from torch.utils.data import Dataset from torch import float32, Tensor from numpy import array, where class MyDataset(Dataset): def __init__(self, name: str, train_path: str = None, test_path: str = None, input_size: int = 1, output_size: int = 1, step: int = 1, mode: str = 'train', time_index: bool = True, del_column_name: bool = True): """ 可以将csv文件批量转成tensor :param name: 数据集名称。 :param train_path: 训练数据集路径。 :param test_path: 测试数据集路径。 :param input_size: 输入数据长度。 :param output_size: 输出数据长度。 :param step: 截取数据的窗口移动间隔。 :param mode: train或者test,用于指示使用训练集数据还是测试集数据。 :param time_index: True为第一列是时间戳,False为不。 :param del_column_name: 文件中第一行为列名时,使用True。 """ self.name = name self.input_size = input_size self.output_size = output_size self.del_column_name = del_column_name self.step = step self.mode = mode self.time_index = time_index self.train_inputs, self.train_labels, self.train_outputs, self.test_inputs, self.test_labels, self.test_outputs\ = self.parse_data(train_path, test_path) self.train_inputs = Tensor(self.train_inputs).to(float32) if self.train_inputs is not None else None self.train_labels = Tensor(self.train_labels).to(float32) if self.train_labels is not None else None self.train_outputs = Tensor(self.train_outputs).to(float32) if self.train_outputs is not None else None self.test_inputs = Tensor(self.test_inputs).to(float32) if self.test_inputs is not None else None self.test_labels = Tensor(self.test_labels).to(float32) if self.test_labels is not None else None self.test_outputs = Tensor(self.test_outputs).to(float32) if self.test_outputs is not None else None def parse_data(self, train_path: str = None, test_path: str = None): if train_path is None and test_path is None: raise ValueError("train_path is None and test_path is None.") mean = None deviation = None train_data_input, train_label, train_data_output = None, None, None test_data_input, test_label, test_data_output = None, None, None # 读取训练集数据 if train_path: train_data = [] train_label = [] with open(train_path, 'r', encoding='utf8') as f: if self.del_column_name is True: data = f.readlines()[1:] else: data = f.readlines() train_data.extend([list(map(float, line.strip().split(','))) for line in data]) train_label.extend([0 for _ in data]) train_np = array(train_data) if self.time_index: train_np[:, 0] = train_np[:, 0] % 86400 mean = train_np.mean(axis=0) # 计算平均数 deviation = train_np.std(axis=0) # 计算标准差 deviation = where(deviation != 0, deviation, 1) train_np = (train_np - mean) / deviation # 标准化 train_data = train_np.tolist() train_data_input, train_data_output, train_label = self.cut_data(train_data, train_label) # 读取测试集数据 if test_path: test_data = [] test_label = [] with open(test_path, 'r', encoding='utf8') as f: if self.del_column_name is True: data = f.readlines()[1:] else: data = f.readlines() test_data.extend([list(map(float, line.strip().split(',')))[:-1] for line in data]) test_label.extend([int(line.strip().split(',')[-1]) for line in data]) test_np = array(test_data) if self.time_index: test_np[:, 0] = test_np[:, 0] % 86400 # mean = test_np.mean(axis=0) # 计算平均数 # deviation = test_np.std(axis=0) # 计算标准差 # deviation = where(deviation != 0, deviation, 1) test_np = (test_np - mean) / deviation # 标准化 test_data = test_np.tolist() # 自动判断是否需要反转标签。异常标签统一认为是1,当异常标签超过一半时,需反转标签 if sum(test_label) > 0.5*len(test_label): test_label = (1-array(test_label)).tolist() test_data_input, test_data_output, test_label = self.cut_data(test_data, test_label) return train_data_input, train_label, train_data_output, test_data_input, test_label, test_data_output def cut_data(self, data: [[float]], label: [int]): n = 0 input_data, output_data, anomaly_label = [], [], [] while n + self.input_size + self.output_size <= len(data): input_data.append(data[n: n + self.input_size]) output_data.append(data[n + self.input_size: n + self.input_size + self.output_size]) anomaly_label.append([max(label[n + self.input_size: n + self.input_size + self.output_size])]) n = n + self.step return input_data.copy(), output_data.copy(), anomaly_label.copy() def __len__(self): if self.mode == 'train': return self.train_inputs.shape[0] elif self.mode == 'test': return self.test_inputs.shape[0] def __getitem__(self, idx): if self.mode == 'train': return self.train_inputs[idx], self.train_labels[idx], self.train_outputs[idx] elif self.mode == 'test': return self.test_inputs[idx], self.test_labels[idx], self.test_outputs[idx] if __name__ == "__main__": app = MyDataset('../dataset/SWAT/train.csv', test_path='../dataset/SWAT/test.csv', input_size=3) print(app)