||
// Caused by: org.apache.calcite.sql.validate.SqlValidatorException: Aggregate expressions cannot be nested
|
||||
//String sql = "select HLLD_ESTIMATE(HLLD(hll_dim1)), APPROX_COUNT_DISTINCT_HLLD(HLLD(hll_dim1)), HLLD(hll_dim1) from druid.foo";
|
||||
String sql = "select HLLD_ESTIMATE(HLLD(hll_dim1)), APPROX_COUNT_DISTINCT_HLLD(hll_dim1), HLLD(hll_dim1) from (select HLLD(hll_dim1) hll_dim1 from druid.foo) t";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery3() throws Exception {
|
||||
//cannotVectorize();
|
||||
//String sql = "select HLLD_ESTIMATE(HLLD(hll_dim1)) from druid.foo where dim1 = ''";
|
||||
String sql = "select APPROX_COUNT_DISTINCT_HLLD(hll, 12) from (select HLLD(hll_dim1) hll from druid.foo where dim1 = '1') t ";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery4() throws Exception {
|
||||
//cannotVectorize();
|
||||
//String sql = "select HLLD_ESTIMATE(HLLD(hll_dim1)) from druid.foo where dim1 = ''";
|
||||
String sql = "select APPROX_COUNT_DISTINCT_HLLD(hll, 12) from (select HLLD(hll_dim1) hll from druid.foo where dim1 = '1') t ";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery5() throws Exception {
|
||||
//cannotVectorize();
|
||||
//String sql = "select HLLD_ESTIMATE(HLLD(hll_dim1)) from druid.foo where dim1 = ''";
|
||||
String sql = "select dim1,APPROX_COUNT_DISTINCT_HLLD(hll, 12) from (select dim1,HLLD(hll_dim1) hll from druid.foo where dim1 = '1' group by dim1) t group by dim1";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery6() throws Exception {
|
||||
//cannotVectorize();
|
||||
//String sql = "select HLLD_ESTIMATE(HLLD(hll_dim1)) from druid.foo where dim1 = ''";
|
||||
String sql = "select dim1,APPROX_COUNT_DISTINCT_HLLD(hll, 12) from (select dim1,HLLD(dim1) hll from druid.foo where dim1 = '1' group by dim1 limit 10) t group by dim1";
|
||||
//String sql = "select dim1,HLLD_ESTIMATE(HLLD(hll), false) from (select dim1,HLLD(dim1) hll from druid.foo where dim1 = '1' group by dim1 limit 10) t group by dim1";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery62() throws Exception {
|
||||
//cannotVectorize();
|
||||
//String sql = "select HLLD_ESTIMATE(HLLD(hll_dim1)) from druid.foo where dim1 = ''";
|
||||
String sql = "select dim1,APPROX_COUNT_DISTINCT_HLLD(hll) from (select dim1,HLLD(dim1) hll from druid.foo where dim1 = '1' group by dim1 limit 10) t group by dim1";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSqlQuery7() throws Exception {
|
||||
//cannotVectorize();
|
||||
//String sql = "select HLLD_ESTIMATE(HLLD(hll_dim1)) from druid.foo where dim1 = ''";
|
||||
String sql = "select dim1,APPROX_COUNT_DISTINCT_HLLD(hll, 12) from (select dim1,HLLD(dim1) hll from druid.foo where dim1 = '1' group by dim1) t group by dim1 limit 10";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testAgg() throws Exception {
|
||||
final String sql = "SELECT\n"
|
||||
+ " SUM(cnt),\n"
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(hll_dim1)\n"
|
||||
+ "FROM druid.foo";
|
||||
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDistinct() throws Exception {
|
||||
final String sql = "SELECT\n"
|
||||
+ " SUM(cnt),\n"
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(dim2),\n" // uppercase
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(dim2) FILTER(WHERE dim2 <> ''),\n" // lowercase; also, filtered
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(SUBSTRING(dim2, 1, 1)),\n" // on extractionFn
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(SUBSTRING(dim2, 1, 1) || 'x'),\n" // on expression
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(hll_dim1, 16),\n" // on native HllSketch column
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(hll_dim1)\n" // on native HllSketch column
|
||||
+ "FROM druid.foo";
|
||||
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDistinct2() throws Exception {
|
||||
final String sql = "SELECT\n"
|
||||
+ " SUM(cnt),\n"
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(dim2),\n"
|
||||
+ " HLLD(dim2),\n"
|
||||
+ " HLLD(hll_dim1),\n"
|
||||
+ " HLLD_ESTIMATE(HLLD(dim2)),\n"
|
||||
+ " HLLD_ESTIMATE(HLLD(dim2), true),\n"
|
||||
+ " HLLD_ESTIMATE(HLLD(dim1), true),\n"
|
||||
+ " HLLD_ESTIMATE(HLLD(hll_dim1)),\n" // on native HllSketch column
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(hll_dim1)\n" // on native HllSketch column
|
||||
+ "FROM druid.foo";
|
||||
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDistinctDebug2() throws Exception {
|
||||
final String sql = "SELECT\n"
|
||||
+ " dim1, dim2\n"
|
||||
+ "FROM druid.foo";
|
||||
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDistinctDebug() throws Exception {
|
||||
final String sql = "SELECT\n"
|
||||
+ " SUM(cnt),\n"
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(dim2)\n"
|
||||
+ "FROM druid.foo";
|
||||
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDeser() throws Exception {
|
||||
final String sql = "SELECT\n"
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(hll_dim1) cnt\n"
|
||||
+ "FROM druid.foo";
|
||||
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
@Test
|
||||
public void testGroupBy() throws Exception {
|
||||
final String sql = "SELECT cnt,\n"
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(hll_dim1, 14) cnt2\n"
|
||||
+ "FROM druid.foo group by cnt";
|
||||
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGroupBy1() throws Exception {
|
||||
final String sql = "SELECT __time,\n"
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(hll_dim1, 14) cnt\n"
|
||||
+ "FROM druid.foo group by __time";
|
||||
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGroupBy2() throws Exception {
|
||||
final String sql = "SELECT __time,\n"
|
||||
+ " APPROX_COUNT_DISTINCT_HLLD(hll_dim1, 14) cnt\n"
|
||||
+ "FROM druid.foo group by __time order by cnt desc";
|
||||
QueryTestBuilder builder = testBuilder().sql(sql).skipVectorize();
|
||||
builder.run();
|
||||
QueryTestRunner.QueryResults queryResults = builder.results();
|
||||
List<Object[]> results = queryResults.results;
|
||||
for (Object[] result : results) {
|
||||
System.out.println(Arrays.toString(result));
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user