415 lines
16 KiB
Python
415 lines
16 KiB
Python
"""
|
||
github找的第三方实现的Mtad-Gat源码
|
||
由于源码使用了torch.empty,经常导致loss为nan,因此替换为了torch.zeros
|
||
"""
|
||
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
import torch.utils.data as tud
|
||
|
||
|
||
class ConvLayer(nn.Module):
|
||
"""1-D Convolution layer to extract high-level features of each time-series input
|
||
:param n_features: Number of input features/nodes
|
||
:param window_size: length of the input sequence
|
||
:param kernel_size: size of kernel to use in the convolution operation
|
||
"""
|
||
|
||
def __init__(self, n_features, kernel_size=7):
|
||
super(ConvLayer, self).__init__()
|
||
self.padding = nn.ConstantPad1d((kernel_size - 1) // 2, 0.0)
|
||
self.conv = nn.Conv1d(in_channels=n_features, out_channels=n_features, kernel_size=kernel_size)
|
||
self.relu = nn.ReLU()
|
||
|
||
def forward(self, x):
|
||
x = x.permute(0, 2, 1)
|
||
x = self.padding(x)
|
||
x = self.relu(self.conv(x))
|
||
return x.permute(0, 2, 1) # Permute back
|
||
|
||
|
||
class FeatureAttentionLayer(nn.Module):
|
||
"""Single Graph Feature/Spatial Attention Layer
|
||
:param n_features: Number of input features/nodes
|
||
:param window_size: length of the input sequence
|
||
:param dropout: percentage of nodes to dropout
|
||
:param alpha: negative slope used in the leaky rely activation function
|
||
:param embed_dim: embedding dimension (output dimension of linear transformation)
|
||
:param use_gatv2: whether to use the modified attention mechanism of GATv2 instead of standard GAT
|
||
:param use_bias: whether to include a bias term in the attention layer
|
||
"""
|
||
|
||
def __init__(self, n_features, window_size, dropout, alpha, embed_dim=None, use_gatv2=True, use_bias=True):
|
||
super(FeatureAttentionLayer, self).__init__()
|
||
self.n_features = n_features
|
||
self.window_size = window_size
|
||
self.dropout = dropout
|
||
self.embed_dim = embed_dim if embed_dim is not None else window_size
|
||
self.use_gatv2 = use_gatv2
|
||
self.num_nodes = n_features
|
||
self.use_bias = use_bias
|
||
|
||
# Because linear transformation is done after concatenation in GATv2
|
||
if self.use_gatv2:
|
||
self.embed_dim *= 2
|
||
lin_input_dim = 2 * window_size
|
||
a_input_dim = self.embed_dim
|
||
else:
|
||
lin_input_dim = window_size
|
||
a_input_dim = 2 * self.embed_dim
|
||
|
||
self.lin = nn.Linear(lin_input_dim, self.embed_dim)
|
||
# self.a = nn.Parameter(torch.empty((a_input_dim, 1)))
|
||
self.a = nn.Parameter(torch.zeros((a_input_dim, 1)))
|
||
nn.init.xavier_uniform_(self.a.data, gain=1.414)
|
||
|
||
if self.use_bias:
|
||
# self.bias = nn.Parameter(torch.empty(n_features, n_features))
|
||
self.bias = nn.Parameter(torch.zeros(n_features, n_features))
|
||
|
||
self.leakyrelu = nn.LeakyReLU(alpha)
|
||
self.sigmoid = nn.Sigmoid()
|
||
|
||
def forward(self, x):
|
||
# x shape (b, n, k): b - batch size, n - window size, k - number of features
|
||
# For feature attention we represent a node as the values of a particular feature across all timestamps
|
||
|
||
x = x.permute(0, 2, 1)
|
||
|
||
# 'Dynamic' GAT attention
|
||
# Proposed by Brody et. al., 2021 (https://arxiv.org/pdf/2105.14491.pdf)
|
||
# Linear transformation applied after concatenation and attention layer applied after leakyrelu
|
||
if self.use_gatv2:
|
||
a_input = self._make_attention_input(x) # (b, k, k, 2*window_size)
|
||
a_input = self.leakyrelu(self.lin(a_input)) # (b, k, k, embed_dim)
|
||
e = torch.matmul(a_input, self.a).squeeze(3) # (b, k, k, 1)
|
||
|
||
# Original GAT attention
|
||
else:
|
||
Wx = self.lin(x) # (b, k, k, embed_dim)
|
||
a_input = self._make_attention_input(Wx) # (b, k, k, 2*embed_dim)
|
||
e = self.leakyrelu(torch.matmul(a_input, self.a)).squeeze(3) # (b, k, k, 1)
|
||
|
||
if self.use_bias:
|
||
e += self.bias
|
||
|
||
# Attention weights
|
||
attention = torch.softmax(e, dim=2)
|
||
attention = torch.dropout(attention, self.dropout, train=self.training)
|
||
|
||
# Computing new node features using the attention
|
||
h = self.sigmoid(torch.matmul(attention, x))
|
||
|
||
return h.permute(0, 2, 1)
|
||
|
||
def _make_attention_input(self, v):
|
||
"""Preparing the feature attention mechanism.
|
||
Creating matrix with all possible combinations of concatenations of node.
|
||
Each node consists of all values of that node within the window
|
||
v1 || v1,
|
||
...
|
||
v1 || vK,
|
||
v2 || v1,
|
||
...
|
||
v2 || vK,
|
||
...
|
||
...
|
||
vK || v1,
|
||
...
|
||
vK || vK,
|
||
"""
|
||
|
||
K = self.num_nodes
|
||
blocks_repeating = v.repeat_interleave(K, dim=1) # Left-side of the matrix
|
||
blocks_alternating = v.repeat(1, K, 1) # Right-side of the matrix
|
||
combined = torch.cat((blocks_repeating, blocks_alternating), dim=2) # (b, K*K, 2*window_size)
|
||
|
||
if self.use_gatv2:
|
||
return combined.view(v.size(0), K, K, 2 * self.window_size)
|
||
else:
|
||
return combined.view(v.size(0), K, K, 2 * self.embed_dim)
|
||
|
||
|
||
class TemporalAttentionLayer(nn.Module):
|
||
"""Single Graph Temporal Attention Layer
|
||
:param n_features: number of input features/nodes
|
||
:param window_size: length of the input sequence
|
||
:param dropout: percentage of nodes to dropout
|
||
:param alpha: negative slope used in the leaky rely activation function
|
||
:param embed_dim: embedding dimension (output dimension of linear transformation)
|
||
:param use_gatv2: whether to use the modified attention mechanism of GATv2 instead of standard GAT
|
||
:param use_bias: whether to include a bias term in the attention layer
|
||
|
||
"""
|
||
|
||
def __init__(self, n_features, window_size, dropout, alpha, embed_dim=None, use_gatv2=True, use_bias=True):
|
||
super(TemporalAttentionLayer, self).__init__()
|
||
self.n_features = n_features
|
||
self.window_size = window_size
|
||
self.dropout = dropout
|
||
self.use_gatv2 = use_gatv2
|
||
self.embed_dim = embed_dim if embed_dim is not None else n_features
|
||
self.num_nodes = window_size
|
||
self.use_bias = use_bias
|
||
|
||
# Because linear transformation is performed after concatenation in GATv2
|
||
if self.use_gatv2:
|
||
self.embed_dim *= 2
|
||
lin_input_dim = 2 * n_features
|
||
a_input_dim = self.embed_dim
|
||
else:
|
||
lin_input_dim = n_features
|
||
a_input_dim = 2 * self.embed_dim
|
||
|
||
self.lin = nn.Linear(lin_input_dim, self.embed_dim)
|
||
# self.a = nn.Parameter(torch.empty((a_input_dim, 1)))
|
||
self.a = nn.Parameter(torch.zeros((a_input_dim, 1)))
|
||
nn.init.xavier_uniform_(self.a.data, gain=1.414)
|
||
|
||
if self.use_bias:
|
||
# self.bias = nn.Parameter(torch.empty(window_size, window_size))
|
||
self.bias = nn.Parameter(torch.zeros(window_size, window_size))
|
||
self.leakyrelu = nn.LeakyReLU(alpha)
|
||
self.sigmoid = nn.Sigmoid()
|
||
|
||
def forward(self, x):
|
||
# x shape (b, n, k): b - batch size, n - window size, k - number of features
|
||
# For temporal attention a node is represented as all feature values at a specific timestamp
|
||
|
||
# 'Dynamic' GAT attention
|
||
# Proposed by Brody et. al., 2021 (https://arxiv.org/pdf/2105.14491.pdf)
|
||
# Linear transformation applied after concatenation and attention layer applied after leakyrelu
|
||
if self.use_gatv2:
|
||
a_input = self._make_attention_input(x) # (b, n, n, 2*n_features)
|
||
a_input = self.leakyrelu(self.lin(a_input)) # (b, n, n, embed_dim)
|
||
e = torch.matmul(a_input, self.a).squeeze(3) # (b, n, n, 1)
|
||
|
||
# Original GAT attention
|
||
else:
|
||
Wx = self.lin(x) # (b, n, n, embed_dim)
|
||
a_input = self._make_attention_input(Wx) # (b, n, n, 2*embed_dim)
|
||
e = self.leakyrelu(torch.matmul(a_input, self.a)).squeeze(3) # (b, n, n, 1)
|
||
|
||
if self.use_bias:
|
||
e += self.bias # (b, n, n, 1)
|
||
|
||
# Attention weights
|
||
attention = torch.softmax(e, dim=2)
|
||
attention = torch.dropout(attention, self.dropout, train=self.training)
|
||
|
||
h = self.sigmoid(torch.matmul(attention, x)) # (b, n, k)
|
||
|
||
return h
|
||
|
||
def _make_attention_input(self, v):
|
||
"""Preparing the temporal attention mechanism.
|
||
Creating matrix with all possible combinations of concatenations of node values:
|
||
(v1, v2..)_t1 || (v1, v2..)_t1
|
||
(v1, v2..)_t1 || (v1, v2..)_t2
|
||
|
||
...
|
||
...
|
||
|
||
(v1, v2..)_tn || (v1, v2..)_t1
|
||
(v1, v2..)_tn || (v1, v2..)_t2
|
||
|
||
"""
|
||
|
||
K = self.num_nodes
|
||
blocks_repeating = v.repeat_interleave(K, dim=1) # Left-side of the matrix
|
||
blocks_alternating = v.repeat(1, K, 1) # Right-side of the matrix
|
||
combined = torch.cat((blocks_repeating, blocks_alternating), dim=2)
|
||
|
||
if self.use_gatv2:
|
||
return combined.view(v.size(0), K, K, 2 * self.n_features)
|
||
else:
|
||
return combined.view(v.size(0), K, K, 2 * self.embed_dim)
|
||
|
||
|
||
class GRULayer(nn.Module):
|
||
"""Gated Recurrent Unit (GRU) Layer
|
||
:param in_dim: number of input features
|
||
:param hid_dim: hidden size of the GRU
|
||
:param n_layers: number of layers in GRU
|
||
:param dropout: dropout rate
|
||
"""
|
||
|
||
def __init__(self, in_dim, hid_dim, n_layers, dropout):
|
||
super(GRULayer, self).__init__()
|
||
self.hid_dim = hid_dim
|
||
self.n_layers = n_layers
|
||
self.dropout = 0.0 if n_layers == 1 else dropout
|
||
self.gru = nn.GRU(in_dim, hid_dim, num_layers=n_layers, batch_first=True, dropout=self.dropout)
|
||
|
||
def forward(self, x):
|
||
out, h = self.gru(x)
|
||
out, h = out[-1, :, :], h[-1, :, :] # Extracting from last layer
|
||
return out, h
|
||
|
||
|
||
class RNNDecoder(nn.Module):
|
||
"""GRU-based Decoder network that converts latent vector into output
|
||
:param in_dim: number of input features
|
||
:param n_layers: number of layers in RNN
|
||
:param hid_dim: hidden size of the RNN
|
||
:param dropout: dropout rate
|
||
"""
|
||
|
||
def __init__(self, in_dim, hid_dim, n_layers, dropout):
|
||
super(RNNDecoder, self).__init__()
|
||
self.in_dim = in_dim
|
||
self.dropout = 0.0 if n_layers == 1 else dropout
|
||
self.rnn = nn.GRU(in_dim, hid_dim, n_layers, batch_first=True, dropout=self.dropout)
|
||
|
||
def forward(self, x):
|
||
decoder_out, _ = self.rnn(x)
|
||
return decoder_out
|
||
|
||
|
||
class ReconstructionModel(nn.Module):
|
||
"""Reconstruction Model
|
||
:param window_size: length of the input sequence
|
||
:param in_dim: number of input features
|
||
:param n_layers: number of layers in RNN
|
||
:param hid_dim: hidden size of the RNN
|
||
:param in_dim: number of output features
|
||
:param dropout: dropout rate
|
||
"""
|
||
|
||
def __init__(self, window_size, in_dim, hid_dim, out_dim, n_layers, dropout):
|
||
super(ReconstructionModel, self).__init__()
|
||
self.window_size = window_size
|
||
self.decoder = RNNDecoder(in_dim, hid_dim, n_layers, dropout)
|
||
self.fc = nn.Linear(hid_dim, out_dim)
|
||
|
||
def forward(self, x):
|
||
# x will be last hidden state of the GRU layer
|
||
h_end = x
|
||
h_end_rep = h_end.repeat_interleave(self.window_size, dim=1).view(x.size(0), self.window_size, -1)
|
||
|
||
decoder_out = self.decoder(h_end_rep)
|
||
out = self.fc(decoder_out)
|
||
return out
|
||
|
||
|
||
class Forecasting_Model(nn.Module):
|
||
"""Forecasting model (fully-connected network)
|
||
:param in_dim: number of input features
|
||
:param hid_dim: hidden size of the FC network
|
||
:param out_dim: number of output features
|
||
:param n_layers: number of FC layers
|
||
:param dropout: dropout rate
|
||
"""
|
||
|
||
def __init__(self, in_dim, hid_dim, out_dim, n_layers, dropout):
|
||
super(Forecasting_Model, self).__init__()
|
||
layers = [nn.Linear(in_dim, hid_dim)]
|
||
for _ in range(n_layers - 1):
|
||
layers.append(nn.Linear(hid_dim, hid_dim))
|
||
|
||
layers.append(nn.Linear(hid_dim, out_dim))
|
||
|
||
self.layers = nn.ModuleList(layers)
|
||
self.dropout = nn.Dropout(dropout)
|
||
self.relu = nn.ReLU()
|
||
|
||
def forward(self, x):
|
||
for i in range(len(self.layers) - 1):
|
||
x = self.relu(self.layers[i](x))
|
||
x = self.dropout(x)
|
||
return self.layers[-1](x)
|
||
|
||
|
||
class Model(nn.Module):
|
||
""" MTAD_GAT model class.
|
||
|
||
:param n_features: Number of input features
|
||
:param window_size: Length of the input sequence
|
||
:param out_dim: Number of features to output
|
||
:param kernel_size: size of kernel to use in the 1-D convolution
|
||
:param feat_gat_embed_dim: embedding dimension (output dimension of linear transformation)
|
||
in feat-oriented GAT layer
|
||
:param time_gat_embed_dim: embedding dimension (output dimension of linear transformation)
|
||
in time-oriented GAT layer
|
||
:param use_gatv2: whether to use the modified attention mechanism of GATv2 instead of standard GAT
|
||
:param gru_n_layers: number of layers in the GRU layer
|
||
:param gru_hid_dim: hidden dimension in the GRU layer
|
||
:param forecast_n_layers: number of layers in the FC-based Forecasting Model
|
||
:param forecast_hid_dim: hidden dimension in the FC-based Forecasting Model
|
||
:param recon_n_layers: number of layers in the GRU-based Reconstruction Model
|
||
:param recon_hid_dim: hidden dimension in the GRU-based Reconstruction Model
|
||
:param dropout: dropout rate
|
||
:param alpha: negative slope used in the leaky rely activation function
|
||
|
||
"""
|
||
|
||
def __init__(self, customs: {}, dataloader: tud.DataLoader):
|
||
super(Model, self).__init__()
|
||
n_features = dataloader.dataset.train_inputs.shape[-1]
|
||
window_size = int(customs["input_size"])
|
||
out_dim = n_features
|
||
kernel_size = 7
|
||
feat_gat_embed_dim = None
|
||
time_gat_embed_dim = None
|
||
use_gatv2 = True
|
||
gru_n_layers = 1
|
||
gru_hid_dim = 150
|
||
forecast_n_layers = 1
|
||
forecast_hid_dim = 150
|
||
recon_n_layers = 1
|
||
recon_hid_dim = 150
|
||
dropout = 0.2
|
||
alpha = 0.2
|
||
|
||
self.name = "MtadGat"
|
||
self.conv = ConvLayer(n_features, kernel_size)
|
||
self.feature_gat = FeatureAttentionLayer(
|
||
n_features, window_size, dropout, alpha, feat_gat_embed_dim, use_gatv2)
|
||
self.temporal_gat = TemporalAttentionLayer(n_features, window_size, dropout, alpha, time_gat_embed_dim,
|
||
use_gatv2)
|
||
self.gru = GRULayer(3 * n_features, gru_hid_dim, gru_n_layers, dropout)
|
||
self.forecasting_model = Forecasting_Model(
|
||
gru_hid_dim, forecast_hid_dim, out_dim, forecast_n_layers, dropout)
|
||
self.recon_model = ReconstructionModel(window_size, gru_hid_dim, recon_hid_dim, out_dim, recon_n_layers,
|
||
dropout)
|
||
|
||
def forward(self, x):
|
||
# x shape (b, n, k): b - batch size, n - window size, k - number of features
|
||
|
||
x = self.conv(x)
|
||
h_feat = self.feature_gat(x)
|
||
h_temp = self.temporal_gat(x)
|
||
|
||
h_cat = torch.cat([x, h_feat, h_temp], dim=2) # (b, n, 3k)
|
||
|
||
_, h_end = self.gru(h_cat)
|
||
h_end = h_end.view(x.shape[0], -1) # Hidden state for last timestamp
|
||
|
||
predictions = self.forecasting_model(h_end)
|
||
recons = self.recon_model(h_end)
|
||
|
||
return predictions, recons
|
||
|
||
def loss(self, x, y_true, epoch: int = None, device: str = "cpu"):
|
||
preds, recons = self.forward(x)
|
||
if preds.ndim == 3:
|
||
preds = preds.squeeze(1)
|
||
if y_true.ndim == 3:
|
||
y_true = y_true.squeeze(1)
|
||
forecast_criterion = nn.MSELoss()
|
||
recon_criterion = nn.MSELoss()
|
||
forecast_loss = torch.sqrt(forecast_criterion(y_true, preds))
|
||
recon_loss = torch.sqrt(recon_criterion(x, recons))
|
||
loss = forecast_loss + recon_loss
|
||
loss.backward()
|
||
return loss.item()
|
||
|
||
def detection(self, x, y_true, epoch: int = None, device: str = "cpu"):
|
||
preds, recons = self.forward(x)
|
||
score = F.pairwise_distance(recons.reshape(recons.size(0), -1), x.reshape(x.size(0), -1)) + \
|
||
F.pairwise_distance(y_true.reshape(y_true.size(0), -1), preds.reshape(preds.size(0), -1))
|
||
return score, None
|
||
|
||
|