首次提交本地代码
This commit is contained in:
305
method/AnomalyTransformer.py
Normal file
305
method/AnomalyTransformer.py
Normal file
@@ -0,0 +1,305 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import numpy as np
|
||||
import math
|
||||
from math import sqrt
|
||||
import torch.utils.data as tud
|
||||
|
||||
|
||||
class PositionalEmbedding(nn.Module):
|
||||
def __init__(self, d_model, max_len=5000):
|
||||
super(PositionalEmbedding, self).__init__()
|
||||
# Compute the positional encodings once in log space.
|
||||
pe = torch.zeros(max_len, d_model).float()
|
||||
pe.require_grad = False
|
||||
|
||||
position = torch.arange(0, max_len).float().unsqueeze(1)
|
||||
div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()
|
||||
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
|
||||
pe = pe.unsqueeze(0)
|
||||
self.register_buffer('pe', pe)
|
||||
|
||||
def forward(self, x):
|
||||
return self.pe[:, :x.size(1)]
|
||||
|
||||
|
||||
class TokenEmbedding(nn.Module):
|
||||
def __init__(self, c_in, d_model):
|
||||
super(TokenEmbedding, self).__init__()
|
||||
padding = 1 if torch.__version__ >= '1.5.0' else 2
|
||||
self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model,
|
||||
kernel_size=3, padding=padding, padding_mode='circular', bias=False)
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv1d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='leaky_relu')
|
||||
|
||||
def forward(self, x):
|
||||
x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2)
|
||||
return x
|
||||
|
||||
|
||||
class DataEmbedding(nn.Module):
|
||||
def __init__(self, c_in, d_model, dropout=0.0):
|
||||
super(DataEmbedding, self).__init__()
|
||||
|
||||
self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
|
||||
self.position_embedding = PositionalEmbedding(d_model=d_model)
|
||||
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.value_embedding(x) + self.position_embedding(x)
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
class TriangularCausalMask():
|
||||
def __init__(self, B, L, device="cpu"):
|
||||
mask_shape = [B, 1, L, L]
|
||||
with torch.no_grad():
|
||||
self._mask = torch.triu(torch.ones(mask_shape, dtype=torch.bool), diagonal=1).to(device)
|
||||
|
||||
@property
|
||||
def mask(self):
|
||||
return self._mask
|
||||
|
||||
|
||||
class AnomalyAttention(nn.Module):
|
||||
def __init__(self, win_size, mask_flag=True, scale=None, attention_dropout=0.0, output_attention=False):
|
||||
super(AnomalyAttention, self).__init__()
|
||||
self.scale = scale
|
||||
self.mask_flag = mask_flag
|
||||
self.output_attention = output_attention
|
||||
self.dropout = nn.Dropout(attention_dropout)
|
||||
window_size = win_size
|
||||
self.distances = torch.zeros((window_size, window_size)).cuda()
|
||||
for i in range(window_size):
|
||||
for j in range(window_size):
|
||||
self.distances[i][j] = abs(i - j)
|
||||
|
||||
def forward(self, queries, keys, values, sigma, attn_mask):
|
||||
B, L, H, E = queries.shape
|
||||
_, S, _, D = values.shape
|
||||
scale = self.scale or 1. / sqrt(E)
|
||||
|
||||
scores = torch.einsum("blhe,bshe->bhls", queries, keys)
|
||||
if self.mask_flag:
|
||||
if attn_mask is None:
|
||||
attn_mask = TriangularCausalMask(B, L, device=queries.device)
|
||||
scores.masked_fill_(attn_mask.mask, -np.inf)
|
||||
attn = scale * scores
|
||||
|
||||
sigma = sigma.transpose(1, 2) # B L H -> B H L
|
||||
window_size = attn.shape[-1]
|
||||
sigma = torch.sigmoid(sigma * 5) + 1e-5
|
||||
sigma = torch.pow(3, sigma) - 1
|
||||
sigma = sigma.unsqueeze(-1).repeat(1, 1, 1, window_size) # B H L L
|
||||
prior = self.distances.unsqueeze(0).unsqueeze(0).repeat(sigma.shape[0], sigma.shape[1], 1, 1).cuda()
|
||||
prior = 1.0 / (math.sqrt(2 * math.pi) * sigma) * torch.exp(-prior ** 2 / 2 / (sigma ** 2))
|
||||
|
||||
series = self.dropout(torch.softmax(attn, dim=-1))
|
||||
V = torch.einsum("bhls,bshd->blhd", series, values)
|
||||
|
||||
if self.output_attention:
|
||||
return (V.contiguous(), series, prior, sigma)
|
||||
else:
|
||||
return (V.contiguous(), None)
|
||||
|
||||
|
||||
class AttentionLayer(nn.Module):
|
||||
def __init__(self, attention, d_model, n_heads, d_keys=None,
|
||||
d_values=None):
|
||||
super(AttentionLayer, self).__init__()
|
||||
|
||||
d_keys = d_keys or (d_model // n_heads)
|
||||
d_values = d_values or (d_model // n_heads)
|
||||
self.norm = nn.LayerNorm(d_model)
|
||||
self.inner_attention = attention
|
||||
self.query_projection = nn.Linear(d_model,
|
||||
d_keys * n_heads)
|
||||
self.key_projection = nn.Linear(d_model,
|
||||
d_keys * n_heads)
|
||||
self.value_projection = nn.Linear(d_model,
|
||||
d_values * n_heads)
|
||||
self.sigma_projection = nn.Linear(d_model,
|
||||
n_heads)
|
||||
self.out_projection = nn.Linear(d_values * n_heads, d_model)
|
||||
|
||||
self.n_heads = n_heads
|
||||
|
||||
def forward(self, queries, keys, values, attn_mask):
|
||||
B, L, _ = queries.shape
|
||||
_, S, _ = keys.shape
|
||||
H = self.n_heads
|
||||
x = queries
|
||||
queries = self.query_projection(queries).view(B, L, H, -1)
|
||||
keys = self.key_projection(keys).view(B, S, H, -1)
|
||||
values = self.value_projection(values).view(B, S, H, -1)
|
||||
sigma = self.sigma_projection(x).view(B, L, H)
|
||||
|
||||
out, series, prior, sigma = self.inner_attention(
|
||||
queries,
|
||||
keys,
|
||||
values,
|
||||
sigma,
|
||||
attn_mask
|
||||
)
|
||||
out = out.view(B, L, -1)
|
||||
|
||||
return self.out_projection(out), series, prior, sigma
|
||||
|
||||
|
||||
class EncoderLayer(nn.Module):
|
||||
def __init__(self, attention, d_model, d_ff=None, dropout=0.1, activation="relu"):
|
||||
super(EncoderLayer, self).__init__()
|
||||
d_ff = d_ff or 4 * d_model
|
||||
self.attention = attention
|
||||
self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
|
||||
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.activation = F.relu if activation == "relu" else F.gelu
|
||||
|
||||
def forward(self, x, attn_mask=None):
|
||||
new_x, attn, mask, sigma = self.attention(
|
||||
x, x, x,
|
||||
attn_mask=attn_mask
|
||||
)
|
||||
x = x + self.dropout(new_x)
|
||||
y = x = self.norm1(x)
|
||||
y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
|
||||
y = self.dropout(self.conv2(y).transpose(-1, 1))
|
||||
|
||||
return self.norm2(x + y), attn, mask, sigma
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(self, attn_layers, norm_layer=None):
|
||||
super(Encoder, self).__init__()
|
||||
self.attn_layers = nn.ModuleList(attn_layers)
|
||||
self.norm = norm_layer
|
||||
|
||||
def forward(self, x, attn_mask=None):
|
||||
# x [B, L, D]
|
||||
series_list = []
|
||||
prior_list = []
|
||||
sigma_list = []
|
||||
for attn_layer in self.attn_layers:
|
||||
x, series, prior, sigma = attn_layer(x, attn_mask=attn_mask)
|
||||
series_list.append(series)
|
||||
prior_list.append(prior)
|
||||
sigma_list.append(sigma)
|
||||
|
||||
if self.norm is not None:
|
||||
x = self.norm(x)
|
||||
|
||||
return x, series_list, prior_list, sigma_list
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, customs: {}, dataloader: tud.DataLoader):
|
||||
super(Model, self).__init__()
|
||||
win_size = int(customs["input_size"])
|
||||
enc_in = c_out = dataloader.dataset.train_inputs.shape[-1]
|
||||
d_model = 512
|
||||
n_heads = 8
|
||||
e_layers = 3
|
||||
d_ff = 512
|
||||
dropout = 0.0
|
||||
activation = 'gelu'
|
||||
output_attention = True
|
||||
self.k = 3
|
||||
self.win_size = win_size
|
||||
|
||||
self.name = "AnomalyTransformer"
|
||||
# Encoding
|
||||
self.embedding = DataEmbedding(enc_in, d_model, dropout)
|
||||
|
||||
# Encoder
|
||||
self.encoder = Encoder(
|
||||
[
|
||||
EncoderLayer(
|
||||
AttentionLayer(
|
||||
AnomalyAttention(win_size, False, attention_dropout=dropout, output_attention=output_attention),
|
||||
d_model, n_heads),
|
||||
d_model,
|
||||
d_ff,
|
||||
dropout=dropout,
|
||||
activation=activation
|
||||
) for l in range(e_layers)
|
||||
],
|
||||
norm_layer=torch.nn.LayerNorm(d_model)
|
||||
)
|
||||
|
||||
self.projection = nn.Linear(d_model, c_out, bias=True)
|
||||
|
||||
def forward(self, x):
|
||||
enc_out = self.embedding(x)
|
||||
enc_out, series, prior, sigmas = self.encoder(enc_out)
|
||||
enc_out = self.projection(enc_out)
|
||||
return enc_out, series, prior, sigmas
|
||||
|
||||
@staticmethod
|
||||
def my_kl_loss(p, q):
|
||||
res = p * (torch.log(p + 0.0001) - torch.log(q + 0.0001))
|
||||
return torch.mean(torch.sum(res, dim=-1), dim=1)
|
||||
|
||||
def loss(self, x, y_true, epoch: int = None, device: str = "cpu"):
|
||||
output, series, prior, _ = self.forward(x)
|
||||
series_loss = 0.0
|
||||
prior_loss = 0.0
|
||||
for u in range(len(prior)):
|
||||
series_loss += (torch.mean(self.my_kl_loss(series[u], (prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1, self.win_size)).detach())) +
|
||||
torch.mean(self.my_kl_loss((prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1, self.win_size)).detach(), series[u])))
|
||||
|
||||
prior_loss += (torch.mean(self.my_kl_loss((prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1, self.win_size)), series[u].detach())) +
|
||||
torch.mean(self.my_kl_loss(series[u].detach(), (prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1, self.win_size)))))
|
||||
series_loss = series_loss / len(prior)
|
||||
prior_loss = prior_loss / len(prior)
|
||||
rec_loss = nn.MSELoss()(output, x)
|
||||
|
||||
loss1 = rec_loss - self.k * series_loss
|
||||
loss2 = rec_loss + self.k * prior_loss
|
||||
|
||||
# Minimax strategy
|
||||
loss1.backward(retain_graph=True)
|
||||
loss2.backward()
|
||||
|
||||
return loss1.item()
|
||||
|
||||
def detection(self, x, y_true, epoch: int = None, device: str = "cpu"):
|
||||
temperature = 50
|
||||
output, series, prior, _ = self.forward(x)
|
||||
|
||||
loss = torch.mean(nn.MSELoss()(x, output), dim=-1)
|
||||
|
||||
series_loss = 0.0
|
||||
prior_loss = 0.0
|
||||
for u in range(len(prior)):
|
||||
if u == 0:
|
||||
series_loss = self.my_kl_loss(series[u], (
|
||||
prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1,
|
||||
self.win_size)).detach()) * temperature
|
||||
prior_loss = self.my_kl_loss(
|
||||
(prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1,
|
||||
self.win_size)),
|
||||
series[u].detach()) * temperature
|
||||
else:
|
||||
series_loss += self.my_kl_loss(series[u], (
|
||||
prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1,
|
||||
self.win_size)).detach()) * temperature
|
||||
prior_loss += self.my_kl_loss(
|
||||
(prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1,
|
||||
self.win_size)),
|
||||
series[u].detach()) * temperature
|
||||
metric = torch.softmax((-series_loss - prior_loss), dim=-1)
|
||||
|
||||
cri = metric * loss
|
||||
cri = cri.mean(dim=-1)
|
||||
return cri, None
|
||||
|
||||
|
||||
414
method/MtadGat.py
Normal file
414
method/MtadGat.py
Normal file
@@ -0,0 +1,414 @@
|
||||
"""
|
||||
github找的第三方实现的Mtad-Gat源码
|
||||
由于源码使用了torch.empty,经常导致loss为nan,因此替换为了torch.zeros
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.data as tud
|
||||
|
||||
|
||||
class ConvLayer(nn.Module):
|
||||
"""1-D Convolution layer to extract high-level features of each time-series input
|
||||
:param n_features: Number of input features/nodes
|
||||
:param window_size: length of the input sequence
|
||||
:param kernel_size: size of kernel to use in the convolution operation
|
||||
"""
|
||||
|
||||
def __init__(self, n_features, kernel_size=7):
|
||||
super(ConvLayer, self).__init__()
|
||||
self.padding = nn.ConstantPad1d((kernel_size - 1) // 2, 0.0)
|
||||
self.conv = nn.Conv1d(in_channels=n_features, out_channels=n_features, kernel_size=kernel_size)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def forward(self, x):
|
||||
x = x.permute(0, 2, 1)
|
||||
x = self.padding(x)
|
||||
x = self.relu(self.conv(x))
|
||||
return x.permute(0, 2, 1) # Permute back
|
||||
|
||||
|
||||
class FeatureAttentionLayer(nn.Module):
|
||||
"""Single Graph Feature/Spatial Attention Layer
|
||||
:param n_features: Number of input features/nodes
|
||||
:param window_size: length of the input sequence
|
||||
:param dropout: percentage of nodes to dropout
|
||||
:param alpha: negative slope used in the leaky rely activation function
|
||||
:param embed_dim: embedding dimension (output dimension of linear transformation)
|
||||
:param use_gatv2: whether to use the modified attention mechanism of GATv2 instead of standard GAT
|
||||
:param use_bias: whether to include a bias term in the attention layer
|
||||
"""
|
||||
|
||||
def __init__(self, n_features, window_size, dropout, alpha, embed_dim=None, use_gatv2=True, use_bias=True):
|
||||
super(FeatureAttentionLayer, self).__init__()
|
||||
self.n_features = n_features
|
||||
self.window_size = window_size
|
||||
self.dropout = dropout
|
||||
self.embed_dim = embed_dim if embed_dim is not None else window_size
|
||||
self.use_gatv2 = use_gatv2
|
||||
self.num_nodes = n_features
|
||||
self.use_bias = use_bias
|
||||
|
||||
# Because linear transformation is done after concatenation in GATv2
|
||||
if self.use_gatv2:
|
||||
self.embed_dim *= 2
|
||||
lin_input_dim = 2 * window_size
|
||||
a_input_dim = self.embed_dim
|
||||
else:
|
||||
lin_input_dim = window_size
|
||||
a_input_dim = 2 * self.embed_dim
|
||||
|
||||
self.lin = nn.Linear(lin_input_dim, self.embed_dim)
|
||||
# self.a = nn.Parameter(torch.empty((a_input_dim, 1)))
|
||||
self.a = nn.Parameter(torch.zeros((a_input_dim, 1)))
|
||||
nn.init.xavier_uniform_(self.a.data, gain=1.414)
|
||||
|
||||
if self.use_bias:
|
||||
# self.bias = nn.Parameter(torch.empty(n_features, n_features))
|
||||
self.bias = nn.Parameter(torch.zeros(n_features, n_features))
|
||||
|
||||
self.leakyrelu = nn.LeakyReLU(alpha)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
# x shape (b, n, k): b - batch size, n - window size, k - number of features
|
||||
# For feature attention we represent a node as the values of a particular feature across all timestamps
|
||||
|
||||
x = x.permute(0, 2, 1)
|
||||
|
||||
# 'Dynamic' GAT attention
|
||||
# Proposed by Brody et. al., 2021 (https://arxiv.org/pdf/2105.14491.pdf)
|
||||
# Linear transformation applied after concatenation and attention layer applied after leakyrelu
|
||||
if self.use_gatv2:
|
||||
a_input = self._make_attention_input(x) # (b, k, k, 2*window_size)
|
||||
a_input = self.leakyrelu(self.lin(a_input)) # (b, k, k, embed_dim)
|
||||
e = torch.matmul(a_input, self.a).squeeze(3) # (b, k, k, 1)
|
||||
|
||||
# Original GAT attention
|
||||
else:
|
||||
Wx = self.lin(x) # (b, k, k, embed_dim)
|
||||
a_input = self._make_attention_input(Wx) # (b, k, k, 2*embed_dim)
|
||||
e = self.leakyrelu(torch.matmul(a_input, self.a)).squeeze(3) # (b, k, k, 1)
|
||||
|
||||
if self.use_bias:
|
||||
e += self.bias
|
||||
|
||||
# Attention weights
|
||||
attention = torch.softmax(e, dim=2)
|
||||
attention = torch.dropout(attention, self.dropout, train=self.training)
|
||||
|
||||
# Computing new node features using the attention
|
||||
h = self.sigmoid(torch.matmul(attention, x))
|
||||
|
||||
return h.permute(0, 2, 1)
|
||||
|
||||
def _make_attention_input(self, v):
|
||||
"""Preparing the feature attention mechanism.
|
||||
Creating matrix with all possible combinations of concatenations of node.
|
||||
Each node consists of all values of that node within the window
|
||||
v1 || v1,
|
||||
...
|
||||
v1 || vK,
|
||||
v2 || v1,
|
||||
...
|
||||
v2 || vK,
|
||||
...
|
||||
...
|
||||
vK || v1,
|
||||
...
|
||||
vK || vK,
|
||||
"""
|
||||
|
||||
K = self.num_nodes
|
||||
blocks_repeating = v.repeat_interleave(K, dim=1) # Left-side of the matrix
|
||||
blocks_alternating = v.repeat(1, K, 1) # Right-side of the matrix
|
||||
combined = torch.cat((blocks_repeating, blocks_alternating), dim=2) # (b, K*K, 2*window_size)
|
||||
|
||||
if self.use_gatv2:
|
||||
return combined.view(v.size(0), K, K, 2 * self.window_size)
|
||||
else:
|
||||
return combined.view(v.size(0), K, K, 2 * self.embed_dim)
|
||||
|
||||
|
||||
class TemporalAttentionLayer(nn.Module):
|
||||
"""Single Graph Temporal Attention Layer
|
||||
:param n_features: number of input features/nodes
|
||||
:param window_size: length of the input sequence
|
||||
:param dropout: percentage of nodes to dropout
|
||||
:param alpha: negative slope used in the leaky rely activation function
|
||||
:param embed_dim: embedding dimension (output dimension of linear transformation)
|
||||
:param use_gatv2: whether to use the modified attention mechanism of GATv2 instead of standard GAT
|
||||
:param use_bias: whether to include a bias term in the attention layer
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, n_features, window_size, dropout, alpha, embed_dim=None, use_gatv2=True, use_bias=True):
|
||||
super(TemporalAttentionLayer, self).__init__()
|
||||
self.n_features = n_features
|
||||
self.window_size = window_size
|
||||
self.dropout = dropout
|
||||
self.use_gatv2 = use_gatv2
|
||||
self.embed_dim = embed_dim if embed_dim is not None else n_features
|
||||
self.num_nodes = window_size
|
||||
self.use_bias = use_bias
|
||||
|
||||
# Because linear transformation is performed after concatenation in GATv2
|
||||
if self.use_gatv2:
|
||||
self.embed_dim *= 2
|
||||
lin_input_dim = 2 * n_features
|
||||
a_input_dim = self.embed_dim
|
||||
else:
|
||||
lin_input_dim = n_features
|
||||
a_input_dim = 2 * self.embed_dim
|
||||
|
||||
self.lin = nn.Linear(lin_input_dim, self.embed_dim)
|
||||
# self.a = nn.Parameter(torch.empty((a_input_dim, 1)))
|
||||
self.a = nn.Parameter(torch.zeros((a_input_dim, 1)))
|
||||
nn.init.xavier_uniform_(self.a.data, gain=1.414)
|
||||
|
||||
if self.use_bias:
|
||||
# self.bias = nn.Parameter(torch.empty(window_size, window_size))
|
||||
self.bias = nn.Parameter(torch.zeros(window_size, window_size))
|
||||
self.leakyrelu = nn.LeakyReLU(alpha)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
# x shape (b, n, k): b - batch size, n - window size, k - number of features
|
||||
# For temporal attention a node is represented as all feature values at a specific timestamp
|
||||
|
||||
# 'Dynamic' GAT attention
|
||||
# Proposed by Brody et. al., 2021 (https://arxiv.org/pdf/2105.14491.pdf)
|
||||
# Linear transformation applied after concatenation and attention layer applied after leakyrelu
|
||||
if self.use_gatv2:
|
||||
a_input = self._make_attention_input(x) # (b, n, n, 2*n_features)
|
||||
a_input = self.leakyrelu(self.lin(a_input)) # (b, n, n, embed_dim)
|
||||
e = torch.matmul(a_input, self.a).squeeze(3) # (b, n, n, 1)
|
||||
|
||||
# Original GAT attention
|
||||
else:
|
||||
Wx = self.lin(x) # (b, n, n, embed_dim)
|
||||
a_input = self._make_attention_input(Wx) # (b, n, n, 2*embed_dim)
|
||||
e = self.leakyrelu(torch.matmul(a_input, self.a)).squeeze(3) # (b, n, n, 1)
|
||||
|
||||
if self.use_bias:
|
||||
e += self.bias # (b, n, n, 1)
|
||||
|
||||
# Attention weights
|
||||
attention = torch.softmax(e, dim=2)
|
||||
attention = torch.dropout(attention, self.dropout, train=self.training)
|
||||
|
||||
h = self.sigmoid(torch.matmul(attention, x)) # (b, n, k)
|
||||
|
||||
return h
|
||||
|
||||
def _make_attention_input(self, v):
|
||||
"""Preparing the temporal attention mechanism.
|
||||
Creating matrix with all possible combinations of concatenations of node values:
|
||||
(v1, v2..)_t1 || (v1, v2..)_t1
|
||||
(v1, v2..)_t1 || (v1, v2..)_t2
|
||||
|
||||
...
|
||||
...
|
||||
|
||||
(v1, v2..)_tn || (v1, v2..)_t1
|
||||
(v1, v2..)_tn || (v1, v2..)_t2
|
||||
|
||||
"""
|
||||
|
||||
K = self.num_nodes
|
||||
blocks_repeating = v.repeat_interleave(K, dim=1) # Left-side of the matrix
|
||||
blocks_alternating = v.repeat(1, K, 1) # Right-side of the matrix
|
||||
combined = torch.cat((blocks_repeating, blocks_alternating), dim=2)
|
||||
|
||||
if self.use_gatv2:
|
||||
return combined.view(v.size(0), K, K, 2 * self.n_features)
|
||||
else:
|
||||
return combined.view(v.size(0), K, K, 2 * self.embed_dim)
|
||||
|
||||
|
||||
class GRULayer(nn.Module):
|
||||
"""Gated Recurrent Unit (GRU) Layer
|
||||
:param in_dim: number of input features
|
||||
:param hid_dim: hidden size of the GRU
|
||||
:param n_layers: number of layers in GRU
|
||||
:param dropout: dropout rate
|
||||
"""
|
||||
|
||||
def __init__(self, in_dim, hid_dim, n_layers, dropout):
|
||||
super(GRULayer, self).__init__()
|
||||
self.hid_dim = hid_dim
|
||||
self.n_layers = n_layers
|
||||
self.dropout = 0.0 if n_layers == 1 else dropout
|
||||
self.gru = nn.GRU(in_dim, hid_dim, num_layers=n_layers, batch_first=True, dropout=self.dropout)
|
||||
|
||||
def forward(self, x):
|
||||
out, h = self.gru(x)
|
||||
out, h = out[-1, :, :], h[-1, :, :] # Extracting from last layer
|
||||
return out, h
|
||||
|
||||
|
||||
class RNNDecoder(nn.Module):
|
||||
"""GRU-based Decoder network that converts latent vector into output
|
||||
:param in_dim: number of input features
|
||||
:param n_layers: number of layers in RNN
|
||||
:param hid_dim: hidden size of the RNN
|
||||
:param dropout: dropout rate
|
||||
"""
|
||||
|
||||
def __init__(self, in_dim, hid_dim, n_layers, dropout):
|
||||
super(RNNDecoder, self).__init__()
|
||||
self.in_dim = in_dim
|
||||
self.dropout = 0.0 if n_layers == 1 else dropout
|
||||
self.rnn = nn.GRU(in_dim, hid_dim, n_layers, batch_first=True, dropout=self.dropout)
|
||||
|
||||
def forward(self, x):
|
||||
decoder_out, _ = self.rnn(x)
|
||||
return decoder_out
|
||||
|
||||
|
||||
class ReconstructionModel(nn.Module):
|
||||
"""Reconstruction Model
|
||||
:param window_size: length of the input sequence
|
||||
:param in_dim: number of input features
|
||||
:param n_layers: number of layers in RNN
|
||||
:param hid_dim: hidden size of the RNN
|
||||
:param in_dim: number of output features
|
||||
:param dropout: dropout rate
|
||||
"""
|
||||
|
||||
def __init__(self, window_size, in_dim, hid_dim, out_dim, n_layers, dropout):
|
||||
super(ReconstructionModel, self).__init__()
|
||||
self.window_size = window_size
|
||||
self.decoder = RNNDecoder(in_dim, hid_dim, n_layers, dropout)
|
||||
self.fc = nn.Linear(hid_dim, out_dim)
|
||||
|
||||
def forward(self, x):
|
||||
# x will be last hidden state of the GRU layer
|
||||
h_end = x
|
||||
h_end_rep = h_end.repeat_interleave(self.window_size, dim=1).view(x.size(0), self.window_size, -1)
|
||||
|
||||
decoder_out = self.decoder(h_end_rep)
|
||||
out = self.fc(decoder_out)
|
||||
return out
|
||||
|
||||
|
||||
class Forecasting_Model(nn.Module):
|
||||
"""Forecasting model (fully-connected network)
|
||||
:param in_dim: number of input features
|
||||
:param hid_dim: hidden size of the FC network
|
||||
:param out_dim: number of output features
|
||||
:param n_layers: number of FC layers
|
||||
:param dropout: dropout rate
|
||||
"""
|
||||
|
||||
def __init__(self, in_dim, hid_dim, out_dim, n_layers, dropout):
|
||||
super(Forecasting_Model, self).__init__()
|
||||
layers = [nn.Linear(in_dim, hid_dim)]
|
||||
for _ in range(n_layers - 1):
|
||||
layers.append(nn.Linear(hid_dim, hid_dim))
|
||||
|
||||
layers.append(nn.Linear(hid_dim, out_dim))
|
||||
|
||||
self.layers = nn.ModuleList(layers)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def forward(self, x):
|
||||
for i in range(len(self.layers) - 1):
|
||||
x = self.relu(self.layers[i](x))
|
||||
x = self.dropout(x)
|
||||
return self.layers[-1](x)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
""" MTAD_GAT model class.
|
||||
|
||||
:param n_features: Number of input features
|
||||
:param window_size: Length of the input sequence
|
||||
:param out_dim: Number of features to output
|
||||
:param kernel_size: size of kernel to use in the 1-D convolution
|
||||
:param feat_gat_embed_dim: embedding dimension (output dimension of linear transformation)
|
||||
in feat-oriented GAT layer
|
||||
:param time_gat_embed_dim: embedding dimension (output dimension of linear transformation)
|
||||
in time-oriented GAT layer
|
||||
:param use_gatv2: whether to use the modified attention mechanism of GATv2 instead of standard GAT
|
||||
:param gru_n_layers: number of layers in the GRU layer
|
||||
:param gru_hid_dim: hidden dimension in the GRU layer
|
||||
:param forecast_n_layers: number of layers in the FC-based Forecasting Model
|
||||
:param forecast_hid_dim: hidden dimension in the FC-based Forecasting Model
|
||||
:param recon_n_layers: number of layers in the GRU-based Reconstruction Model
|
||||
:param recon_hid_dim: hidden dimension in the GRU-based Reconstruction Model
|
||||
:param dropout: dropout rate
|
||||
:param alpha: negative slope used in the leaky rely activation function
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, customs: {}, dataloader: tud.DataLoader):
|
||||
super(Model, self).__init__()
|
||||
n_features = dataloader.dataset.train_inputs.shape[-1]
|
||||
window_size = int(customs["input_size"])
|
||||
out_dim = n_features
|
||||
kernel_size = 7
|
||||
feat_gat_embed_dim = None
|
||||
time_gat_embed_dim = None
|
||||
use_gatv2 = True
|
||||
gru_n_layers = 1
|
||||
gru_hid_dim = 150
|
||||
forecast_n_layers = 1
|
||||
forecast_hid_dim = 150
|
||||
recon_n_layers = 1
|
||||
recon_hid_dim = 150
|
||||
dropout = 0.2
|
||||
alpha = 0.2
|
||||
|
||||
self.name = "MtadGat"
|
||||
self.conv = ConvLayer(n_features, kernel_size)
|
||||
self.feature_gat = FeatureAttentionLayer(
|
||||
n_features, window_size, dropout, alpha, feat_gat_embed_dim, use_gatv2)
|
||||
self.temporal_gat = TemporalAttentionLayer(n_features, window_size, dropout, alpha, time_gat_embed_dim,
|
||||
use_gatv2)
|
||||
self.gru = GRULayer(3 * n_features, gru_hid_dim, gru_n_layers, dropout)
|
||||
self.forecasting_model = Forecasting_Model(
|
||||
gru_hid_dim, forecast_hid_dim, out_dim, forecast_n_layers, dropout)
|
||||
self.recon_model = ReconstructionModel(window_size, gru_hid_dim, recon_hid_dim, out_dim, recon_n_layers,
|
||||
dropout)
|
||||
|
||||
def forward(self, x):
|
||||
# x shape (b, n, k): b - batch size, n - window size, k - number of features
|
||||
|
||||
x = self.conv(x)
|
||||
h_feat = self.feature_gat(x)
|
||||
h_temp = self.temporal_gat(x)
|
||||
|
||||
h_cat = torch.cat([x, h_feat, h_temp], dim=2) # (b, n, 3k)
|
||||
|
||||
_, h_end = self.gru(h_cat)
|
||||
h_end = h_end.view(x.shape[0], -1) # Hidden state for last timestamp
|
||||
|
||||
predictions = self.forecasting_model(h_end)
|
||||
recons = self.recon_model(h_end)
|
||||
|
||||
return predictions, recons
|
||||
|
||||
def loss(self, x, y_true, epoch: int = None, device: str = "cpu"):
|
||||
preds, recons = self.forward(x)
|
||||
if preds.ndim == 3:
|
||||
preds = preds.squeeze(1)
|
||||
if y_true.ndim == 3:
|
||||
y_true = y_true.squeeze(1)
|
||||
forecast_criterion = nn.MSELoss()
|
||||
recon_criterion = nn.MSELoss()
|
||||
forecast_loss = torch.sqrt(forecast_criterion(y_true, preds))
|
||||
recon_loss = torch.sqrt(recon_criterion(x, recons))
|
||||
loss = forecast_loss + recon_loss
|
||||
loss.backward()
|
||||
return loss.item()
|
||||
|
||||
def detection(self, x, y_true, epoch: int = None, device: str = "cpu"):
|
||||
preds, recons = self.forward(x)
|
||||
score = F.pairwise_distance(recons.reshape(recons.size(0), -1), x.reshape(x.size(0), -1)) + \
|
||||
F.pairwise_distance(y_true.reshape(y_true.size(0), -1), preds.reshape(preds.size(0), -1))
|
||||
return score, None
|
||||
|
||||
|
||||
647
method/MtadGatAtt.py
Normal file
647
method/MtadGatAtt.py
Normal file
@@ -0,0 +1,647 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from math import sqrt
|
||||
import torch.nn.functional as F
|
||||
import numpy as np
|
||||
import torch.utils.data as tud
|
||||
|
||||
|
||||
class ConvLayer(nn.Module):
|
||||
"""1-D Convolution layer to extract high-level features of each time-series input
|
||||
:param n_features: Number of input features/nodes
|
||||
:param window_size: length of the input sequence
|
||||
:param kernel_size: size of kernel to use in the convolution operation
|
||||
"""
|
||||
|
||||
def __init__(self, n_features, kernel_size=7):
|
||||
super(ConvLayer, self).__init__()
|
||||
self.padding = nn.ConstantPad1d((kernel_size - 1) // 2, 0.0)
|
||||
self.conv = nn.Conv1d(in_channels=n_features, out_channels=n_features, kernel_size=kernel_size)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def forward(self, x):
|
||||
x = x.permute(0, 2, 1)
|
||||
x = self.padding(x)
|
||||
x = self.relu(self.conv(x))
|
||||
return x.permute(0, 2, 1) # Permute back
|
||||
|
||||
|
||||
class FeatureAttentionLayer(nn.Module):
|
||||
"""Single Graph Feature/Spatial Attention Layer
|
||||
:param n_features: Number of input features/nodes
|
||||
:param window_size: length of the input sequence
|
||||
:param dropout: percentage of nodes to dropout
|
||||
:param alpha: negative slope used in the leaky rely activation function
|
||||
:param embed_dim: embedding dimension (output dimension of linear transformation)
|
||||
:param use_gatv2: whether to use the modified attention mechanism of GATv2 instead of standard GAT
|
||||
:param use_bias: whether to include a bias term in the attention layer
|
||||
"""
|
||||
|
||||
def __init__(self, n_features, window_size, dropout, alpha, embed_dim=None, use_gatv2=True, use_bias=True,
|
||||
use_softmax=True):
|
||||
super(FeatureAttentionLayer, self).__init__()
|
||||
self.n_features = n_features
|
||||
self.window_size = window_size
|
||||
self.dropout = dropout
|
||||
self.embed_dim = embed_dim if embed_dim is not None else window_size
|
||||
self.use_gatv2 = use_gatv2
|
||||
self.num_nodes = n_features
|
||||
self.use_bias = use_bias
|
||||
self.use_softmax = use_softmax
|
||||
|
||||
# Because linear transformation is done after concatenation in GATv2
|
||||
if self.use_gatv2:
|
||||
self.embed_dim *= 2
|
||||
lin_input_dim = 2 * window_size
|
||||
a_input_dim = self.embed_dim
|
||||
else:
|
||||
lin_input_dim = window_size
|
||||
a_input_dim = 2 * self.embed_dim
|
||||
|
||||
self.lin = nn.Linear(lin_input_dim, self.embed_dim)
|
||||
self.a = nn.Parameter(torch.empty((a_input_dim, 1)))
|
||||
nn.init.xavier_uniform_(self.a.data, gain=1.414)
|
||||
|
||||
if self.use_bias:
|
||||
self.bias = nn.Parameter(torch.ones(n_features, n_features))
|
||||
|
||||
self.leakyrelu = nn.LeakyReLU(alpha)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
# x shape (b, n, k): b - batch size, n - window size, k - number of features
|
||||
# For feature attention we represent a node as the values of a particular feature across all timestamps
|
||||
|
||||
x = x.permute(0, 2, 1)
|
||||
|
||||
# 'Dynamic' GAT attention
|
||||
# Proposed by Brody et. al., 2021 (https://arxiv.org/pdf/2105.14491.pdf)
|
||||
# Linear transformation applied after concatenation and attention layer applied after leakyrelu
|
||||
if self.use_gatv2:
|
||||
a_input = self._make_attention_input(x) # (b, k, k, 2*window_size)
|
||||
a_input = self.leakyrelu(self.lin(a_input)) # (b, k, k, embed_dim)
|
||||
e = torch.matmul(a_input, self.a).squeeze(3) # (b, k, k, 1)
|
||||
|
||||
# Original GAT attention
|
||||
else:
|
||||
Wx = self.lin(x) # (b, k, k, embed_dim)
|
||||
a_input = self._make_attention_input(Wx) # (b, k, k, 2*embed_dim)
|
||||
e = self.leakyrelu(torch.matmul(a_input, self.a)).squeeze(3) # (b, k, k, 1)
|
||||
|
||||
if self.use_bias:
|
||||
e += self.bias
|
||||
|
||||
# Attention weights
|
||||
if self.use_softmax:
|
||||
e = torch.softmax(e, dim=2)
|
||||
attention = torch.dropout(e, self.dropout, train=self.training)
|
||||
|
||||
# Computing new node features using the attention
|
||||
h = self.sigmoid(torch.matmul(attention, x))
|
||||
|
||||
return h.permute(0, 2, 1)
|
||||
|
||||
def _make_attention_input(self, v):
|
||||
"""Preparing the feature attention mechanism.
|
||||
Creating matrix with all possible combinations of concatenations of node.
|
||||
Each node consists of all values of that node within the window
|
||||
v1 || v1,
|
||||
...
|
||||
v1 || vK,
|
||||
v2 || v1,
|
||||
...
|
||||
v2 || vK,
|
||||
...
|
||||
...
|
||||
vK || v1,
|
||||
...
|
||||
vK || vK,
|
||||
"""
|
||||
|
||||
K = self.num_nodes
|
||||
blocks_repeating = v.repeat_interleave(K, dim=1) # Left-side of the matrix
|
||||
blocks_alternating = v.repeat(1, K, 1) # Right-side of the matrix
|
||||
combined = torch.cat((blocks_repeating, blocks_alternating), dim=2) # (b, K*K, 2*window_size)
|
||||
|
||||
if self.use_gatv2:
|
||||
return combined.view(v.size(0), K, K, 2 * self.window_size)
|
||||
else:
|
||||
return combined.view(v.size(0), K, K, 2 * self.embed_dim)
|
||||
|
||||
|
||||
class TemporalAttentionLayer(nn.Module):
|
||||
"""Single Graph Temporal Attention Layer
|
||||
:param n_features: number of input features/nodes
|
||||
:param window_size: length of the input sequence
|
||||
:param dropout: percentage of nodes to dropout
|
||||
:param alpha: negative slope used in the leaky rely activation function
|
||||
:param embed_dim: embedding dimension (output dimension of linear transformation)
|
||||
:param use_gatv2: whether to use the modified attention mechanism of GATv2 instead of standard GAT
|
||||
:param use_bias: whether to include a bias term in the attention layer
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, n_features, window_size, dropout, alpha, embed_dim=None, use_gatv2=True, use_bias=True,
|
||||
use_softmax=True):
|
||||
super(TemporalAttentionLayer, self).__init__()
|
||||
self.n_features = n_features
|
||||
self.window_size = window_size
|
||||
self.dropout = dropout
|
||||
self.use_gatv2 = use_gatv2
|
||||
self.embed_dim = embed_dim if embed_dim is not None else n_features
|
||||
self.num_nodes = window_size
|
||||
self.use_bias = use_bias
|
||||
self.use_softmax = use_softmax
|
||||
|
||||
# Because linear transformation is performed after concatenation in GATv2
|
||||
if self.use_gatv2:
|
||||
self.embed_dim *= 2
|
||||
lin_input_dim = 2 * n_features
|
||||
a_input_dim = self.embed_dim
|
||||
else:
|
||||
lin_input_dim = n_features
|
||||
a_input_dim = 2 * self.embed_dim
|
||||
|
||||
self.lin = nn.Linear(lin_input_dim, self.embed_dim)
|
||||
self.a = nn.Parameter(torch.empty((a_input_dim, 1)))
|
||||
nn.init.xavier_uniform_(self.a.data, gain=1.414)
|
||||
|
||||
if self.use_bias:
|
||||
self.bias = nn.Parameter(torch.ones(window_size, window_size))
|
||||
|
||||
self.leakyrelu = nn.LeakyReLU(alpha)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
# x shape (b, n, k): b - batch size, n - window size, k - number of features
|
||||
# For temporal attention a node is represented as all feature values at a specific timestamp
|
||||
|
||||
# 'Dynamic' GAT attention
|
||||
# Proposed by Brody et. al., 2021 (https://arxiv.org/pdf/2105.14491.pdf)
|
||||
# Linear transformation applied after concatenation and attention layer applied after leakyrelu
|
||||
if self.use_gatv2:
|
||||
a_input = self._make_attention_input(x) # (b, n, n, 2*n_features)
|
||||
a_input = self.leakyrelu(self.lin(a_input)) # (b, n, n, embed_dim)
|
||||
e = torch.matmul(a_input, self.a).squeeze(3) # (b, n, n, 1)
|
||||
|
||||
# Original GAT attention
|
||||
else:
|
||||
Wx = self.lin(x) # (b, n, n, embed_dim)
|
||||
a_input = self._make_attention_input(Wx) # (b, n, n, 2*embed_dim)
|
||||
e = self.leakyrelu(torch.matmul(a_input, self.a)).squeeze(3) # (b, n, n, 1)
|
||||
|
||||
if self.use_bias:
|
||||
e += self.bias # (b, n, n, 1)
|
||||
|
||||
# Attention weights
|
||||
if self.use_softmax:
|
||||
e = torch.softmax(e, dim=2)
|
||||
attention = torch.dropout(e, self.dropout, train=self.training)
|
||||
|
||||
h = self.sigmoid(torch.matmul(attention, x)) # (b, n, k)
|
||||
|
||||
return h
|
||||
|
||||
def _make_attention_input(self, v):
|
||||
"""Preparing the temporal attention mechanism.
|
||||
Creating matrix with all possible combinations of concatenations of node values:
|
||||
(v1, v2..)_t1 || (v1, v2..)_t1
|
||||
(v1, v2..)_t1 || (v1, v2..)_t2
|
||||
|
||||
...
|
||||
...
|
||||
|
||||
(v1, v2..)_tn || (v1, v2..)_t1
|
||||
(v1, v2..)_tn || (v1, v2..)_t2
|
||||
|
||||
"""
|
||||
|
||||
K = self.num_nodes
|
||||
blocks_repeating = v.repeat_interleave(K, dim=1) # Left-side of the matrix
|
||||
blocks_alternating = v.repeat(1, K, 1) # Right-side of the matrix
|
||||
combined = torch.cat((blocks_repeating, blocks_alternating), dim=2)
|
||||
|
||||
if self.use_gatv2:
|
||||
return combined.view(v.size(0), K, K, 2 * self.n_features)
|
||||
else:
|
||||
return combined.view(v.size(0), K, K, 2 * self.embed_dim)
|
||||
|
||||
|
||||
class FullAttention(nn.Module):
|
||||
def __init__(self, mask_flag=True, scale=None, attention_dropout=0.1, output_attention=False):
|
||||
super(FullAttention, self).__init__()
|
||||
self.scale = scale
|
||||
self.mask_flag = mask_flag
|
||||
self.output_attention = output_attention
|
||||
self.dropout = nn.Dropout(attention_dropout)
|
||||
self.relu_q = nn.ReLU()
|
||||
self.relu_k = nn.ReLU()
|
||||
|
||||
@staticmethod
|
||||
def TriangularCausalMask(B, L, S, device='cpu'):
|
||||
mask_shape = [B, 1, L, S]
|
||||
with torch.no_grad():
|
||||
mask = torch.triu(torch.ones(mask_shape, dtype=torch.bool), diagonal=1)
|
||||
return mask.to(device)
|
||||
|
||||
def forward(self, queries, keys, values, attn_mask):
|
||||
B, L, H, E = queries.shape
|
||||
_, S, _, D = values.shape
|
||||
scale = self.scale or 1. / sqrt(E) # scale相对于取多少比例,取前1/根号n
|
||||
|
||||
scores = torch.einsum("blhe,bshe->bhls", queries, keys)
|
||||
if self.mask_flag:
|
||||
if attn_mask is None:
|
||||
attn_mask = self.TriangularCausalMask(B, L, S, device=queries.device)
|
||||
|
||||
scores.masked_fill_(attn_mask, 0)
|
||||
|
||||
A = self.dropout(torch.softmax(scale * scores, dim=-1))
|
||||
V = torch.einsum("bhls,bshd->blhd", A, values)
|
||||
|
||||
# queries = self.relu_q(queries)
|
||||
# keys = self.relu_k(keys)
|
||||
# KV = torch.einsum("blhe,bshe->bhls", keys, values)
|
||||
# A = self.dropout(scale * KV)
|
||||
# V = torch.einsum("bshd,bhls->blhd", queries, A)
|
||||
|
||||
if self.output_attention:
|
||||
return (V.contiguous(), A)
|
||||
else:
|
||||
return (V.contiguous(), None)
|
||||
|
||||
|
||||
class ProbAttention(nn.Module):
|
||||
def __init__(self, mask_flag=True, factor=2, scale=None, attention_dropout=0.1, output_attention=False):
|
||||
super(ProbAttention, self).__init__()
|
||||
self.factor = factor
|
||||
self.scale = scale
|
||||
self.mask_flag = mask_flag
|
||||
self.output_attention = output_attention
|
||||
|
||||
@staticmethod
|
||||
def ProbMask(B, H, D, index, scores, device='cpu'):
|
||||
_mask = torch.ones(D, scores.shape[-2], dtype=torch.bool).triu(1)
|
||||
_mask_ex = _mask[None, None, :].expand(B, H, D, scores.shape[-2])
|
||||
indicator = _mask_ex.transpose(-2, -1)[torch.arange(B)[:, None, None],
|
||||
torch.arange(H)[None, :, None],
|
||||
index, :].transpose(-2, -1)
|
||||
mask = indicator.view(scores.shape)
|
||||
return mask.to(device)
|
||||
|
||||
def _prob_KV(self, K, V, sample_v, n_top): # n_top: c*ln(L_q)
|
||||
# Q [B, H, L, D]
|
||||
B, H, L, E_V = V.shape
|
||||
_, _, _, E_K = K.shape
|
||||
|
||||
# calculate the sampled K_V
|
||||
|
||||
V_expand = V.transpose(-2, -1).unsqueeze(-2).expand(B, H, E_V, E_K, L)
|
||||
index_sample = torch.randint(E_V, (E_K, sample_v)) # real U = U_part(factor*ln(L_k))*L_q
|
||||
V_sample = V_expand[:, :, torch.arange(E_V).unsqueeze(1), index_sample, :]
|
||||
K_V_sample = torch.matmul(K.transpose(-2, -1).unsqueeze(-2), V_sample.transpose(-2, -1)).squeeze()
|
||||
|
||||
# find the Top_k query with sparisty measurement
|
||||
M = K_V_sample.max(-1)[0] - torch.div(K_V_sample.sum(-1), E_V)
|
||||
M_top = M.topk(n_top, sorted=False)[1]
|
||||
|
||||
# use the reduced Q to calculate Q_K
|
||||
V_reduce = V.transpose(-2, -1)[torch.arange(B)[:, None, None],
|
||||
torch.arange(H)[None, :, None],
|
||||
M_top, :].transpose(-2, -1) # factor*ln(L_q)
|
||||
K_V = torch.matmul(K.transpose(-2, -1), V_reduce) # factor*ln(L_q)*L_k
|
||||
#
|
||||
return K_V, M_top
|
||||
|
||||
def _get_initial_context(self, V, L_Q):
|
||||
B, H, L_V, D = V.shape
|
||||
if not self.mask_flag:
|
||||
# V_sum = V.sum(dim=-2)
|
||||
V_sum = V.mean(dim=-2)
|
||||
contex = V_sum.unsqueeze(-2).expand(B, H, L_Q, V_sum.shape[-1]).clone()
|
||||
else: # use mask
|
||||
assert (L_Q == L_V) # requires that L_Q == L_V, i.e. for self-attention only
|
||||
contex = V.cumsum(dim=-2)
|
||||
return contex
|
||||
|
||||
def _update_context(self, context_in, Q, scores, index, D_K, attn_mask):
|
||||
B, H, L, D_Q = Q.shape
|
||||
|
||||
if self.mask_flag:
|
||||
attn_mask = self.ProbMask(B, H, D_K, index, scores, device=Q.device)
|
||||
scores.masked_fill_(attn_mask, -np.inf)
|
||||
|
||||
attn = torch.softmax(scores, dim=-1) # nn.Softmax(dim=-1)(scores)
|
||||
|
||||
context_in.transpose(-2, -1)[torch.arange(B)[:, None, None],
|
||||
torch.arange(H)[None, :, None],
|
||||
index, :] = torch.matmul(Q, attn).type_as(context_in).transpose(-2, -1)
|
||||
if self.output_attention:
|
||||
attns = (torch.ones([B, H, D_K, D_K]) / D_K).type_as(attn)
|
||||
attns[torch.arange(B)[:, None, None], torch.arange(H)[None, :, None], index, :] = attn
|
||||
return (context_in, attns)
|
||||
else:
|
||||
return (context_in, None)
|
||||
|
||||
def forward(self, queries, keys, values, attn_mask):
|
||||
# B, L_Q, H, D = queries.shape
|
||||
# _, L_K, _, _ = keys.shape
|
||||
|
||||
B, L, H, D_K = keys.shape
|
||||
_, _, _, D_V = values.shape
|
||||
|
||||
queries = queries.transpose(2, 1)
|
||||
keys = keys.transpose(2, 1)
|
||||
values = values.transpose(2, 1)
|
||||
|
||||
U_part = self.factor * np.ceil(np.log(D_V)).astype('int').item() # c*ln(L_k)
|
||||
u = self.factor * np.ceil(np.log(D_K)).astype('int').item() # c*ln(L_q)
|
||||
|
||||
U_part = U_part if U_part < D_V else D_V
|
||||
u = u if u < D_K else D_K
|
||||
|
||||
scores_top, index = self._prob_KV(keys, values, sample_v=U_part, n_top=u)
|
||||
|
||||
# add scale factor
|
||||
scale = self.scale or 1. / sqrt(D_K)
|
||||
if scale is not None:
|
||||
scores_top = scores_top * scale
|
||||
# get the context
|
||||
context = self._get_initial_context(queries, L)
|
||||
# update the context with selected top_k queries
|
||||
context, attn = self._update_context(context, queries, scores_top, index, D_K, attn_mask)
|
||||
|
||||
return context.contiguous(), attn
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
def __init__(self, d_model, n_model, n_heads=8, d_keys=None, d_values=None):
|
||||
super(AttentionBlock, self).__init__()
|
||||
|
||||
d_keys = d_keys or (d_model // n_heads)
|
||||
d_values = d_values or (d_model // n_heads)
|
||||
self.inner_attention = FullAttention()
|
||||
# self.inner_attention = ProbAttention(device=device)
|
||||
self.query_projection = nn.Linear(d_model, d_keys * n_heads)
|
||||
self.key_projection = nn.Linear(d_model, d_keys * n_heads)
|
||||
self.value_projection = nn.Linear(d_model, d_values * n_heads)
|
||||
self.out_projection = nn.Linear(d_values * n_heads, d_model)
|
||||
self.n_heads = n_heads
|
||||
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
|
||||
|
||||
def forward(self, queries, keys, values, attn_mask):
|
||||
'''
|
||||
Q: [batch_size, len_q, d_k]
|
||||
K: [batch_size, len_k, d_k]
|
||||
V: [batch_size, len_v(=len_k), d_v]
|
||||
attn_mask: [batch_size, seq_len, seq_len]
|
||||
'''
|
||||
batch_size, len_q, _ = queries.shape
|
||||
_, len_k, _ = keys.shape
|
||||
|
||||
queries = self.query_projection(queries).view(batch_size, len_q, self.n_heads, -1)
|
||||
keys = self.key_projection(keys).view(batch_size, len_k, self.n_heads, -1)
|
||||
values = self.value_projection(values).view(batch_size, len_k, self.n_heads, -1)
|
||||
|
||||
out, attn = self.inner_attention(
|
||||
queries,
|
||||
keys,
|
||||
values,
|
||||
attn_mask
|
||||
)
|
||||
out = out.view(batch_size, len_q, -1)
|
||||
out = self.out_projection(out)
|
||||
out = self.layer_norm(out)
|
||||
return out, attn
|
||||
|
||||
|
||||
class GRULayer(nn.Module):
|
||||
"""Gated Recurrent Unit (GRU) Layer
|
||||
:param in_dim: number of input features
|
||||
:param hid_dim: hidden size of the GRU
|
||||
:param n_layers: number of layers in GRU
|
||||
:param dropout: dropout rate
|
||||
"""
|
||||
|
||||
def __init__(self, in_dim, hid_dim, n_layers, dropout):
|
||||
super(GRULayer, self).__init__()
|
||||
self.hid_dim = hid_dim
|
||||
self.n_layers = n_layers
|
||||
self.dropout = 0.0 if n_layers == 1 else dropout
|
||||
self.gru = nn.GRU(in_dim, hid_dim, num_layers=n_layers, batch_first=True, dropout=self.dropout)
|
||||
|
||||
def forward(self, x):
|
||||
out, h = self.gru(x)
|
||||
out, h = out[-1, :, :], h[-1, :, :] # Extracting from last layer
|
||||
return out, h
|
||||
|
||||
|
||||
class RNNDecoder(nn.Module):
|
||||
"""GRU-based Decoder network that converts latent vector into output
|
||||
:param in_dim: number of input features
|
||||
:param n_layers: number of layers in RNN
|
||||
:param hid_dim: hidden size of the RNN
|
||||
:param dropout: dropout rate
|
||||
"""
|
||||
|
||||
def __init__(self, in_dim, hid_dim, n_layers, dropout):
|
||||
super(RNNDecoder, self).__init__()
|
||||
self.in_dim = in_dim
|
||||
self.dropout = 0.0 if n_layers == 1 else dropout
|
||||
self.rnn = nn.GRU(in_dim, hid_dim, n_layers, batch_first=True, dropout=self.dropout)
|
||||
|
||||
def forward(self, x):
|
||||
decoder_out, _ = self.rnn(x)
|
||||
return decoder_out
|
||||
|
||||
|
||||
class ReconstructionModel(nn.Module):
|
||||
"""Reconstruction Model
|
||||
:param window_size: length of the input sequence
|
||||
:param in_dim: number of input features
|
||||
:param n_layers: number of layers in RNN
|
||||
:param hid_dim: hidden size of the RNN
|
||||
:param in_dim: number of output features
|
||||
:param dropout: dropout rate
|
||||
"""
|
||||
|
||||
def __init__(self, window_size, in_dim, hid_dim, out_dim, n_layers, dropout):
|
||||
super(ReconstructionModel, self).__init__()
|
||||
self.window_size = window_size
|
||||
self.decoder = RNNDecoder(in_dim, hid_dim, n_layers, dropout)
|
||||
self.fc = nn.Linear(hid_dim, out_dim)
|
||||
|
||||
def forward(self, x):
|
||||
# x will be last hidden state of the GRU layer
|
||||
h_end = x
|
||||
h_end_rep = h_end.repeat_interleave(self.window_size, dim=1).view(x.size(0), self.window_size, -1)
|
||||
|
||||
decoder_out = self.decoder(h_end_rep)
|
||||
out = self.fc(decoder_out)
|
||||
return out
|
||||
|
||||
|
||||
class Forecasting_Model(nn.Module):
|
||||
"""Forecasting model (fully-connected network)
|
||||
:param in_dim: number of input features
|
||||
:param hid_dim: hidden size of the FC network
|
||||
:param out_dim: number of output features
|
||||
:param n_layers: number of FC layers
|
||||
:param dropout: dropout rate
|
||||
"""
|
||||
|
||||
def __init__(self, in_dim, hid_dim, out_dim, n_layers, dropout):
|
||||
super(Forecasting_Model, self).__init__()
|
||||
layers = [nn.Linear(in_dim, hid_dim)]
|
||||
for _ in range(n_layers - 1):
|
||||
layers.append(nn.Linear(hid_dim, hid_dim))
|
||||
|
||||
layers.append(nn.Linear(hid_dim, out_dim))
|
||||
|
||||
self.layers = nn.ModuleList(layers)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def forward(self, x):
|
||||
for i in range(len(self.layers) - 1):
|
||||
x = self.relu(self.layers[i](x))
|
||||
x = self.dropout(x)
|
||||
return self.layers[-1](x)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
""" MTAD_GAT model class.
|
||||
|
||||
:param n_features: Number of input features
|
||||
:param window_size: Length of the input sequence
|
||||
:param out_dim: Number of features to output
|
||||
:param kernel_size: size of kernel to use in the 1-D convolution
|
||||
:param feat_gat_embed_dim: embedding dimension (output dimension of linear transformation)
|
||||
in feat-oriented GAT layer
|
||||
:param time_gat_embed_dim: embedding dimension (output dimension of linear transformation)
|
||||
in time-oriented GAT layer
|
||||
:param use_gatv2: whether to use the modified attention mechanism of GATv2 instead of standard GAT
|
||||
:param gru_n_layers: number of layers in the GRU layer
|
||||
:param gru_hid_dim: hidden dimension in the GRU layer
|
||||
:param forecast_n_layers: number of layers in the FC-based Forecasting Model
|
||||
:param forecast_hid_dim: hidden dimension in the FC-based Forecasting Model
|
||||
:param recon_n_layers: number of layers in the GRU-based Reconstruction Model
|
||||
:param recon_hid_dim: hidden dimension in the GRU-based Reconstruction Model
|
||||
:param dropout: dropout rate
|
||||
:param alpha: negative slope used in the leaky rely activation function
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, customs: dict, dataloader: tud.DataLoader = None):
|
||||
super(Model, self).__init__()
|
||||
n_features = dataloader.dataset.train_inputs.shape[-1]
|
||||
window_size = int(customs["input_size"])
|
||||
out_dim = n_features
|
||||
kernel_size = 7
|
||||
feat_gat_embed_dim = None
|
||||
time_gat_embed_dim = None
|
||||
use_gatv2 = True
|
||||
gru_n_layers = 1
|
||||
gru_hid_dim = 150
|
||||
forecast_n_layers = 1
|
||||
forecast_hid_dim = 150
|
||||
recon_n_layers = 1
|
||||
recon_hid_dim = 150
|
||||
dropout = 0.2
|
||||
alpha = 0.2
|
||||
optimize = True
|
||||
|
||||
self.name = "MtadGatAtt"
|
||||
self.optimize = optimize
|
||||
use_softmax = not optimize
|
||||
|
||||
self.conv = ConvLayer(n_features, kernel_size)
|
||||
self.feature_gat = FeatureAttentionLayer(
|
||||
n_features, window_size, dropout, alpha, feat_gat_embed_dim, use_gatv2, use_softmax=use_softmax)
|
||||
self.temporal_gat = TemporalAttentionLayer(n_features, window_size, dropout, alpha, time_gat_embed_dim,
|
||||
use_gatv2, use_softmax=use_softmax)
|
||||
self.forecasting_model = Forecasting_Model(
|
||||
gru_hid_dim, forecast_hid_dim, out_dim, forecast_n_layers, dropout)
|
||||
if optimize:
|
||||
self.encode = AttentionBlock(3 * n_features, window_size)
|
||||
self.encode_feature = nn.Linear(3 * n_features * window_size, gru_hid_dim)
|
||||
self.decode_feature = nn.Linear(gru_hid_dim, n_features * window_size)
|
||||
self.decode = AttentionBlock(n_features, window_size)
|
||||
else:
|
||||
self.gru = GRULayer(3 * n_features, gru_hid_dim, gru_n_layers, dropout)
|
||||
self.recon_model = ReconstructionModel(window_size, gru_hid_dim, recon_hid_dim, out_dim, recon_n_layers,
|
||||
dropout)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
h_feat = self.feature_gat(x)
|
||||
h_temp = self.temporal_gat(x)
|
||||
h_cat = torch.cat([x, h_feat, h_temp], dim=2) # (b, n, 3k)
|
||||
|
||||
if self.optimize:
|
||||
h_end, _ = self.encode(h_cat, h_cat, h_cat, None)
|
||||
h_end = self.encode_feature(h_end.reshape(h_end.size(0), -1))
|
||||
else:
|
||||
_, h_end = self.gru(h_cat)
|
||||
h_end = h_end.view(x.shape[0], -1) # Hidden state for last timestamp
|
||||
|
||||
predictions = self.forecasting_model(h_end)
|
||||
|
||||
if self.optimize:
|
||||
h_end = self.decode_feature(h_end)
|
||||
h_end = h_end.reshape(x.shape[0], x.shape[1], x.shape[2])
|
||||
recons, _ = self.decode(h_end, h_end, h_end, None)
|
||||
else:
|
||||
recons = self.recon_model(h_end)
|
||||
|
||||
return predictions, recons
|
||||
|
||||
def loss(self, x, y_true, epoch: int = None, device: str = "cpu"):
|
||||
preds, recons = self.forward(x)
|
||||
|
||||
if preds.ndim == 3:
|
||||
preds = preds.squeeze(1)
|
||||
if y_true.ndim == 3:
|
||||
y_true = y_true.squeeze(1)
|
||||
forecast_criterion = nn.MSELoss()
|
||||
recon_criterion = nn.MSELoss()
|
||||
|
||||
forecast_loss = torch.sqrt(forecast_criterion(y_true, preds))
|
||||
recon_loss = torch.sqrt(recon_criterion(x, recons))
|
||||
|
||||
loss = forecast_loss + recon_loss
|
||||
loss.backward()
|
||||
return loss.item()
|
||||
|
||||
def detection(self, x, y_true, epoch: int = None, device: str = "cpu"):
|
||||
preds, recons = self.forward(x)
|
||||
score = F.pairwise_distance(recons.reshape(recons.size(0), -1), x.reshape(x.size(0), -1)) + F.pairwise_distance(y_true.reshape(y_true.size(0), -1), preds.reshape(preds.size(0), -1))
|
||||
return score, None
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from tqdm import tqdm
|
||||
import time
|
||||
epoch = 10000
|
||||
batch_size = 1
|
||||
# device = 'cuda:1' if torch.cuda.is_available() else 'cpu'
|
||||
device = 'cpu'
|
||||
input_len_list = [30, 60, 90, 120, 150, 180, 210, 240, 270, 300]
|
||||
for input_len in input_len_list:
|
||||
model = Model(52, input_len, 52, optimize=False, device=device).to(device)
|
||||
a = torch.Tensor(torch.ones((batch_size, input_len, 52))).to(device)
|
||||
start = time.time()
|
||||
for i in tqdm(range(epoch)):
|
||||
model(a)
|
||||
end = time.time()
|
||||
speed1 = batch_size * epoch / (end - start)
|
||||
|
||||
model = Model(52, input_len, 52, optimize=True, device=device).to(device)
|
||||
a = torch.Tensor(torch.ones((batch_size, input_len, 52))).to(device)
|
||||
start = time.time()
|
||||
for i in tqdm(range(epoch)):
|
||||
model(a)
|
||||
end = time.time()
|
||||
speed2 = batch_size * epoch / (end - start)
|
||||
print(input_len, (speed2 - speed1)/speed1, speed1, speed2)
|
||||
|
||||
3
method/__init__.py
Normal file
3
method/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from .MtadGat import Model
|
||||
from .MtadGatAtt import Model
|
||||
from .AnomalyTransformer import Model
|
||||
50
method/template.py
Normal file
50
method/template.py
Normal file
@@ -0,0 +1,50 @@
|
||||
import torch.nn as nn
|
||||
import torch.utils.data as tud
|
||||
import torch
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, customs: dict, dataloader: tud.DataLoader = None):
|
||||
"""
|
||||
:param customs: 自定义参数,内容取自于config.ini文件的[CustomParameters]部分。
|
||||
:param dataloader: 数据集初始化完成的dataloader。在自定义的预处理方法文件中,可以增加内部变量或者方法,提供给模型。
|
||||
例如:模型初始化需要数据的维度数量,可通过n_features = dataloader.dataset.train_inputs.shape[-1]获取
|
||||
或在预处理方法的MyDataset类中,定义self.n_features = self.train_inputs.shape[-1],
|
||||
通过n_features = dataloader.dataset.n_features获取
|
||||
"""
|
||||
super(Model, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
:param x: 模型的输入,在本工具中为MyDataset类中__getitem__方法返回的三个变量中的第一个变量。
|
||||
:return: 模型的输出,可以自定义
|
||||
"""
|
||||
return None
|
||||
|
||||
def loss(self, x, y_true, epoch: int = None, device: str = "cpu"):
|
||||
"""
|
||||
计算loss。注意,计算loss时如采用torch之外的库计算会造成梯度截断,请全部使用torch的方法
|
||||
:param x: 输入数据
|
||||
:param y_true: 真实输出数据
|
||||
:param epoch: 当前是第几个epoch
|
||||
:param device: 设备,cpu或者cuda
|
||||
:return: loss值
|
||||
"""
|
||||
y_pred = self.forward(x) # 模型的输出
|
||||
loss = torch.Tensor([1]) # 示例,请修改
|
||||
loss.backward()
|
||||
return loss.item()
|
||||
|
||||
def detection(self, x, y_true, epoch: int = None, device: str = "cpu"):
|
||||
"""
|
||||
检测方法,可以输出异常的分数,也可以输出具体的标签。
|
||||
如输出异常分数,则后续会根据异常分数自动划分阈值,高于阈值的为异常,自动赋予标签;如输出标签,则直接进行评估。
|
||||
:param x: 输入数据
|
||||
:param y_true: 真实输出数据
|
||||
:param epoch: 当前是第几个epoch
|
||||
:param device: 设备,cpu或者cuda
|
||||
:return: score,label。如选择输出异常的分数,则输出score,label为None;如选择输出标签,则输出label,score为None。
|
||||
score的格式为torch的Tensor格式,尺寸为[batch_size];label的格式为torch的IntTensor格式,尺寸为[batch_size]
|
||||
"""
|
||||
y_pred = self.forward(x) # 模型的输出
|
||||
return None, None
|
||||
Reference in New Issue
Block a user