This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
dengzeyi-sequenceshield/代码/sequenceShield/model/model.py
2022-11-21 12:08:58 +08:00

93 lines
3.0 KiB
Python

import torch.nn as nn
import torch
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes, device):
super(LSTM, self).__init__()
self.device = device
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size,
num_layers, batch_first=True)
self.fc = nn.Sequential(
nn.ReLU(),
nn.Dropout(p=0.3),
nn.Linear(hidden_size, num_classes)
)
def forward(self, x):
# Set initial hidden and cell states
h0 = torch.zeros(self.num_layers, x.size(0),
self.hidden_size).to(self.device)
c0 = torch.zeros(self.num_layers, x.size(0),
self.hidden_size).to(self.device)
# Forward propagate LSTM
# out: tensor of shape (batch_size, seq_length, hidden_size)
out, _ = self.lstm(x, (h0, c0))
# Decode the hidden state of the last time step
# 这里只取了最后一个time step
out = self.fc(out[:, -1, :])
return out
class GRU(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes, device):
super(GRU, self).__init__()
self.device = device
self.hidden_size = hidden_size
self.num_layers = num_layers
self.gru = nn.GRU(input_size, hidden_size,
num_layers, batch_first=True)
self.fc = nn.Sequential(
nn.ReLU(),
nn.Dropout(p=0.3),
nn.Linear(hidden_size, num_classes)
)
def forward(self, x):
# Set initial hidden and cell states
h0 = torch.zeros(self.num_layers, x.size(0),
self.hidden_size).to(self.device)
# Forward propagate GRU
# out: tensor of shape (batch_size, seq_length, hidden_size)
out, _ = self.gru(x, h0)
# Decode the hidden state of the last time step
# 这里只取了最后一个time step
out = self.fc(out[:, -1, :])
return out
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes, device):
super(RNN, self).__init__()
self.device = device
self.hidden_size = hidden_size
self.num_layers = num_layers
self.rnn = nn.RNN(input_size, hidden_size,
num_layers, batch_first=True)
self.fc = nn.Sequential(
nn.ReLU(),
nn.Dropout(p=0.3),
nn.Linear(hidden_size, num_classes)
)
def forward(self, x):
# Set initial hidden and cell states
h0 = torch.zeros(self.num_layers, x.size(0),
self.hidden_size).to(self.device)
# Forward propagate LSTM
# out: tensor of shape (batch_size, seq_length, hidden_size)
out, _ = self.rnn(x, h0)
# Decode the hidden state of the last time step
# 这里只取了最后一个time step
out = self.fc(out[:, -1, :])
return out