首次提交本地代码

This commit is contained in:
zyq
2023-05-25 15:30:02 +08:00
parent 0ead9d742b
commit 2236622f33
27 changed files with 453475 additions and 0 deletions

View File

@@ -0,0 +1,305 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
from math import sqrt
import torch.utils.data as tud
class PositionalEmbedding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEmbedding, self).__init__()
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model).float()
pe.require_grad = False
position = torch.arange(0, max_len).float().unsqueeze(1)
div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
return self.pe[:, :x.size(1)]
class TokenEmbedding(nn.Module):
def __init__(self, c_in, d_model):
super(TokenEmbedding, self).__init__()
padding = 1 if torch.__version__ >= '1.5.0' else 2
self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model,
kernel_size=3, padding=padding, padding_mode='circular', bias=False)
for m in self.modules():
if isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='leaky_relu')
def forward(self, x):
x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2)
return x
class DataEmbedding(nn.Module):
def __init__(self, c_in, d_model, dropout=0.0):
super(DataEmbedding, self).__init__()
self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
self.position_embedding = PositionalEmbedding(d_model=d_model)
self.dropout = nn.Dropout(p=dropout)
def forward(self, x):
x = self.value_embedding(x) + self.position_embedding(x)
return self.dropout(x)
class TriangularCausalMask():
def __init__(self, B, L, device="cpu"):
mask_shape = [B, 1, L, L]
with torch.no_grad():
self._mask = torch.triu(torch.ones(mask_shape, dtype=torch.bool), diagonal=1).to(device)
@property
def mask(self):
return self._mask
class AnomalyAttention(nn.Module):
def __init__(self, win_size, mask_flag=True, scale=None, attention_dropout=0.0, output_attention=False):
super(AnomalyAttention, self).__init__()
self.scale = scale
self.mask_flag = mask_flag
self.output_attention = output_attention
self.dropout = nn.Dropout(attention_dropout)
window_size = win_size
self.distances = torch.zeros((window_size, window_size)).cuda()
for i in range(window_size):
for j in range(window_size):
self.distances[i][j] = abs(i - j)
def forward(self, queries, keys, values, sigma, attn_mask):
B, L, H, E = queries.shape
_, S, _, D = values.shape
scale = self.scale or 1. / sqrt(E)
scores = torch.einsum("blhe,bshe->bhls", queries, keys)
if self.mask_flag:
if attn_mask is None:
attn_mask = TriangularCausalMask(B, L, device=queries.device)
scores.masked_fill_(attn_mask.mask, -np.inf)
attn = scale * scores
sigma = sigma.transpose(1, 2) # B L H -> B H L
window_size = attn.shape[-1]
sigma = torch.sigmoid(sigma * 5) + 1e-5
sigma = torch.pow(3, sigma) - 1
sigma = sigma.unsqueeze(-1).repeat(1, 1, 1, window_size) # B H L L
prior = self.distances.unsqueeze(0).unsqueeze(0).repeat(sigma.shape[0], sigma.shape[1], 1, 1).cuda()
prior = 1.0 / (math.sqrt(2 * math.pi) * sigma) * torch.exp(-prior ** 2 / 2 / (sigma ** 2))
series = self.dropout(torch.softmax(attn, dim=-1))
V = torch.einsum("bhls,bshd->blhd", series, values)
if self.output_attention:
return (V.contiguous(), series, prior, sigma)
else:
return (V.contiguous(), None)
class AttentionLayer(nn.Module):
def __init__(self, attention, d_model, n_heads, d_keys=None,
d_values=None):
super(AttentionLayer, self).__init__()
d_keys = d_keys or (d_model // n_heads)
d_values = d_values or (d_model // n_heads)
self.norm = nn.LayerNorm(d_model)
self.inner_attention = attention
self.query_projection = nn.Linear(d_model,
d_keys * n_heads)
self.key_projection = nn.Linear(d_model,
d_keys * n_heads)
self.value_projection = nn.Linear(d_model,
d_values * n_heads)
self.sigma_projection = nn.Linear(d_model,
n_heads)
self.out_projection = nn.Linear(d_values * n_heads, d_model)
self.n_heads = n_heads
def forward(self, queries, keys, values, attn_mask):
B, L, _ = queries.shape
_, S, _ = keys.shape
H = self.n_heads
x = queries
queries = self.query_projection(queries).view(B, L, H, -1)
keys = self.key_projection(keys).view(B, S, H, -1)
values = self.value_projection(values).view(B, S, H, -1)
sigma = self.sigma_projection(x).view(B, L, H)
out, series, prior, sigma = self.inner_attention(
queries,
keys,
values,
sigma,
attn_mask
)
out = out.view(B, L, -1)
return self.out_projection(out), series, prior, sigma
class EncoderLayer(nn.Module):
def __init__(self, attention, d_model, d_ff=None, dropout=0.1, activation="relu"):
super(EncoderLayer, self).__init__()
d_ff = d_ff or 4 * d_model
self.attention = attention
self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
self.activation = F.relu if activation == "relu" else F.gelu
def forward(self, x, attn_mask=None):
new_x, attn, mask, sigma = self.attention(
x, x, x,
attn_mask=attn_mask
)
x = x + self.dropout(new_x)
y = x = self.norm1(x)
y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
y = self.dropout(self.conv2(y).transpose(-1, 1))
return self.norm2(x + y), attn, mask, sigma
class Encoder(nn.Module):
def __init__(self, attn_layers, norm_layer=None):
super(Encoder, self).__init__()
self.attn_layers = nn.ModuleList(attn_layers)
self.norm = norm_layer
def forward(self, x, attn_mask=None):
# x [B, L, D]
series_list = []
prior_list = []
sigma_list = []
for attn_layer in self.attn_layers:
x, series, prior, sigma = attn_layer(x, attn_mask=attn_mask)
series_list.append(series)
prior_list.append(prior)
sigma_list.append(sigma)
if self.norm is not None:
x = self.norm(x)
return x, series_list, prior_list, sigma_list
class Model(nn.Module):
def __init__(self, customs: {}, dataloader: tud.DataLoader):
super(Model, self).__init__()
win_size = int(customs["input_size"])
enc_in = c_out = dataloader.dataset.train_inputs.shape[-1]
d_model = 512
n_heads = 8
e_layers = 3
d_ff = 512
dropout = 0.0
activation = 'gelu'
output_attention = True
self.k = 3
self.win_size = win_size
self.name = "AnomalyTransformer"
# Encoding
self.embedding = DataEmbedding(enc_in, d_model, dropout)
# Encoder
self.encoder = Encoder(
[
EncoderLayer(
AttentionLayer(
AnomalyAttention(win_size, False, attention_dropout=dropout, output_attention=output_attention),
d_model, n_heads),
d_model,
d_ff,
dropout=dropout,
activation=activation
) for l in range(e_layers)
],
norm_layer=torch.nn.LayerNorm(d_model)
)
self.projection = nn.Linear(d_model, c_out, bias=True)
def forward(self, x):
enc_out = self.embedding(x)
enc_out, series, prior, sigmas = self.encoder(enc_out)
enc_out = self.projection(enc_out)
return enc_out, series, prior, sigmas
@staticmethod
def my_kl_loss(p, q):
res = p * (torch.log(p + 0.0001) - torch.log(q + 0.0001))
return torch.mean(torch.sum(res, dim=-1), dim=1)
def loss(self, x, y_true, epoch: int = None, device: str = "cpu"):
output, series, prior, _ = self.forward(x)
series_loss = 0.0
prior_loss = 0.0
for u in range(len(prior)):
series_loss += (torch.mean(self.my_kl_loss(series[u], (prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1, self.win_size)).detach())) +
torch.mean(self.my_kl_loss((prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1, self.win_size)).detach(), series[u])))
prior_loss += (torch.mean(self.my_kl_loss((prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1, self.win_size)), series[u].detach())) +
torch.mean(self.my_kl_loss(series[u].detach(), (prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1, self.win_size)))))
series_loss = series_loss / len(prior)
prior_loss = prior_loss / len(prior)
rec_loss = nn.MSELoss()(output, x)
loss1 = rec_loss - self.k * series_loss
loss2 = rec_loss + self.k * prior_loss
# Minimax strategy
loss1.backward(retain_graph=True)
loss2.backward()
return loss1.item()
def detection(self, x, y_true, epoch: int = None, device: str = "cpu"):
temperature = 50
output, series, prior, _ = self.forward(x)
loss = torch.mean(nn.MSELoss()(x, output), dim=-1)
series_loss = 0.0
prior_loss = 0.0
for u in range(len(prior)):
if u == 0:
series_loss = self.my_kl_loss(series[u], (
prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1,
self.win_size)).detach()) * temperature
prior_loss = self.my_kl_loss(
(prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1,
self.win_size)),
series[u].detach()) * temperature
else:
series_loss += self.my_kl_loss(series[u], (
prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1,
self.win_size)).detach()) * temperature
prior_loss += self.my_kl_loss(
(prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1,
self.win_size)),
series[u].detach()) * temperature
metric = torch.softmax((-series_loss - prior_loss), dim=-1)
cri = metric * loss
cri = cri.mean(dim=-1)
return cri, None

414
method/MtadGat.py Normal file
View File

@@ -0,0 +1,414 @@
"""
github找的第三方实现的Mtad-Gat源码
由于源码使用了torch.empty经常导致loss为nan因此替换为了torch.zeros
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as tud
class ConvLayer(nn.Module):
"""1-D Convolution layer to extract high-level features of each time-series input
:param n_features: Number of input features/nodes
:param window_size: length of the input sequence
:param kernel_size: size of kernel to use in the convolution operation
"""
def __init__(self, n_features, kernel_size=7):
super(ConvLayer, self).__init__()
self.padding = nn.ConstantPad1d((kernel_size - 1) // 2, 0.0)
self.conv = nn.Conv1d(in_channels=n_features, out_channels=n_features, kernel_size=kernel_size)
self.relu = nn.ReLU()
def forward(self, x):
x = x.permute(0, 2, 1)
x = self.padding(x)
x = self.relu(self.conv(x))
return x.permute(0, 2, 1) # Permute back
class FeatureAttentionLayer(nn.Module):
"""Single Graph Feature/Spatial Attention Layer
:param n_features: Number of input features/nodes
:param window_size: length of the input sequence
:param dropout: percentage of nodes to dropout
:param alpha: negative slope used in the leaky rely activation function
:param embed_dim: embedding dimension (output dimension of linear transformation)
:param use_gatv2: whether to use the modified attention mechanism of GATv2 instead of standard GAT
:param use_bias: whether to include a bias term in the attention layer
"""
def __init__(self, n_features, window_size, dropout, alpha, embed_dim=None, use_gatv2=True, use_bias=True):
super(FeatureAttentionLayer, self).__init__()
self.n_features = n_features
self.window_size = window_size
self.dropout = dropout
self.embed_dim = embed_dim if embed_dim is not None else window_size
self.use_gatv2 = use_gatv2
self.num_nodes = n_features
self.use_bias = use_bias
# Because linear transformation is done after concatenation in GATv2
if self.use_gatv2:
self.embed_dim *= 2
lin_input_dim = 2 * window_size
a_input_dim = self.embed_dim
else:
lin_input_dim = window_size
a_input_dim = 2 * self.embed_dim
self.lin = nn.Linear(lin_input_dim, self.embed_dim)
# self.a = nn.Parameter(torch.empty((a_input_dim, 1)))
self.a = nn.Parameter(torch.zeros((a_input_dim, 1)))
nn.init.xavier_uniform_(self.a.data, gain=1.414)
if self.use_bias:
# self.bias = nn.Parameter(torch.empty(n_features, n_features))
self.bias = nn.Parameter(torch.zeros(n_features, n_features))
self.leakyrelu = nn.LeakyReLU(alpha)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
# x shape (b, n, k): b - batch size, n - window size, k - number of features
# For feature attention we represent a node as the values of a particular feature across all timestamps
x = x.permute(0, 2, 1)
# 'Dynamic' GAT attention
# Proposed by Brody et. al., 2021 (https://arxiv.org/pdf/2105.14491.pdf)
# Linear transformation applied after concatenation and attention layer applied after leakyrelu
if self.use_gatv2:
a_input = self._make_attention_input(x) # (b, k, k, 2*window_size)
a_input = self.leakyrelu(self.lin(a_input)) # (b, k, k, embed_dim)
e = torch.matmul(a_input, self.a).squeeze(3) # (b, k, k, 1)
# Original GAT attention
else:
Wx = self.lin(x) # (b, k, k, embed_dim)
a_input = self._make_attention_input(Wx) # (b, k, k, 2*embed_dim)
e = self.leakyrelu(torch.matmul(a_input, self.a)).squeeze(3) # (b, k, k, 1)
if self.use_bias:
e += self.bias
# Attention weights
attention = torch.softmax(e, dim=2)
attention = torch.dropout(attention, self.dropout, train=self.training)
# Computing new node features using the attention
h = self.sigmoid(torch.matmul(attention, x))
return h.permute(0, 2, 1)
def _make_attention_input(self, v):
"""Preparing the feature attention mechanism.
Creating matrix with all possible combinations of concatenations of node.
Each node consists of all values of that node within the window
v1 || v1,
...
v1 || vK,
v2 || v1,
...
v2 || vK,
...
...
vK || v1,
...
vK || vK,
"""
K = self.num_nodes
blocks_repeating = v.repeat_interleave(K, dim=1) # Left-side of the matrix
blocks_alternating = v.repeat(1, K, 1) # Right-side of the matrix
combined = torch.cat((blocks_repeating, blocks_alternating), dim=2) # (b, K*K, 2*window_size)
if self.use_gatv2:
return combined.view(v.size(0), K, K, 2 * self.window_size)
else:
return combined.view(v.size(0), K, K, 2 * self.embed_dim)
class TemporalAttentionLayer(nn.Module):
"""Single Graph Temporal Attention Layer
:param n_features: number of input features/nodes
:param window_size: length of the input sequence
:param dropout: percentage of nodes to dropout
:param alpha: negative slope used in the leaky rely activation function
:param embed_dim: embedding dimension (output dimension of linear transformation)
:param use_gatv2: whether to use the modified attention mechanism of GATv2 instead of standard GAT
:param use_bias: whether to include a bias term in the attention layer
"""
def __init__(self, n_features, window_size, dropout, alpha, embed_dim=None, use_gatv2=True, use_bias=True):
super(TemporalAttentionLayer, self).__init__()
self.n_features = n_features
self.window_size = window_size
self.dropout = dropout
self.use_gatv2 = use_gatv2
self.embed_dim = embed_dim if embed_dim is not None else n_features
self.num_nodes = window_size
self.use_bias = use_bias
# Because linear transformation is performed after concatenation in GATv2
if self.use_gatv2:
self.embed_dim *= 2
lin_input_dim = 2 * n_features
a_input_dim = self.embed_dim
else:
lin_input_dim = n_features
a_input_dim = 2 * self.embed_dim
self.lin = nn.Linear(lin_input_dim, self.embed_dim)
# self.a = nn.Parameter(torch.empty((a_input_dim, 1)))
self.a = nn.Parameter(torch.zeros((a_input_dim, 1)))
nn.init.xavier_uniform_(self.a.data, gain=1.414)
if self.use_bias:
# self.bias = nn.Parameter(torch.empty(window_size, window_size))
self.bias = nn.Parameter(torch.zeros(window_size, window_size))
self.leakyrelu = nn.LeakyReLU(alpha)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
# x shape (b, n, k): b - batch size, n - window size, k - number of features
# For temporal attention a node is represented as all feature values at a specific timestamp
# 'Dynamic' GAT attention
# Proposed by Brody et. al., 2021 (https://arxiv.org/pdf/2105.14491.pdf)
# Linear transformation applied after concatenation and attention layer applied after leakyrelu
if self.use_gatv2:
a_input = self._make_attention_input(x) # (b, n, n, 2*n_features)
a_input = self.leakyrelu(self.lin(a_input)) # (b, n, n, embed_dim)
e = torch.matmul(a_input, self.a).squeeze(3) # (b, n, n, 1)
# Original GAT attention
else:
Wx = self.lin(x) # (b, n, n, embed_dim)
a_input = self._make_attention_input(Wx) # (b, n, n, 2*embed_dim)
e = self.leakyrelu(torch.matmul(a_input, self.a)).squeeze(3) # (b, n, n, 1)
if self.use_bias:
e += self.bias # (b, n, n, 1)
# Attention weights
attention = torch.softmax(e, dim=2)
attention = torch.dropout(attention, self.dropout, train=self.training)
h = self.sigmoid(torch.matmul(attention, x)) # (b, n, k)
return h
def _make_attention_input(self, v):
"""Preparing the temporal attention mechanism.
Creating matrix with all possible combinations of concatenations of node values:
(v1, v2..)_t1 || (v1, v2..)_t1
(v1, v2..)_t1 || (v1, v2..)_t2
...
...
(v1, v2..)_tn || (v1, v2..)_t1
(v1, v2..)_tn || (v1, v2..)_t2
"""
K = self.num_nodes
blocks_repeating = v.repeat_interleave(K, dim=1) # Left-side of the matrix
blocks_alternating = v.repeat(1, K, 1) # Right-side of the matrix
combined = torch.cat((blocks_repeating, blocks_alternating), dim=2)
if self.use_gatv2:
return combined.view(v.size(0), K, K, 2 * self.n_features)
else:
return combined.view(v.size(0), K, K, 2 * self.embed_dim)
class GRULayer(nn.Module):
"""Gated Recurrent Unit (GRU) Layer
:param in_dim: number of input features
:param hid_dim: hidden size of the GRU
:param n_layers: number of layers in GRU
:param dropout: dropout rate
"""
def __init__(self, in_dim, hid_dim, n_layers, dropout):
super(GRULayer, self).__init__()
self.hid_dim = hid_dim
self.n_layers = n_layers
self.dropout = 0.0 if n_layers == 1 else dropout
self.gru = nn.GRU(in_dim, hid_dim, num_layers=n_layers, batch_first=True, dropout=self.dropout)
def forward(self, x):
out, h = self.gru(x)
out, h = out[-1, :, :], h[-1, :, :] # Extracting from last layer
return out, h
class RNNDecoder(nn.Module):
"""GRU-based Decoder network that converts latent vector into output
:param in_dim: number of input features
:param n_layers: number of layers in RNN
:param hid_dim: hidden size of the RNN
:param dropout: dropout rate
"""
def __init__(self, in_dim, hid_dim, n_layers, dropout):
super(RNNDecoder, self).__init__()
self.in_dim = in_dim
self.dropout = 0.0 if n_layers == 1 else dropout
self.rnn = nn.GRU(in_dim, hid_dim, n_layers, batch_first=True, dropout=self.dropout)
def forward(self, x):
decoder_out, _ = self.rnn(x)
return decoder_out
class ReconstructionModel(nn.Module):
"""Reconstruction Model
:param window_size: length of the input sequence
:param in_dim: number of input features
:param n_layers: number of layers in RNN
:param hid_dim: hidden size of the RNN
:param in_dim: number of output features
:param dropout: dropout rate
"""
def __init__(self, window_size, in_dim, hid_dim, out_dim, n_layers, dropout):
super(ReconstructionModel, self).__init__()
self.window_size = window_size
self.decoder = RNNDecoder(in_dim, hid_dim, n_layers, dropout)
self.fc = nn.Linear(hid_dim, out_dim)
def forward(self, x):
# x will be last hidden state of the GRU layer
h_end = x
h_end_rep = h_end.repeat_interleave(self.window_size, dim=1).view(x.size(0), self.window_size, -1)
decoder_out = self.decoder(h_end_rep)
out = self.fc(decoder_out)
return out
class Forecasting_Model(nn.Module):
"""Forecasting model (fully-connected network)
:param in_dim: number of input features
:param hid_dim: hidden size of the FC network
:param out_dim: number of output features
:param n_layers: number of FC layers
:param dropout: dropout rate
"""
def __init__(self, in_dim, hid_dim, out_dim, n_layers, dropout):
super(Forecasting_Model, self).__init__()
layers = [nn.Linear(in_dim, hid_dim)]
for _ in range(n_layers - 1):
layers.append(nn.Linear(hid_dim, hid_dim))
layers.append(nn.Linear(hid_dim, out_dim))
self.layers = nn.ModuleList(layers)
self.dropout = nn.Dropout(dropout)
self.relu = nn.ReLU()
def forward(self, x):
for i in range(len(self.layers) - 1):
x = self.relu(self.layers[i](x))
x = self.dropout(x)
return self.layers[-1](x)
class Model(nn.Module):
""" MTAD_GAT model class.
:param n_features: Number of input features
:param window_size: Length of the input sequence
:param out_dim: Number of features to output
:param kernel_size: size of kernel to use in the 1-D convolution
:param feat_gat_embed_dim: embedding dimension (output dimension of linear transformation)
in feat-oriented GAT layer
:param time_gat_embed_dim: embedding dimension (output dimension of linear transformation)
in time-oriented GAT layer
:param use_gatv2: whether to use the modified attention mechanism of GATv2 instead of standard GAT
:param gru_n_layers: number of layers in the GRU layer
:param gru_hid_dim: hidden dimension in the GRU layer
:param forecast_n_layers: number of layers in the FC-based Forecasting Model
:param forecast_hid_dim: hidden dimension in the FC-based Forecasting Model
:param recon_n_layers: number of layers in the GRU-based Reconstruction Model
:param recon_hid_dim: hidden dimension in the GRU-based Reconstruction Model
:param dropout: dropout rate
:param alpha: negative slope used in the leaky rely activation function
"""
def __init__(self, customs: {}, dataloader: tud.DataLoader):
super(Model, self).__init__()
n_features = dataloader.dataset.train_inputs.shape[-1]
window_size = int(customs["input_size"])
out_dim = n_features
kernel_size = 7
feat_gat_embed_dim = None
time_gat_embed_dim = None
use_gatv2 = True
gru_n_layers = 1
gru_hid_dim = 150
forecast_n_layers = 1
forecast_hid_dim = 150
recon_n_layers = 1
recon_hid_dim = 150
dropout = 0.2
alpha = 0.2
self.name = "MtadGat"
self.conv = ConvLayer(n_features, kernel_size)
self.feature_gat = FeatureAttentionLayer(
n_features, window_size, dropout, alpha, feat_gat_embed_dim, use_gatv2)
self.temporal_gat = TemporalAttentionLayer(n_features, window_size, dropout, alpha, time_gat_embed_dim,
use_gatv2)
self.gru = GRULayer(3 * n_features, gru_hid_dim, gru_n_layers, dropout)
self.forecasting_model = Forecasting_Model(
gru_hid_dim, forecast_hid_dim, out_dim, forecast_n_layers, dropout)
self.recon_model = ReconstructionModel(window_size, gru_hid_dim, recon_hid_dim, out_dim, recon_n_layers,
dropout)
def forward(self, x):
# x shape (b, n, k): b - batch size, n - window size, k - number of features
x = self.conv(x)
h_feat = self.feature_gat(x)
h_temp = self.temporal_gat(x)
h_cat = torch.cat([x, h_feat, h_temp], dim=2) # (b, n, 3k)
_, h_end = self.gru(h_cat)
h_end = h_end.view(x.shape[0], -1) # Hidden state for last timestamp
predictions = self.forecasting_model(h_end)
recons = self.recon_model(h_end)
return predictions, recons
def loss(self, x, y_true, epoch: int = None, device: str = "cpu"):
preds, recons = self.forward(x)
if preds.ndim == 3:
preds = preds.squeeze(1)
if y_true.ndim == 3:
y_true = y_true.squeeze(1)
forecast_criterion = nn.MSELoss()
recon_criterion = nn.MSELoss()
forecast_loss = torch.sqrt(forecast_criterion(y_true, preds))
recon_loss = torch.sqrt(recon_criterion(x, recons))
loss = forecast_loss + recon_loss
loss.backward()
return loss.item()
def detection(self, x, y_true, epoch: int = None, device: str = "cpu"):
preds, recons = self.forward(x)
score = F.pairwise_distance(recons.reshape(recons.size(0), -1), x.reshape(x.size(0), -1)) + \
F.pairwise_distance(y_true.reshape(y_true.size(0), -1), preds.reshape(preds.size(0), -1))
return score, None

647
method/MtadGatAtt.py Normal file
View File

@@ -0,0 +1,647 @@
import torch
import torch.nn as nn
from math import sqrt
import torch.nn.functional as F
import numpy as np
import torch.utils.data as tud
class ConvLayer(nn.Module):
"""1-D Convolution layer to extract high-level features of each time-series input
:param n_features: Number of input features/nodes
:param window_size: length of the input sequence
:param kernel_size: size of kernel to use in the convolution operation
"""
def __init__(self, n_features, kernel_size=7):
super(ConvLayer, self).__init__()
self.padding = nn.ConstantPad1d((kernel_size - 1) // 2, 0.0)
self.conv = nn.Conv1d(in_channels=n_features, out_channels=n_features, kernel_size=kernel_size)
self.relu = nn.ReLU()
def forward(self, x):
x = x.permute(0, 2, 1)
x = self.padding(x)
x = self.relu(self.conv(x))
return x.permute(0, 2, 1) # Permute back
class FeatureAttentionLayer(nn.Module):
"""Single Graph Feature/Spatial Attention Layer
:param n_features: Number of input features/nodes
:param window_size: length of the input sequence
:param dropout: percentage of nodes to dropout
:param alpha: negative slope used in the leaky rely activation function
:param embed_dim: embedding dimension (output dimension of linear transformation)
:param use_gatv2: whether to use the modified attention mechanism of GATv2 instead of standard GAT
:param use_bias: whether to include a bias term in the attention layer
"""
def __init__(self, n_features, window_size, dropout, alpha, embed_dim=None, use_gatv2=True, use_bias=True,
use_softmax=True):
super(FeatureAttentionLayer, self).__init__()
self.n_features = n_features
self.window_size = window_size
self.dropout = dropout
self.embed_dim = embed_dim if embed_dim is not None else window_size
self.use_gatv2 = use_gatv2
self.num_nodes = n_features
self.use_bias = use_bias
self.use_softmax = use_softmax
# Because linear transformation is done after concatenation in GATv2
if self.use_gatv2:
self.embed_dim *= 2
lin_input_dim = 2 * window_size
a_input_dim = self.embed_dim
else:
lin_input_dim = window_size
a_input_dim = 2 * self.embed_dim
self.lin = nn.Linear(lin_input_dim, self.embed_dim)
self.a = nn.Parameter(torch.empty((a_input_dim, 1)))
nn.init.xavier_uniform_(self.a.data, gain=1.414)
if self.use_bias:
self.bias = nn.Parameter(torch.ones(n_features, n_features))
self.leakyrelu = nn.LeakyReLU(alpha)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
# x shape (b, n, k): b - batch size, n - window size, k - number of features
# For feature attention we represent a node as the values of a particular feature across all timestamps
x = x.permute(0, 2, 1)
# 'Dynamic' GAT attention
# Proposed by Brody et. al., 2021 (https://arxiv.org/pdf/2105.14491.pdf)
# Linear transformation applied after concatenation and attention layer applied after leakyrelu
if self.use_gatv2:
a_input = self._make_attention_input(x) # (b, k, k, 2*window_size)
a_input = self.leakyrelu(self.lin(a_input)) # (b, k, k, embed_dim)
e = torch.matmul(a_input, self.a).squeeze(3) # (b, k, k, 1)
# Original GAT attention
else:
Wx = self.lin(x) # (b, k, k, embed_dim)
a_input = self._make_attention_input(Wx) # (b, k, k, 2*embed_dim)
e = self.leakyrelu(torch.matmul(a_input, self.a)).squeeze(3) # (b, k, k, 1)
if self.use_bias:
e += self.bias
# Attention weights
if self.use_softmax:
e = torch.softmax(e, dim=2)
attention = torch.dropout(e, self.dropout, train=self.training)
# Computing new node features using the attention
h = self.sigmoid(torch.matmul(attention, x))
return h.permute(0, 2, 1)
def _make_attention_input(self, v):
"""Preparing the feature attention mechanism.
Creating matrix with all possible combinations of concatenations of node.
Each node consists of all values of that node within the window
v1 || v1,
...
v1 || vK,
v2 || v1,
...
v2 || vK,
...
...
vK || v1,
...
vK || vK,
"""
K = self.num_nodes
blocks_repeating = v.repeat_interleave(K, dim=1) # Left-side of the matrix
blocks_alternating = v.repeat(1, K, 1) # Right-side of the matrix
combined = torch.cat((blocks_repeating, blocks_alternating), dim=2) # (b, K*K, 2*window_size)
if self.use_gatv2:
return combined.view(v.size(0), K, K, 2 * self.window_size)
else:
return combined.view(v.size(0), K, K, 2 * self.embed_dim)
class TemporalAttentionLayer(nn.Module):
"""Single Graph Temporal Attention Layer
:param n_features: number of input features/nodes
:param window_size: length of the input sequence
:param dropout: percentage of nodes to dropout
:param alpha: negative slope used in the leaky rely activation function
:param embed_dim: embedding dimension (output dimension of linear transformation)
:param use_gatv2: whether to use the modified attention mechanism of GATv2 instead of standard GAT
:param use_bias: whether to include a bias term in the attention layer
"""
def __init__(self, n_features, window_size, dropout, alpha, embed_dim=None, use_gatv2=True, use_bias=True,
use_softmax=True):
super(TemporalAttentionLayer, self).__init__()
self.n_features = n_features
self.window_size = window_size
self.dropout = dropout
self.use_gatv2 = use_gatv2
self.embed_dim = embed_dim if embed_dim is not None else n_features
self.num_nodes = window_size
self.use_bias = use_bias
self.use_softmax = use_softmax
# Because linear transformation is performed after concatenation in GATv2
if self.use_gatv2:
self.embed_dim *= 2
lin_input_dim = 2 * n_features
a_input_dim = self.embed_dim
else:
lin_input_dim = n_features
a_input_dim = 2 * self.embed_dim
self.lin = nn.Linear(lin_input_dim, self.embed_dim)
self.a = nn.Parameter(torch.empty((a_input_dim, 1)))
nn.init.xavier_uniform_(self.a.data, gain=1.414)
if self.use_bias:
self.bias = nn.Parameter(torch.ones(window_size, window_size))
self.leakyrelu = nn.LeakyReLU(alpha)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
# x shape (b, n, k): b - batch size, n - window size, k - number of features
# For temporal attention a node is represented as all feature values at a specific timestamp
# 'Dynamic' GAT attention
# Proposed by Brody et. al., 2021 (https://arxiv.org/pdf/2105.14491.pdf)
# Linear transformation applied after concatenation and attention layer applied after leakyrelu
if self.use_gatv2:
a_input = self._make_attention_input(x) # (b, n, n, 2*n_features)
a_input = self.leakyrelu(self.lin(a_input)) # (b, n, n, embed_dim)
e = torch.matmul(a_input, self.a).squeeze(3) # (b, n, n, 1)
# Original GAT attention
else:
Wx = self.lin(x) # (b, n, n, embed_dim)
a_input = self._make_attention_input(Wx) # (b, n, n, 2*embed_dim)
e = self.leakyrelu(torch.matmul(a_input, self.a)).squeeze(3) # (b, n, n, 1)
if self.use_bias:
e += self.bias # (b, n, n, 1)
# Attention weights
if self.use_softmax:
e = torch.softmax(e, dim=2)
attention = torch.dropout(e, self.dropout, train=self.training)
h = self.sigmoid(torch.matmul(attention, x)) # (b, n, k)
return h
def _make_attention_input(self, v):
"""Preparing the temporal attention mechanism.
Creating matrix with all possible combinations of concatenations of node values:
(v1, v2..)_t1 || (v1, v2..)_t1
(v1, v2..)_t1 || (v1, v2..)_t2
...
...
(v1, v2..)_tn || (v1, v2..)_t1
(v1, v2..)_tn || (v1, v2..)_t2
"""
K = self.num_nodes
blocks_repeating = v.repeat_interleave(K, dim=1) # Left-side of the matrix
blocks_alternating = v.repeat(1, K, 1) # Right-side of the matrix
combined = torch.cat((blocks_repeating, blocks_alternating), dim=2)
if self.use_gatv2:
return combined.view(v.size(0), K, K, 2 * self.n_features)
else:
return combined.view(v.size(0), K, K, 2 * self.embed_dim)
class FullAttention(nn.Module):
def __init__(self, mask_flag=True, scale=None, attention_dropout=0.1, output_attention=False):
super(FullAttention, self).__init__()
self.scale = scale
self.mask_flag = mask_flag
self.output_attention = output_attention
self.dropout = nn.Dropout(attention_dropout)
self.relu_q = nn.ReLU()
self.relu_k = nn.ReLU()
@staticmethod
def TriangularCausalMask(B, L, S, device='cpu'):
mask_shape = [B, 1, L, S]
with torch.no_grad():
mask = torch.triu(torch.ones(mask_shape, dtype=torch.bool), diagonal=1)
return mask.to(device)
def forward(self, queries, keys, values, attn_mask):
B, L, H, E = queries.shape
_, S, _, D = values.shape
scale = self.scale or 1. / sqrt(E) # scale相对于取多少比例取前1/根号n
scores = torch.einsum("blhe,bshe->bhls", queries, keys)
if self.mask_flag:
if attn_mask is None:
attn_mask = self.TriangularCausalMask(B, L, S, device=queries.device)
scores.masked_fill_(attn_mask, 0)
A = self.dropout(torch.softmax(scale * scores, dim=-1))
V = torch.einsum("bhls,bshd->blhd", A, values)
# queries = self.relu_q(queries)
# keys = self.relu_k(keys)
# KV = torch.einsum("blhe,bshe->bhls", keys, values)
# A = self.dropout(scale * KV)
# V = torch.einsum("bshd,bhls->blhd", queries, A)
if self.output_attention:
return (V.contiguous(), A)
else:
return (V.contiguous(), None)
class ProbAttention(nn.Module):
def __init__(self, mask_flag=True, factor=2, scale=None, attention_dropout=0.1, output_attention=False):
super(ProbAttention, self).__init__()
self.factor = factor
self.scale = scale
self.mask_flag = mask_flag
self.output_attention = output_attention
@staticmethod
def ProbMask(B, H, D, index, scores, device='cpu'):
_mask = torch.ones(D, scores.shape[-2], dtype=torch.bool).triu(1)
_mask_ex = _mask[None, None, :].expand(B, H, D, scores.shape[-2])
indicator = _mask_ex.transpose(-2, -1)[torch.arange(B)[:, None, None],
torch.arange(H)[None, :, None],
index, :].transpose(-2, -1)
mask = indicator.view(scores.shape)
return mask.to(device)
def _prob_KV(self, K, V, sample_v, n_top): # n_top: c*ln(L_q)
# Q [B, H, L, D]
B, H, L, E_V = V.shape
_, _, _, E_K = K.shape
# calculate the sampled K_V
V_expand = V.transpose(-2, -1).unsqueeze(-2).expand(B, H, E_V, E_K, L)
index_sample = torch.randint(E_V, (E_K, sample_v)) # real U = U_part(factor*ln(L_k))*L_q
V_sample = V_expand[:, :, torch.arange(E_V).unsqueeze(1), index_sample, :]
K_V_sample = torch.matmul(K.transpose(-2, -1).unsqueeze(-2), V_sample.transpose(-2, -1)).squeeze()
# find the Top_k query with sparisty measurement
M = K_V_sample.max(-1)[0] - torch.div(K_V_sample.sum(-1), E_V)
M_top = M.topk(n_top, sorted=False)[1]
# use the reduced Q to calculate Q_K
V_reduce = V.transpose(-2, -1)[torch.arange(B)[:, None, None],
torch.arange(H)[None, :, None],
M_top, :].transpose(-2, -1) # factor*ln(L_q)
K_V = torch.matmul(K.transpose(-2, -1), V_reduce) # factor*ln(L_q)*L_k
#
return K_V, M_top
def _get_initial_context(self, V, L_Q):
B, H, L_V, D = V.shape
if not self.mask_flag:
# V_sum = V.sum(dim=-2)
V_sum = V.mean(dim=-2)
contex = V_sum.unsqueeze(-2).expand(B, H, L_Q, V_sum.shape[-1]).clone()
else: # use mask
assert (L_Q == L_V) # requires that L_Q == L_V, i.e. for self-attention only
contex = V.cumsum(dim=-2)
return contex
def _update_context(self, context_in, Q, scores, index, D_K, attn_mask):
B, H, L, D_Q = Q.shape
if self.mask_flag:
attn_mask = self.ProbMask(B, H, D_K, index, scores, device=Q.device)
scores.masked_fill_(attn_mask, -np.inf)
attn = torch.softmax(scores, dim=-1) # nn.Softmax(dim=-1)(scores)
context_in.transpose(-2, -1)[torch.arange(B)[:, None, None],
torch.arange(H)[None, :, None],
index, :] = torch.matmul(Q, attn).type_as(context_in).transpose(-2, -1)
if self.output_attention:
attns = (torch.ones([B, H, D_K, D_K]) / D_K).type_as(attn)
attns[torch.arange(B)[:, None, None], torch.arange(H)[None, :, None], index, :] = attn
return (context_in, attns)
else:
return (context_in, None)
def forward(self, queries, keys, values, attn_mask):
# B, L_Q, H, D = queries.shape
# _, L_K, _, _ = keys.shape
B, L, H, D_K = keys.shape
_, _, _, D_V = values.shape
queries = queries.transpose(2, 1)
keys = keys.transpose(2, 1)
values = values.transpose(2, 1)
U_part = self.factor * np.ceil(np.log(D_V)).astype('int').item() # c*ln(L_k)
u = self.factor * np.ceil(np.log(D_K)).astype('int').item() # c*ln(L_q)
U_part = U_part if U_part < D_V else D_V
u = u if u < D_K else D_K
scores_top, index = self._prob_KV(keys, values, sample_v=U_part, n_top=u)
# add scale factor
scale = self.scale or 1. / sqrt(D_K)
if scale is not None:
scores_top = scores_top * scale
# get the context
context = self._get_initial_context(queries, L)
# update the context with selected top_k queries
context, attn = self._update_context(context, queries, scores_top, index, D_K, attn_mask)
return context.contiguous(), attn
class AttentionBlock(nn.Module):
def __init__(self, d_model, n_model, n_heads=8, d_keys=None, d_values=None):
super(AttentionBlock, self).__init__()
d_keys = d_keys or (d_model // n_heads)
d_values = d_values or (d_model // n_heads)
self.inner_attention = FullAttention()
# self.inner_attention = ProbAttention(device=device)
self.query_projection = nn.Linear(d_model, d_keys * n_heads)
self.key_projection = nn.Linear(d_model, d_keys * n_heads)
self.value_projection = nn.Linear(d_model, d_values * n_heads)
self.out_projection = nn.Linear(d_values * n_heads, d_model)
self.n_heads = n_heads
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
def forward(self, queries, keys, values, attn_mask):
'''
Q: [batch_size, len_q, d_k]
K: [batch_size, len_k, d_k]
V: [batch_size, len_v(=len_k), d_v]
attn_mask: [batch_size, seq_len, seq_len]
'''
batch_size, len_q, _ = queries.shape
_, len_k, _ = keys.shape
queries = self.query_projection(queries).view(batch_size, len_q, self.n_heads, -1)
keys = self.key_projection(keys).view(batch_size, len_k, self.n_heads, -1)
values = self.value_projection(values).view(batch_size, len_k, self.n_heads, -1)
out, attn = self.inner_attention(
queries,
keys,
values,
attn_mask
)
out = out.view(batch_size, len_q, -1)
out = self.out_projection(out)
out = self.layer_norm(out)
return out, attn
class GRULayer(nn.Module):
"""Gated Recurrent Unit (GRU) Layer
:param in_dim: number of input features
:param hid_dim: hidden size of the GRU
:param n_layers: number of layers in GRU
:param dropout: dropout rate
"""
def __init__(self, in_dim, hid_dim, n_layers, dropout):
super(GRULayer, self).__init__()
self.hid_dim = hid_dim
self.n_layers = n_layers
self.dropout = 0.0 if n_layers == 1 else dropout
self.gru = nn.GRU(in_dim, hid_dim, num_layers=n_layers, batch_first=True, dropout=self.dropout)
def forward(self, x):
out, h = self.gru(x)
out, h = out[-1, :, :], h[-1, :, :] # Extracting from last layer
return out, h
class RNNDecoder(nn.Module):
"""GRU-based Decoder network that converts latent vector into output
:param in_dim: number of input features
:param n_layers: number of layers in RNN
:param hid_dim: hidden size of the RNN
:param dropout: dropout rate
"""
def __init__(self, in_dim, hid_dim, n_layers, dropout):
super(RNNDecoder, self).__init__()
self.in_dim = in_dim
self.dropout = 0.0 if n_layers == 1 else dropout
self.rnn = nn.GRU(in_dim, hid_dim, n_layers, batch_first=True, dropout=self.dropout)
def forward(self, x):
decoder_out, _ = self.rnn(x)
return decoder_out
class ReconstructionModel(nn.Module):
"""Reconstruction Model
:param window_size: length of the input sequence
:param in_dim: number of input features
:param n_layers: number of layers in RNN
:param hid_dim: hidden size of the RNN
:param in_dim: number of output features
:param dropout: dropout rate
"""
def __init__(self, window_size, in_dim, hid_dim, out_dim, n_layers, dropout):
super(ReconstructionModel, self).__init__()
self.window_size = window_size
self.decoder = RNNDecoder(in_dim, hid_dim, n_layers, dropout)
self.fc = nn.Linear(hid_dim, out_dim)
def forward(self, x):
# x will be last hidden state of the GRU layer
h_end = x
h_end_rep = h_end.repeat_interleave(self.window_size, dim=1).view(x.size(0), self.window_size, -1)
decoder_out = self.decoder(h_end_rep)
out = self.fc(decoder_out)
return out
class Forecasting_Model(nn.Module):
"""Forecasting model (fully-connected network)
:param in_dim: number of input features
:param hid_dim: hidden size of the FC network
:param out_dim: number of output features
:param n_layers: number of FC layers
:param dropout: dropout rate
"""
def __init__(self, in_dim, hid_dim, out_dim, n_layers, dropout):
super(Forecasting_Model, self).__init__()
layers = [nn.Linear(in_dim, hid_dim)]
for _ in range(n_layers - 1):
layers.append(nn.Linear(hid_dim, hid_dim))
layers.append(nn.Linear(hid_dim, out_dim))
self.layers = nn.ModuleList(layers)
self.dropout = nn.Dropout(dropout)
self.relu = nn.ReLU()
def forward(self, x):
for i in range(len(self.layers) - 1):
x = self.relu(self.layers[i](x))
x = self.dropout(x)
return self.layers[-1](x)
class Model(nn.Module):
""" MTAD_GAT model class.
:param n_features: Number of input features
:param window_size: Length of the input sequence
:param out_dim: Number of features to output
:param kernel_size: size of kernel to use in the 1-D convolution
:param feat_gat_embed_dim: embedding dimension (output dimension of linear transformation)
in feat-oriented GAT layer
:param time_gat_embed_dim: embedding dimension (output dimension of linear transformation)
in time-oriented GAT layer
:param use_gatv2: whether to use the modified attention mechanism of GATv2 instead of standard GAT
:param gru_n_layers: number of layers in the GRU layer
:param gru_hid_dim: hidden dimension in the GRU layer
:param forecast_n_layers: number of layers in the FC-based Forecasting Model
:param forecast_hid_dim: hidden dimension in the FC-based Forecasting Model
:param recon_n_layers: number of layers in the GRU-based Reconstruction Model
:param recon_hid_dim: hidden dimension in the GRU-based Reconstruction Model
:param dropout: dropout rate
:param alpha: negative slope used in the leaky rely activation function
"""
def __init__(self, customs: dict, dataloader: tud.DataLoader = None):
super(Model, self).__init__()
n_features = dataloader.dataset.train_inputs.shape[-1]
window_size = int(customs["input_size"])
out_dim = n_features
kernel_size = 7
feat_gat_embed_dim = None
time_gat_embed_dim = None
use_gatv2 = True
gru_n_layers = 1
gru_hid_dim = 150
forecast_n_layers = 1
forecast_hid_dim = 150
recon_n_layers = 1
recon_hid_dim = 150
dropout = 0.2
alpha = 0.2
optimize = True
self.name = "MtadGatAtt"
self.optimize = optimize
use_softmax = not optimize
self.conv = ConvLayer(n_features, kernel_size)
self.feature_gat = FeatureAttentionLayer(
n_features, window_size, dropout, alpha, feat_gat_embed_dim, use_gatv2, use_softmax=use_softmax)
self.temporal_gat = TemporalAttentionLayer(n_features, window_size, dropout, alpha, time_gat_embed_dim,
use_gatv2, use_softmax=use_softmax)
self.forecasting_model = Forecasting_Model(
gru_hid_dim, forecast_hid_dim, out_dim, forecast_n_layers, dropout)
if optimize:
self.encode = AttentionBlock(3 * n_features, window_size)
self.encode_feature = nn.Linear(3 * n_features * window_size, gru_hid_dim)
self.decode_feature = nn.Linear(gru_hid_dim, n_features * window_size)
self.decode = AttentionBlock(n_features, window_size)
else:
self.gru = GRULayer(3 * n_features, gru_hid_dim, gru_n_layers, dropout)
self.recon_model = ReconstructionModel(window_size, gru_hid_dim, recon_hid_dim, out_dim, recon_n_layers,
dropout)
def forward(self, x):
x = self.conv(x)
h_feat = self.feature_gat(x)
h_temp = self.temporal_gat(x)
h_cat = torch.cat([x, h_feat, h_temp], dim=2) # (b, n, 3k)
if self.optimize:
h_end, _ = self.encode(h_cat, h_cat, h_cat, None)
h_end = self.encode_feature(h_end.reshape(h_end.size(0), -1))
else:
_, h_end = self.gru(h_cat)
h_end = h_end.view(x.shape[0], -1) # Hidden state for last timestamp
predictions = self.forecasting_model(h_end)
if self.optimize:
h_end = self.decode_feature(h_end)
h_end = h_end.reshape(x.shape[0], x.shape[1], x.shape[2])
recons, _ = self.decode(h_end, h_end, h_end, None)
else:
recons = self.recon_model(h_end)
return predictions, recons
def loss(self, x, y_true, epoch: int = None, device: str = "cpu"):
preds, recons = self.forward(x)
if preds.ndim == 3:
preds = preds.squeeze(1)
if y_true.ndim == 3:
y_true = y_true.squeeze(1)
forecast_criterion = nn.MSELoss()
recon_criterion = nn.MSELoss()
forecast_loss = torch.sqrt(forecast_criterion(y_true, preds))
recon_loss = torch.sqrt(recon_criterion(x, recons))
loss = forecast_loss + recon_loss
loss.backward()
return loss.item()
def detection(self, x, y_true, epoch: int = None, device: str = "cpu"):
preds, recons = self.forward(x)
score = F.pairwise_distance(recons.reshape(recons.size(0), -1), x.reshape(x.size(0), -1)) + F.pairwise_distance(y_true.reshape(y_true.size(0), -1), preds.reshape(preds.size(0), -1))
return score, None
if __name__ == "__main__":
from tqdm import tqdm
import time
epoch = 10000
batch_size = 1
# device = 'cuda:1' if torch.cuda.is_available() else 'cpu'
device = 'cpu'
input_len_list = [30, 60, 90, 120, 150, 180, 210, 240, 270, 300]
for input_len in input_len_list:
model = Model(52, input_len, 52, optimize=False, device=device).to(device)
a = torch.Tensor(torch.ones((batch_size, input_len, 52))).to(device)
start = time.time()
for i in tqdm(range(epoch)):
model(a)
end = time.time()
speed1 = batch_size * epoch / (end - start)
model = Model(52, input_len, 52, optimize=True, device=device).to(device)
a = torch.Tensor(torch.ones((batch_size, input_len, 52))).to(device)
start = time.time()
for i in tqdm(range(epoch)):
model(a)
end = time.time()
speed2 = batch_size * epoch / (end - start)
print(input_len, (speed2 - speed1)/speed1, speed1, speed2)

3
method/__init__.py Normal file
View File

@@ -0,0 +1,3 @@
from .MtadGat import Model
from .MtadGatAtt import Model
from .AnomalyTransformer import Model

50
method/template.py Normal file
View File

@@ -0,0 +1,50 @@
import torch.nn as nn
import torch.utils.data as tud
import torch
class Model(nn.Module):
def __init__(self, customs: dict, dataloader: tud.DataLoader = None):
"""
:param customs: 自定义参数内容取自于config.ini文件的[CustomParameters]部分。
:param dataloader: 数据集初始化完成的dataloader。在自定义的预处理方法文件中可以增加内部变量或者方法提供给模型。
例如模型初始化需要数据的维度数量可通过n_features = dataloader.dataset.train_inputs.shape[-1]获取
或在预处理方法的MyDataset类中定义self.n_features = self.train_inputs.shape[-1]
通过n_features = dataloader.dataset.n_features获取
"""
super(Model, self).__init__()
def forward(self, x):
"""
:param x: 模型的输入在本工具中为MyDataset类中__getitem__方法返回的三个变量中的第一个变量。
:return: 模型的输出,可以自定义
"""
return None
def loss(self, x, y_true, epoch: int = None, device: str = "cpu"):
"""
计算loss。注意计算loss时如采用torch之外的库计算会造成梯度截断请全部使用torch的方法
:param x: 输入数据
:param y_true: 真实输出数据
:param epoch: 当前是第几个epoch
:param device: 设备cpu或者cuda
:return: loss值
"""
y_pred = self.forward(x) # 模型的输出
loss = torch.Tensor([1]) # 示例,请修改
loss.backward()
return loss.item()
def detection(self, x, y_true, epoch: int = None, device: str = "cpu"):
"""
检测方法,可以输出异常的分数,也可以输出具体的标签。
如输出异常分数,则后续会根据异常分数自动划分阈值,高于阈值的为异常,自动赋予标签;如输出标签,则直接进行评估。
:param x: 输入数据
:param y_true: 真实输出数据
:param epoch: 当前是第几个epoch
:param device: 设备cpu或者cuda
:return: scorelabel。如选择输出异常的分数则输出scorelabel为None如选择输出标签则输出labelscore为None。
score的格式为torch的Tensor格式尺寸为[batch_size]label的格式为torch的IntTensor格式尺寸为[batch_size]
"""
y_pred = self.forward(x) # 模型的输出
return None, None