1893 lines
52 KiB
Rust
1893 lines
52 KiB
Rust
//! A hash set implemented using `IndexMap`
|
||
|
||
#[cfg(feature = "rayon")]
|
||
pub use crate::rayon::set as rayon;
|
||
|
||
#[cfg(has_std)]
|
||
use std::collections::hash_map::RandomState;
|
||
|
||
use crate::vec::{self, Vec};
|
||
use core::cmp::Ordering;
|
||
use core::fmt;
|
||
use core::hash::{BuildHasher, Hash};
|
||
use core::iter::{Chain, FromIterator, FusedIterator};
|
||
use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub};
|
||
use core::slice;
|
||
|
||
use super::{Entries, Equivalent, IndexMap};
|
||
|
||
type Bucket<T> = super::Bucket<T, ()>;
|
||
|
||
/// A hash set where the iteration order of the values is independent of their
|
||
/// hash values.
|
||
///
|
||
/// The interface is closely compatible with the standard `HashSet`, but also
|
||
/// has additional features.
|
||
///
|
||
/// # Order
|
||
///
|
||
/// The values have a consistent order that is determined by the sequence of
|
||
/// insertion and removal calls on the set. The order does not depend on the
|
||
/// values or the hash function at all. Note that insertion order and value
|
||
/// are not affected if a re-insertion is attempted once an element is
|
||
/// already present.
|
||
///
|
||
/// All iterators traverse the set *in order*. Set operation iterators like
|
||
/// `union` produce a concatenated order, as do their matching "bitwise"
|
||
/// operators. See their documentation for specifics.
|
||
///
|
||
/// The insertion order is preserved, with **notable exceptions** like the
|
||
/// `.remove()` or `.swap_remove()` methods. Methods such as `.sort_by()` of
|
||
/// course result in a new order, depending on the sorting order.
|
||
///
|
||
/// # Indices
|
||
///
|
||
/// The values are indexed in a compact range without holes in the range
|
||
/// `0..self.len()`. For example, the method `.get_full` looks up the index for
|
||
/// a value, and the method `.get_index` looks up the value by index.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use indexmap::IndexSet;
|
||
///
|
||
/// // Collects which letters appear in a sentence.
|
||
/// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect();
|
||
///
|
||
/// assert!(letters.contains(&'s'));
|
||
/// assert!(letters.contains(&'t'));
|
||
/// assert!(letters.contains(&'u'));
|
||
/// assert!(!letters.contains(&'y'));
|
||
/// ```
|
||
#[cfg(has_std)]
|
||
pub struct IndexSet<T, S = RandomState> {
|
||
pub(crate) map: IndexMap<T, (), S>,
|
||
}
|
||
#[cfg(not(has_std))]
|
||
pub struct IndexSet<T, S> {
|
||
pub(crate) map: IndexMap<T, (), S>,
|
||
}
|
||
|
||
impl<T, S> Clone for IndexSet<T, S>
|
||
where
|
||
T: Clone,
|
||
S: Clone,
|
||
{
|
||
fn clone(&self) -> Self {
|
||
IndexSet {
|
||
map: self.map.clone(),
|
||
}
|
||
}
|
||
|
||
fn clone_from(&mut self, other: &Self) {
|
||
self.map.clone_from(&other.map);
|
||
}
|
||
}
|
||
|
||
impl<T, S> Entries for IndexSet<T, S> {
|
||
type Entry = Bucket<T>;
|
||
|
||
#[inline]
|
||
fn into_entries(self) -> Vec<Self::Entry> {
|
||
self.map.into_entries()
|
||
}
|
||
|
||
#[inline]
|
||
fn as_entries(&self) -> &[Self::Entry] {
|
||
self.map.as_entries()
|
||
}
|
||
|
||
#[inline]
|
||
fn as_entries_mut(&mut self) -> &mut [Self::Entry] {
|
||
self.map.as_entries_mut()
|
||
}
|
||
|
||
fn with_entries<F>(&mut self, f: F)
|
||
where
|
||
F: FnOnce(&mut [Self::Entry]),
|
||
{
|
||
self.map.with_entries(f);
|
||
}
|
||
}
|
||
|
||
impl<T, S> fmt::Debug for IndexSet<T, S>
|
||
where
|
||
T: fmt::Debug,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
if cfg!(not(feature = "test_debug")) {
|
||
f.debug_set().entries(self.iter()).finish()
|
||
} else {
|
||
// Let the inner `IndexMap` print all of its details
|
||
f.debug_struct("IndexSet").field("map", &self.map).finish()
|
||
}
|
||
}
|
||
}
|
||
|
||
#[cfg(has_std)]
|
||
impl<T> IndexSet<T> {
|
||
/// Create a new set. (Does not allocate.)
|
||
pub fn new() -> Self {
|
||
IndexSet {
|
||
map: IndexMap::new(),
|
||
}
|
||
}
|
||
|
||
/// Create a new set with capacity for `n` elements.
|
||
/// (Does not allocate if `n` is zero.)
|
||
///
|
||
/// Computes in **O(n)** time.
|
||
pub fn with_capacity(n: usize) -> Self {
|
||
IndexSet {
|
||
map: IndexMap::with_capacity(n),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, S> IndexSet<T, S> {
|
||
/// Create a new set with capacity for `n` elements.
|
||
/// (Does not allocate if `n` is zero.)
|
||
///
|
||
/// Computes in **O(n)** time.
|
||
pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
|
||
IndexSet {
|
||
map: IndexMap::with_capacity_and_hasher(n, hash_builder),
|
||
}
|
||
}
|
||
|
||
/// Create a new set with `hash_builder`.
|
||
///
|
||
/// This function is `const`, so it
|
||
/// can be called in `static` contexts.
|
||
pub const fn with_hasher(hash_builder: S) -> Self {
|
||
IndexSet {
|
||
map: IndexMap::with_hasher(hash_builder),
|
||
}
|
||
}
|
||
|
||
/// Computes in **O(1)** time.
|
||
pub fn capacity(&self) -> usize {
|
||
self.map.capacity()
|
||
}
|
||
|
||
/// Return a reference to the set's `BuildHasher`.
|
||
pub fn hasher(&self) -> &S {
|
||
self.map.hasher()
|
||
}
|
||
|
||
/// Return the number of elements in the set.
|
||
///
|
||
/// Computes in **O(1)** time.
|
||
pub fn len(&self) -> usize {
|
||
self.map.len()
|
||
}
|
||
|
||
/// Returns true if the set contains no elements.
|
||
///
|
||
/// Computes in **O(1)** time.
|
||
pub fn is_empty(&self) -> bool {
|
||
self.map.is_empty()
|
||
}
|
||
|
||
/// Return an iterator over the values of the set, in their order
|
||
pub fn iter(&self) -> Iter<'_, T> {
|
||
Iter {
|
||
iter: self.map.keys().iter,
|
||
}
|
||
}
|
||
|
||
/// Remove all elements in the set, while preserving its capacity.
|
||
///
|
||
/// Computes in **O(n)** time.
|
||
pub fn clear(&mut self) {
|
||
self.map.clear();
|
||
}
|
||
|
||
/// Shortens the set, keeping the first `len` elements and dropping the rest.
|
||
///
|
||
/// If `len` is greater than the set's current length, this has no effect.
|
||
pub fn truncate(&mut self, len: usize) {
|
||
self.map.truncate(len);
|
||
}
|
||
|
||
/// Clears the `IndexSet` in the given index range, returning those values
|
||
/// as a drain iterator.
|
||
///
|
||
/// The range may be any type that implements `RangeBounds<usize>`,
|
||
/// including all of the `std::ops::Range*` types, or even a tuple pair of
|
||
/// `Bound` start and end values. To drain the set entirely, use `RangeFull`
|
||
/// like `set.drain(..)`.
|
||
///
|
||
/// This shifts down all entries following the drained range to fill the
|
||
/// gap, and keeps the allocated memory for reuse.
|
||
///
|
||
/// ***Panics*** if the starting point is greater than the end point or if
|
||
/// the end point is greater than the length of the set.
|
||
pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
|
||
where
|
||
R: RangeBounds<usize>,
|
||
{
|
||
Drain {
|
||
iter: self.map.drain(range).iter,
|
||
}
|
||
}
|
||
|
||
/// Splits the collection into two at the given index.
|
||
///
|
||
/// Returns a newly allocated set containing the elements in the range
|
||
/// `[at, len)`. After the call, the original set will be left containing
|
||
/// the elements `[0, at)` with its previous capacity unchanged.
|
||
///
|
||
/// ***Panics*** if `at > len`.
|
||
pub fn split_off(&mut self, at: usize) -> Self
|
||
where
|
||
S: Clone,
|
||
{
|
||
Self {
|
||
map: self.map.split_off(at),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, S> IndexSet<T, S>
|
||
where
|
||
T: Hash + Eq,
|
||
S: BuildHasher,
|
||
{
|
||
/// Reserve capacity for `additional` more values.
|
||
///
|
||
/// Computes in **O(n)** time.
|
||
pub fn reserve(&mut self, additional: usize) {
|
||
self.map.reserve(additional);
|
||
}
|
||
|
||
/// Shrink the capacity of the set as much as possible.
|
||
///
|
||
/// Computes in **O(n)** time.
|
||
pub fn shrink_to_fit(&mut self) {
|
||
self.map.shrink_to_fit();
|
||
}
|
||
|
||
/// Insert the value into the set.
|
||
///
|
||
/// If an equivalent item already exists in the set, it returns
|
||
/// `false` leaving the original value in the set and without
|
||
/// altering its insertion order. Otherwise, it inserts the new
|
||
/// item and returns `true`.
|
||
///
|
||
/// Computes in **O(1)** time (amortized average).
|
||
pub fn insert(&mut self, value: T) -> bool {
|
||
self.map.insert(value, ()).is_none()
|
||
}
|
||
|
||
/// Insert the value into the set, and get its index.
|
||
///
|
||
/// If an equivalent item already exists in the set, it returns
|
||
/// the index of the existing item and `false`, leaving the
|
||
/// original value in the set and without altering its insertion
|
||
/// order. Otherwise, it inserts the new item and returns the index
|
||
/// of the inserted item and `true`.
|
||
///
|
||
/// Computes in **O(1)** time (amortized average).
|
||
pub fn insert_full(&mut self, value: T) -> (usize, bool) {
|
||
use super::map::Entry::*;
|
||
|
||
match self.map.entry(value) {
|
||
Occupied(e) => (e.index(), false),
|
||
Vacant(e) => {
|
||
let index = e.index();
|
||
e.insert(());
|
||
(index, true)
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Return an iterator over the values that are in `self` but not `other`.
|
||
///
|
||
/// Values are produced in the same order that they appear in `self`.
|
||
pub fn difference<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Difference<'a, T, S2>
|
||
where
|
||
S2: BuildHasher,
|
||
{
|
||
Difference {
|
||
iter: self.iter(),
|
||
other,
|
||
}
|
||
}
|
||
|
||
/// Return an iterator over the values that are in `self` or `other`,
|
||
/// but not in both.
|
||
///
|
||
/// Values from `self` are produced in their original order, followed by
|
||
/// values from `other` in their original order.
|
||
pub fn symmetric_difference<'a, S2>(
|
||
&'a self,
|
||
other: &'a IndexSet<T, S2>,
|
||
) -> SymmetricDifference<'a, T, S, S2>
|
||
where
|
||
S2: BuildHasher,
|
||
{
|
||
SymmetricDifference {
|
||
iter: self.difference(other).chain(other.difference(self)),
|
||
}
|
||
}
|
||
|
||
/// Return an iterator over the values that are in both `self` and `other`.
|
||
///
|
||
/// Values are produced in the same order that they appear in `self`.
|
||
pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Intersection<'a, T, S2>
|
||
where
|
||
S2: BuildHasher,
|
||
{
|
||
Intersection {
|
||
iter: self.iter(),
|
||
other,
|
||
}
|
||
}
|
||
|
||
/// Return an iterator over all values that are in `self` or `other`.
|
||
///
|
||
/// Values from `self` are produced in their original order, followed by
|
||
/// values that are unique to `other` in their original order.
|
||
pub fn union<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Union<'a, T, S>
|
||
where
|
||
S2: BuildHasher,
|
||
{
|
||
Union {
|
||
iter: self.iter().chain(other.difference(self)),
|
||
}
|
||
}
|
||
|
||
/// Return `true` if an equivalent to `value` exists in the set.
|
||
///
|
||
/// Computes in **O(1)** time (average).
|
||
pub fn contains<Q: ?Sized>(&self, value: &Q) -> bool
|
||
where
|
||
Q: Hash + Equivalent<T>,
|
||
{
|
||
self.map.contains_key(value)
|
||
}
|
||
|
||
/// Return a reference to the value stored in the set, if it is present,
|
||
/// else `None`.
|
||
///
|
||
/// Computes in **O(1)** time (average).
|
||
pub fn get<Q: ?Sized>(&self, value: &Q) -> Option<&T>
|
||
where
|
||
Q: Hash + Equivalent<T>,
|
||
{
|
||
self.map.get_key_value(value).map(|(x, &())| x)
|
||
}
|
||
|
||
/// Return item index and value
|
||
pub fn get_full<Q: ?Sized>(&self, value: &Q) -> Option<(usize, &T)>
|
||
where
|
||
Q: Hash + Equivalent<T>,
|
||
{
|
||
self.map.get_full(value).map(|(i, x, &())| (i, x))
|
||
}
|
||
|
||
/// Return item index, if it exists in the set
|
||
pub fn get_index_of<Q: ?Sized>(&self, value: &Q) -> Option<usize>
|
||
where
|
||
Q: Hash + Equivalent<T>,
|
||
{
|
||
self.map.get_index_of(value)
|
||
}
|
||
|
||
/// Adds a value to the set, replacing the existing value, if any, that is
|
||
/// equal to the given one, without altering its insertion order. Returns
|
||
/// the replaced value.
|
||
///
|
||
/// Computes in **O(1)** time (average).
|
||
pub fn replace(&mut self, value: T) -> Option<T> {
|
||
self.replace_full(value).1
|
||
}
|
||
|
||
/// Adds a value to the set, replacing the existing value, if any, that is
|
||
/// equal to the given one, without altering its insertion order. Returns
|
||
/// the index of the item and its replaced value.
|
||
///
|
||
/// Computes in **O(1)** time (average).
|
||
pub fn replace_full(&mut self, value: T) -> (usize, Option<T>) {
|
||
use super::map::Entry::*;
|
||
|
||
match self.map.entry(value) {
|
||
Vacant(e) => {
|
||
let index = e.index();
|
||
e.insert(());
|
||
(index, None)
|
||
}
|
||
Occupied(e) => (e.index(), Some(e.replace_key())),
|
||
}
|
||
}
|
||
|
||
/// Remove the value from the set, and return `true` if it was present.
|
||
///
|
||
/// **NOTE:** This is equivalent to `.swap_remove(value)`, if you want
|
||
/// to preserve the order of the values in the set, use `.shift_remove(value)`.
|
||
///
|
||
/// Computes in **O(1)** time (average).
|
||
pub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool
|
||
where
|
||
Q: Hash + Equivalent<T>,
|
||
{
|
||
self.swap_remove(value)
|
||
}
|
||
|
||
/// Remove the value from the set, and return `true` if it was present.
|
||
///
|
||
/// Like `Vec::swap_remove`, the value is removed by swapping it with the
|
||
/// last element of the set and popping it off. **This perturbs
|
||
/// the position of what used to be the last element!**
|
||
///
|
||
/// Return `false` if `value` was not in the set.
|
||
///
|
||
/// Computes in **O(1)** time (average).
|
||
pub fn swap_remove<Q: ?Sized>(&mut self, value: &Q) -> bool
|
||
where
|
||
Q: Hash + Equivalent<T>,
|
||
{
|
||
self.map.swap_remove(value).is_some()
|
||
}
|
||
|
||
/// Remove the value from the set, and return `true` if it was present.
|
||
///
|
||
/// Like `Vec::remove`, the value is removed by shifting all of the
|
||
/// elements that follow it, preserving their relative order.
|
||
/// **This perturbs the index of all of those elements!**
|
||
///
|
||
/// Return `false` if `value` was not in the set.
|
||
///
|
||
/// Computes in **O(n)** time (average).
|
||
pub fn shift_remove<Q: ?Sized>(&mut self, value: &Q) -> bool
|
||
where
|
||
Q: Hash + Equivalent<T>,
|
||
{
|
||
self.map.shift_remove(value).is_some()
|
||
}
|
||
|
||
/// Removes and returns the value in the set, if any, that is equal to the
|
||
/// given one.
|
||
///
|
||
/// **NOTE:** This is equivalent to `.swap_take(value)`, if you need to
|
||
/// preserve the order of the values in the set, use `.shift_take(value)`
|
||
/// instead.
|
||
///
|
||
/// Computes in **O(1)** time (average).
|
||
pub fn take<Q: ?Sized>(&mut self, value: &Q) -> Option<T>
|
||
where
|
||
Q: Hash + Equivalent<T>,
|
||
{
|
||
self.swap_take(value)
|
||
}
|
||
|
||
/// Removes and returns the value in the set, if any, that is equal to the
|
||
/// given one.
|
||
///
|
||
/// Like `Vec::swap_remove`, the value is removed by swapping it with the
|
||
/// last element of the set and popping it off. **This perturbs
|
||
/// the position of what used to be the last element!**
|
||
///
|
||
/// Return `None` if `value` was not in the set.
|
||
///
|
||
/// Computes in **O(1)** time (average).
|
||
pub fn swap_take<Q: ?Sized>(&mut self, value: &Q) -> Option<T>
|
||
where
|
||
Q: Hash + Equivalent<T>,
|
||
{
|
||
self.map.swap_remove_entry(value).map(|(x, ())| x)
|
||
}
|
||
|
||
/// Removes and returns the value in the set, if any, that is equal to the
|
||
/// given one.
|
||
///
|
||
/// Like `Vec::remove`, the value is removed by shifting all of the
|
||
/// elements that follow it, preserving their relative order.
|
||
/// **This perturbs the index of all of those elements!**
|
||
///
|
||
/// Return `None` if `value` was not in the set.
|
||
///
|
||
/// Computes in **O(n)** time (average).
|
||
pub fn shift_take<Q: ?Sized>(&mut self, value: &Q) -> Option<T>
|
||
where
|
||
Q: Hash + Equivalent<T>,
|
||
{
|
||
self.map.shift_remove_entry(value).map(|(x, ())| x)
|
||
}
|
||
|
||
/// Remove the value from the set return it and the index it had.
|
||
///
|
||
/// Like `Vec::swap_remove`, the value is removed by swapping it with the
|
||
/// last element of the set and popping it off. **This perturbs
|
||
/// the position of what used to be the last element!**
|
||
///
|
||
/// Return `None` if `value` was not in the set.
|
||
pub fn swap_remove_full<Q: ?Sized>(&mut self, value: &Q) -> Option<(usize, T)>
|
||
where
|
||
Q: Hash + Equivalent<T>,
|
||
{
|
||
self.map.swap_remove_full(value).map(|(i, x, ())| (i, x))
|
||
}
|
||
|
||
/// Remove the value from the set return it and the index it had.
|
||
///
|
||
/// Like `Vec::remove`, the value is removed by shifting all of the
|
||
/// elements that follow it, preserving their relative order.
|
||
/// **This perturbs the index of all of those elements!**
|
||
///
|
||
/// Return `None` if `value` was not in the set.
|
||
pub fn shift_remove_full<Q: ?Sized>(&mut self, value: &Q) -> Option<(usize, T)>
|
||
where
|
||
Q: Hash + Equivalent<T>,
|
||
{
|
||
self.map.shift_remove_full(value).map(|(i, x, ())| (i, x))
|
||
}
|
||
|
||
/// Remove the last value
|
||
///
|
||
/// This preserves the order of the remaining elements.
|
||
///
|
||
/// Computes in **O(1)** time (average).
|
||
pub fn pop(&mut self) -> Option<T> {
|
||
self.map.pop().map(|(x, ())| x)
|
||
}
|
||
|
||
/// Scan through each value in the set and keep those where the
|
||
/// closure `keep` returns `true`.
|
||
///
|
||
/// The elements are visited in order, and remaining elements keep their
|
||
/// order.
|
||
///
|
||
/// Computes in **O(n)** time (average).
|
||
pub fn retain<F>(&mut self, mut keep: F)
|
||
where
|
||
F: FnMut(&T) -> bool,
|
||
{
|
||
self.map.retain(move |x, &mut ()| keep(x))
|
||
}
|
||
|
||
/// Sort the set’s values by their default ordering.
|
||
///
|
||
/// See [`sort_by`](Self::sort_by) for details.
|
||
pub fn sort(&mut self)
|
||
where
|
||
T: Ord,
|
||
{
|
||
self.map.sort_keys()
|
||
}
|
||
|
||
/// Sort the set’s values in place using the comparison function `cmp`.
|
||
///
|
||
/// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
|
||
pub fn sort_by<F>(&mut self, mut cmp: F)
|
||
where
|
||
F: FnMut(&T, &T) -> Ordering,
|
||
{
|
||
self.map.sort_by(move |a, _, b, _| cmp(a, b));
|
||
}
|
||
|
||
/// Sort the values of the set and return a by-value iterator of
|
||
/// the values with the result.
|
||
///
|
||
/// The sort is stable.
|
||
pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<T>
|
||
where
|
||
F: FnMut(&T, &T) -> Ordering,
|
||
{
|
||
IntoIter {
|
||
iter: self.map.sorted_by(move |a, _, b, _| cmp(a, b)).iter,
|
||
}
|
||
}
|
||
|
||
/// Sort the set's values by their default ordering.
|
||
///
|
||
/// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
|
||
pub fn sort_unstable(&mut self)
|
||
where
|
||
T: Ord,
|
||
{
|
||
self.map.sort_unstable_keys()
|
||
}
|
||
|
||
/// Sort the set's values in place using the comparison funtion `cmp`.
|
||
///
|
||
/// Computes in **O(n log n)** time. The sort is unstable.
|
||
pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
|
||
where
|
||
F: FnMut(&T, &T) -> Ordering,
|
||
{
|
||
self.map.sort_unstable_by(move |a, _, b, _| cmp(a, b))
|
||
}
|
||
|
||
/// Sort the values of the set and return a by-value iterator of
|
||
/// the values with the result.
|
||
pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<T>
|
||
where
|
||
F: FnMut(&T, &T) -> Ordering,
|
||
{
|
||
IntoIter {
|
||
iter: self
|
||
.map
|
||
.sorted_unstable_by(move |a, _, b, _| cmp(a, b))
|
||
.iter,
|
||
}
|
||
}
|
||
|
||
/// Reverses the order of the set’s values in place.
|
||
///
|
||
/// Computes in **O(n)** time and **O(1)** space.
|
||
pub fn reverse(&mut self) {
|
||
self.map.reverse()
|
||
}
|
||
}
|
||
|
||
impl<T, S> IndexSet<T, S> {
|
||
/// Get a value by index
|
||
///
|
||
/// Valid indices are *0 <= index < self.len()*
|
||
///
|
||
/// Computes in **O(1)** time.
|
||
pub fn get_index(&self, index: usize) -> Option<&T> {
|
||
self.as_entries().get(index).map(Bucket::key_ref)
|
||
}
|
||
|
||
/// Get the first value
|
||
///
|
||
/// Computes in **O(1)** time.
|
||
pub fn first(&self) -> Option<&T> {
|
||
self.as_entries().first().map(Bucket::key_ref)
|
||
}
|
||
|
||
/// Get the last value
|
||
///
|
||
/// Computes in **O(1)** time.
|
||
pub fn last(&self) -> Option<&T> {
|
||
self.as_entries().last().map(Bucket::key_ref)
|
||
}
|
||
|
||
/// Remove the value by index
|
||
///
|
||
/// Valid indices are *0 <= index < self.len()*
|
||
///
|
||
/// Like `Vec::swap_remove`, the value is removed by swapping it with the
|
||
/// last element of the set and popping it off. **This perturbs
|
||
/// the position of what used to be the last element!**
|
||
///
|
||
/// Computes in **O(1)** time (average).
|
||
pub fn swap_remove_index(&mut self, index: usize) -> Option<T> {
|
||
self.map.swap_remove_index(index).map(|(x, ())| x)
|
||
}
|
||
|
||
/// Remove the value by index
|
||
///
|
||
/// Valid indices are *0 <= index < self.len()*
|
||
///
|
||
/// Like `Vec::remove`, the value is removed by shifting all of the
|
||
/// elements that follow it, preserving their relative order.
|
||
/// **This perturbs the index of all of those elements!**
|
||
///
|
||
/// Computes in **O(n)** time (average).
|
||
pub fn shift_remove_index(&mut self, index: usize) -> Option<T> {
|
||
self.map.shift_remove_index(index).map(|(x, ())| x)
|
||
}
|
||
|
||
/// Swaps the position of two values in the set.
|
||
///
|
||
/// ***Panics*** if `a` or `b` are out of bounds.
|
||
pub fn swap_indices(&mut self, a: usize, b: usize) {
|
||
self.map.swap_indices(a, b)
|
||
}
|
||
}
|
||
|
||
/// Access `IndexSet` values at indexed positions.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use indexmap::IndexSet;
|
||
///
|
||
/// let mut set = IndexSet::new();
|
||
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
|
||
/// set.insert(word.to_string());
|
||
/// }
|
||
/// assert_eq!(set[0], "Lorem");
|
||
/// assert_eq!(set[1], "ipsum");
|
||
/// set.reverse();
|
||
/// assert_eq!(set[0], "amet");
|
||
/// assert_eq!(set[1], "sit");
|
||
/// set.sort();
|
||
/// assert_eq!(set[0], "Lorem");
|
||
/// assert_eq!(set[1], "amet");
|
||
/// ```
|
||
///
|
||
/// ```should_panic
|
||
/// use indexmap::IndexSet;
|
||
///
|
||
/// let mut set = IndexSet::new();
|
||
/// set.insert("foo");
|
||
/// println!("{:?}", set[10]); // panics!
|
||
/// ```
|
||
impl<T, S> Index<usize> for IndexSet<T, S> {
|
||
type Output = T;
|
||
|
||
/// Returns a reference to the value at the supplied `index`.
|
||
///
|
||
/// ***Panics*** if `index` is out of bounds.
|
||
fn index(&self, index: usize) -> &T {
|
||
self.get_index(index)
|
||
.expect("IndexSet: index out of bounds")
|
||
}
|
||
}
|
||
|
||
/// An owning iterator over the items of a `IndexSet`.
|
||
///
|
||
/// This `struct` is created by the [`into_iter`] method on [`IndexSet`]
|
||
/// (provided by the `IntoIterator` trait). See its documentation for more.
|
||
///
|
||
/// [`IndexSet`]: struct.IndexSet.html
|
||
/// [`into_iter`]: struct.IndexSet.html#method.into_iter
|
||
pub struct IntoIter<T> {
|
||
iter: vec::IntoIter<Bucket<T>>,
|
||
}
|
||
|
||
impl<T> Iterator for IntoIter<T> {
|
||
type Item = T;
|
||
|
||
iterator_methods!(Bucket::key);
|
||
}
|
||
|
||
impl<T> DoubleEndedIterator for IntoIter<T> {
|
||
double_ended_iterator_methods!(Bucket::key);
|
||
}
|
||
|
||
impl<T> ExactSizeIterator for IntoIter<T> {
|
||
fn len(&self) -> usize {
|
||
self.iter.len()
|
||
}
|
||
}
|
||
|
||
impl<T> FusedIterator for IntoIter<T> {}
|
||
|
||
impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
let iter = self.iter.as_slice().iter().map(Bucket::key_ref);
|
||
f.debug_list().entries(iter).finish()
|
||
}
|
||
}
|
||
|
||
/// An iterator over the items of a `IndexSet`.
|
||
///
|
||
/// This `struct` is created by the [`iter`] method on [`IndexSet`].
|
||
/// See its documentation for more.
|
||
///
|
||
/// [`IndexSet`]: struct.IndexSet.html
|
||
/// [`iter`]: struct.IndexSet.html#method.iter
|
||
pub struct Iter<'a, T> {
|
||
iter: slice::Iter<'a, Bucket<T>>,
|
||
}
|
||
|
||
impl<'a, T> Iterator for Iter<'a, T> {
|
||
type Item = &'a T;
|
||
|
||
iterator_methods!(Bucket::key_ref);
|
||
}
|
||
|
||
impl<T> DoubleEndedIterator for Iter<'_, T> {
|
||
double_ended_iterator_methods!(Bucket::key_ref);
|
||
}
|
||
|
||
impl<T> ExactSizeIterator for Iter<'_, T> {
|
||
fn len(&self) -> usize {
|
||
self.iter.len()
|
||
}
|
||
}
|
||
|
||
impl<T> FusedIterator for Iter<'_, T> {}
|
||
|
||
impl<T> Clone for Iter<'_, T> {
|
||
fn clone(&self) -> Self {
|
||
Iter {
|
||
iter: self.iter.clone(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
f.debug_list().entries(self.clone()).finish()
|
||
}
|
||
}
|
||
|
||
/// A draining iterator over the items of a `IndexSet`.
|
||
///
|
||
/// This `struct` is created by the [`drain`] method on [`IndexSet`].
|
||
/// See its documentation for more.
|
||
///
|
||
/// [`IndexSet`]: struct.IndexSet.html
|
||
/// [`drain`]: struct.IndexSet.html#method.drain
|
||
pub struct Drain<'a, T> {
|
||
iter: vec::Drain<'a, Bucket<T>>,
|
||
}
|
||
|
||
impl<T> Iterator for Drain<'_, T> {
|
||
type Item = T;
|
||
|
||
iterator_methods!(Bucket::key);
|
||
}
|
||
|
||
impl<T> DoubleEndedIterator for Drain<'_, T> {
|
||
double_ended_iterator_methods!(Bucket::key);
|
||
}
|
||
|
||
impl<T> ExactSizeIterator for Drain<'_, T> {
|
||
fn len(&self) -> usize {
|
||
self.iter.len()
|
||
}
|
||
}
|
||
|
||
impl<T> FusedIterator for Drain<'_, T> {}
|
||
|
||
impl<T: fmt::Debug> fmt::Debug for Drain<'_, T> {
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
let iter = self.iter.as_slice().iter().map(Bucket::key_ref);
|
||
f.debug_list().entries(iter).finish()
|
||
}
|
||
}
|
||
|
||
impl<'a, T, S> IntoIterator for &'a IndexSet<T, S> {
|
||
type Item = &'a T;
|
||
type IntoIter = Iter<'a, T>;
|
||
|
||
fn into_iter(self) -> Self::IntoIter {
|
||
self.iter()
|
||
}
|
||
}
|
||
|
||
impl<T, S> IntoIterator for IndexSet<T, S> {
|
||
type Item = T;
|
||
type IntoIter = IntoIter<T>;
|
||
|
||
fn into_iter(self) -> Self::IntoIter {
|
||
IntoIter {
|
||
iter: self.map.into_iter().iter,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, S> FromIterator<T> for IndexSet<T, S>
|
||
where
|
||
T: Hash + Eq,
|
||
S: BuildHasher + Default,
|
||
{
|
||
fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self {
|
||
let iter = iterable.into_iter().map(|x| (x, ()));
|
||
IndexSet {
|
||
map: IndexMap::from_iter(iter),
|
||
}
|
||
}
|
||
}
|
||
|
||
#[cfg(all(has_std, rustc_1_51))]
|
||
impl<T, const N: usize> From<[T; N]> for IndexSet<T, RandomState>
|
||
where
|
||
T: Eq + Hash,
|
||
{
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use indexmap::IndexSet;
|
||
///
|
||
/// let set1 = IndexSet::from([1, 2, 3, 4]);
|
||
/// let set2: IndexSet<_> = [1, 2, 3, 4].into();
|
||
/// assert_eq!(set1, set2);
|
||
/// ```
|
||
fn from(arr: [T; N]) -> Self {
|
||
std::array::IntoIter::new(arr).collect()
|
||
}
|
||
}
|
||
|
||
impl<T, S> Extend<T> for IndexSet<T, S>
|
||
where
|
||
T: Hash + Eq,
|
||
S: BuildHasher,
|
||
{
|
||
fn extend<I: IntoIterator<Item = T>>(&mut self, iterable: I) {
|
||
let iter = iterable.into_iter().map(|x| (x, ()));
|
||
self.map.extend(iter);
|
||
}
|
||
}
|
||
|
||
impl<'a, T, S> Extend<&'a T> for IndexSet<T, S>
|
||
where
|
||
T: Hash + Eq + Copy + 'a,
|
||
S: BuildHasher,
|
||
{
|
||
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iterable: I) {
|
||
let iter = iterable.into_iter().copied();
|
||
self.extend(iter);
|
||
}
|
||
}
|
||
|
||
impl<T, S> Default for IndexSet<T, S>
|
||
where
|
||
S: Default,
|
||
{
|
||
/// Return an empty `IndexSet`
|
||
fn default() -> Self {
|
||
IndexSet {
|
||
map: IndexMap::default(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, S1, S2> PartialEq<IndexSet<T, S2>> for IndexSet<T, S1>
|
||
where
|
||
T: Hash + Eq,
|
||
S1: BuildHasher,
|
||
S2: BuildHasher,
|
||
{
|
||
fn eq(&self, other: &IndexSet<T, S2>) -> bool {
|
||
self.len() == other.len() && self.is_subset(other)
|
||
}
|
||
}
|
||
|
||
impl<T, S> Eq for IndexSet<T, S>
|
||
where
|
||
T: Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
}
|
||
|
||
impl<T, S> IndexSet<T, S>
|
||
where
|
||
T: Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
/// Returns `true` if `self` has no elements in common with `other`.
|
||
pub fn is_disjoint<S2>(&self, other: &IndexSet<T, S2>) -> bool
|
||
where
|
||
S2: BuildHasher,
|
||
{
|
||
if self.len() <= other.len() {
|
||
self.iter().all(move |value| !other.contains(value))
|
||
} else {
|
||
other.iter().all(move |value| !self.contains(value))
|
||
}
|
||
}
|
||
|
||
/// Returns `true` if all elements of `self` are contained in `other`.
|
||
pub fn is_subset<S2>(&self, other: &IndexSet<T, S2>) -> bool
|
||
where
|
||
S2: BuildHasher,
|
||
{
|
||
self.len() <= other.len() && self.iter().all(move |value| other.contains(value))
|
||
}
|
||
|
||
/// Returns `true` if all elements of `other` are contained in `self`.
|
||
pub fn is_superset<S2>(&self, other: &IndexSet<T, S2>) -> bool
|
||
where
|
||
S2: BuildHasher,
|
||
{
|
||
other.is_subset(self)
|
||
}
|
||
}
|
||
|
||
/// A lazy iterator producing elements in the difference of `IndexSet`s.
|
||
///
|
||
/// This `struct` is created by the [`difference`] method on [`IndexSet`].
|
||
/// See its documentation for more.
|
||
///
|
||
/// [`IndexSet`]: struct.IndexSet.html
|
||
/// [`difference`]: struct.IndexSet.html#method.difference
|
||
pub struct Difference<'a, T, S> {
|
||
iter: Iter<'a, T>,
|
||
other: &'a IndexSet<T, S>,
|
||
}
|
||
|
||
impl<'a, T, S> Iterator for Difference<'a, T, S>
|
||
where
|
||
T: Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
type Item = &'a T;
|
||
|
||
fn next(&mut self) -> Option<Self::Item> {
|
||
while let Some(item) = self.iter.next() {
|
||
if !self.other.contains(item) {
|
||
return Some(item);
|
||
}
|
||
}
|
||
None
|
||
}
|
||
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
(0, self.iter.size_hint().1)
|
||
}
|
||
}
|
||
|
||
impl<T, S> DoubleEndedIterator for Difference<'_, T, S>
|
||
where
|
||
T: Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
fn next_back(&mut self) -> Option<Self::Item> {
|
||
while let Some(item) = self.iter.next_back() {
|
||
if !self.other.contains(item) {
|
||
return Some(item);
|
||
}
|
||
}
|
||
None
|
||
}
|
||
}
|
||
|
||
impl<T, S> FusedIterator for Difference<'_, T, S>
|
||
where
|
||
T: Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
}
|
||
|
||
impl<T, S> Clone for Difference<'_, T, S> {
|
||
fn clone(&self) -> Self {
|
||
Difference {
|
||
iter: self.iter.clone(),
|
||
..*self
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, S> fmt::Debug for Difference<'_, T, S>
|
||
where
|
||
T: fmt::Debug + Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
f.debug_list().entries(self.clone()).finish()
|
||
}
|
||
}
|
||
|
||
/// A lazy iterator producing elements in the intersection of `IndexSet`s.
|
||
///
|
||
/// This `struct` is created by the [`intersection`] method on [`IndexSet`].
|
||
/// See its documentation for more.
|
||
///
|
||
/// [`IndexSet`]: struct.IndexSet.html
|
||
/// [`intersection`]: struct.IndexSet.html#method.intersection
|
||
pub struct Intersection<'a, T, S> {
|
||
iter: Iter<'a, T>,
|
||
other: &'a IndexSet<T, S>,
|
||
}
|
||
|
||
impl<'a, T, S> Iterator for Intersection<'a, T, S>
|
||
where
|
||
T: Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
type Item = &'a T;
|
||
|
||
fn next(&mut self) -> Option<Self::Item> {
|
||
while let Some(item) = self.iter.next() {
|
||
if self.other.contains(item) {
|
||
return Some(item);
|
||
}
|
||
}
|
||
None
|
||
}
|
||
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
(0, self.iter.size_hint().1)
|
||
}
|
||
}
|
||
|
||
impl<T, S> DoubleEndedIterator for Intersection<'_, T, S>
|
||
where
|
||
T: Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
fn next_back(&mut self) -> Option<Self::Item> {
|
||
while let Some(item) = self.iter.next_back() {
|
||
if self.other.contains(item) {
|
||
return Some(item);
|
||
}
|
||
}
|
||
None
|
||
}
|
||
}
|
||
|
||
impl<T, S> FusedIterator for Intersection<'_, T, S>
|
||
where
|
||
T: Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
}
|
||
|
||
impl<T, S> Clone for Intersection<'_, T, S> {
|
||
fn clone(&self) -> Self {
|
||
Intersection {
|
||
iter: self.iter.clone(),
|
||
..*self
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, S> fmt::Debug for Intersection<'_, T, S>
|
||
where
|
||
T: fmt::Debug + Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
f.debug_list().entries(self.clone()).finish()
|
||
}
|
||
}
|
||
|
||
/// A lazy iterator producing elements in the symmetric difference of `IndexSet`s.
|
||
///
|
||
/// This `struct` is created by the [`symmetric_difference`] method on
|
||
/// [`IndexSet`]. See its documentation for more.
|
||
///
|
||
/// [`IndexSet`]: struct.IndexSet.html
|
||
/// [`symmetric_difference`]: struct.IndexSet.html#method.symmetric_difference
|
||
pub struct SymmetricDifference<'a, T, S1, S2> {
|
||
iter: Chain<Difference<'a, T, S2>, Difference<'a, T, S1>>,
|
||
}
|
||
|
||
impl<'a, T, S1, S2> Iterator for SymmetricDifference<'a, T, S1, S2>
|
||
where
|
||
T: Eq + Hash,
|
||
S1: BuildHasher,
|
||
S2: BuildHasher,
|
||
{
|
||
type Item = &'a T;
|
||
|
||
fn next(&mut self) -> Option<Self::Item> {
|
||
self.iter.next()
|
||
}
|
||
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
self.iter.size_hint()
|
||
}
|
||
|
||
fn fold<B, F>(self, init: B, f: F) -> B
|
||
where
|
||
F: FnMut(B, Self::Item) -> B,
|
||
{
|
||
self.iter.fold(init, f)
|
||
}
|
||
}
|
||
|
||
impl<T, S1, S2> DoubleEndedIterator for SymmetricDifference<'_, T, S1, S2>
|
||
where
|
||
T: Eq + Hash,
|
||
S1: BuildHasher,
|
||
S2: BuildHasher,
|
||
{
|
||
fn next_back(&mut self) -> Option<Self::Item> {
|
||
self.iter.next_back()
|
||
}
|
||
|
||
fn rfold<B, F>(self, init: B, f: F) -> B
|
||
where
|
||
F: FnMut(B, Self::Item) -> B,
|
||
{
|
||
self.iter.rfold(init, f)
|
||
}
|
||
}
|
||
|
||
impl<T, S1, S2> FusedIterator for SymmetricDifference<'_, T, S1, S2>
|
||
where
|
||
T: Eq + Hash,
|
||
S1: BuildHasher,
|
||
S2: BuildHasher,
|
||
{
|
||
}
|
||
|
||
impl<T, S1, S2> Clone for SymmetricDifference<'_, T, S1, S2> {
|
||
fn clone(&self) -> Self {
|
||
SymmetricDifference {
|
||
iter: self.iter.clone(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, S1, S2> fmt::Debug for SymmetricDifference<'_, T, S1, S2>
|
||
where
|
||
T: fmt::Debug + Eq + Hash,
|
||
S1: BuildHasher,
|
||
S2: BuildHasher,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
f.debug_list().entries(self.clone()).finish()
|
||
}
|
||
}
|
||
|
||
/// A lazy iterator producing elements in the union of `IndexSet`s.
|
||
///
|
||
/// This `struct` is created by the [`union`] method on [`IndexSet`].
|
||
/// See its documentation for more.
|
||
///
|
||
/// [`IndexSet`]: struct.IndexSet.html
|
||
/// [`union`]: struct.IndexSet.html#method.union
|
||
pub struct Union<'a, T, S> {
|
||
iter: Chain<Iter<'a, T>, Difference<'a, T, S>>,
|
||
}
|
||
|
||
impl<'a, T, S> Iterator for Union<'a, T, S>
|
||
where
|
||
T: Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
type Item = &'a T;
|
||
|
||
fn next(&mut self) -> Option<Self::Item> {
|
||
self.iter.next()
|
||
}
|
||
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
self.iter.size_hint()
|
||
}
|
||
|
||
fn fold<B, F>(self, init: B, f: F) -> B
|
||
where
|
||
F: FnMut(B, Self::Item) -> B,
|
||
{
|
||
self.iter.fold(init, f)
|
||
}
|
||
}
|
||
|
||
impl<T, S> DoubleEndedIterator for Union<'_, T, S>
|
||
where
|
||
T: Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
fn next_back(&mut self) -> Option<Self::Item> {
|
||
self.iter.next_back()
|
||
}
|
||
|
||
fn rfold<B, F>(self, init: B, f: F) -> B
|
||
where
|
||
F: FnMut(B, Self::Item) -> B,
|
||
{
|
||
self.iter.rfold(init, f)
|
||
}
|
||
}
|
||
|
||
impl<T, S> FusedIterator for Union<'_, T, S>
|
||
where
|
||
T: Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
}
|
||
|
||
impl<T, S> Clone for Union<'_, T, S> {
|
||
fn clone(&self) -> Self {
|
||
Union {
|
||
iter: self.iter.clone(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, S> fmt::Debug for Union<'_, T, S>
|
||
where
|
||
T: fmt::Debug + Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
f.debug_list().entries(self.clone()).finish()
|
||
}
|
||
}
|
||
|
||
impl<T, S1, S2> BitAnd<&IndexSet<T, S2>> for &IndexSet<T, S1>
|
||
where
|
||
T: Eq + Hash + Clone,
|
||
S1: BuildHasher + Default,
|
||
S2: BuildHasher,
|
||
{
|
||
type Output = IndexSet<T, S1>;
|
||
|
||
/// Returns the set intersection, cloned into a new set.
|
||
///
|
||
/// Values are collected in the same order that they appear in `self`.
|
||
fn bitand(self, other: &IndexSet<T, S2>) -> Self::Output {
|
||
self.intersection(other).cloned().collect()
|
||
}
|
||
}
|
||
|
||
impl<T, S1, S2> BitOr<&IndexSet<T, S2>> for &IndexSet<T, S1>
|
||
where
|
||
T: Eq + Hash + Clone,
|
||
S1: BuildHasher + Default,
|
||
S2: BuildHasher,
|
||
{
|
||
type Output = IndexSet<T, S1>;
|
||
|
||
/// Returns the set union, cloned into a new set.
|
||
///
|
||
/// Values from `self` are collected in their original order, followed by
|
||
/// values that are unique to `other` in their original order.
|
||
fn bitor(self, other: &IndexSet<T, S2>) -> Self::Output {
|
||
self.union(other).cloned().collect()
|
||
}
|
||
}
|
||
|
||
impl<T, S1, S2> BitXor<&IndexSet<T, S2>> for &IndexSet<T, S1>
|
||
where
|
||
T: Eq + Hash + Clone,
|
||
S1: BuildHasher + Default,
|
||
S2: BuildHasher,
|
||
{
|
||
type Output = IndexSet<T, S1>;
|
||
|
||
/// Returns the set symmetric-difference, cloned into a new set.
|
||
///
|
||
/// Values from `self` are collected in their original order, followed by
|
||
/// values from `other` in their original order.
|
||
fn bitxor(self, other: &IndexSet<T, S2>) -> Self::Output {
|
||
self.symmetric_difference(other).cloned().collect()
|
||
}
|
||
}
|
||
|
||
impl<T, S1, S2> Sub<&IndexSet<T, S2>> for &IndexSet<T, S1>
|
||
where
|
||
T: Eq + Hash + Clone,
|
||
S1: BuildHasher + Default,
|
||
S2: BuildHasher,
|
||
{
|
||
type Output = IndexSet<T, S1>;
|
||
|
||
/// Returns the set difference, cloned into a new set.
|
||
///
|
||
/// Values are collected in the same order that they appear in `self`.
|
||
fn sub(self, other: &IndexSet<T, S2>) -> Self::Output {
|
||
self.difference(other).cloned().collect()
|
||
}
|
||
}
|
||
|
||
#[cfg(test)]
|
||
mod tests {
|
||
use super::*;
|
||
use crate::util::enumerate;
|
||
use std::string::String;
|
||
|
||
#[test]
|
||
fn it_works() {
|
||
let mut set = IndexSet::new();
|
||
assert_eq!(set.is_empty(), true);
|
||
set.insert(1);
|
||
set.insert(1);
|
||
assert_eq!(set.len(), 1);
|
||
assert!(set.get(&1).is_some());
|
||
assert_eq!(set.is_empty(), false);
|
||
}
|
||
|
||
#[test]
|
||
fn new() {
|
||
let set = IndexSet::<String>::new();
|
||
println!("{:?}", set);
|
||
assert_eq!(set.capacity(), 0);
|
||
assert_eq!(set.len(), 0);
|
||
assert_eq!(set.is_empty(), true);
|
||
}
|
||
|
||
#[test]
|
||
fn insert() {
|
||
let insert = [0, 4, 2, 12, 8, 7, 11, 5];
|
||
let not_present = [1, 3, 6, 9, 10];
|
||
let mut set = IndexSet::with_capacity(insert.len());
|
||
|
||
for (i, &elt) in enumerate(&insert) {
|
||
assert_eq!(set.len(), i);
|
||
set.insert(elt);
|
||
assert_eq!(set.len(), i + 1);
|
||
assert_eq!(set.get(&elt), Some(&elt));
|
||
}
|
||
println!("{:?}", set);
|
||
|
||
for &elt in ¬_present {
|
||
assert!(set.get(&elt).is_none());
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn insert_full() {
|
||
let insert = vec![9, 2, 7, 1, 4, 6, 13];
|
||
let present = vec![1, 6, 2];
|
||
let mut set = IndexSet::with_capacity(insert.len());
|
||
|
||
for (i, &elt) in enumerate(&insert) {
|
||
assert_eq!(set.len(), i);
|
||
let (index, success) = set.insert_full(elt);
|
||
assert!(success);
|
||
assert_eq!(Some(index), set.get_full(&elt).map(|x| x.0));
|
||
assert_eq!(set.len(), i + 1);
|
||
}
|
||
|
||
let len = set.len();
|
||
for &elt in &present {
|
||
let (index, success) = set.insert_full(elt);
|
||
assert!(!success);
|
||
assert_eq!(Some(index), set.get_full(&elt).map(|x| x.0));
|
||
assert_eq!(set.len(), len);
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn insert_2() {
|
||
let mut set = IndexSet::with_capacity(16);
|
||
|
||
let mut values = vec![];
|
||
values.extend(0..16);
|
||
values.extend(if cfg!(miri) { 32..64 } else { 128..267 });
|
||
|
||
for &i in &values {
|
||
let old_set = set.clone();
|
||
set.insert(i);
|
||
for value in old_set.iter() {
|
||
if set.get(value).is_none() {
|
||
println!("old_set: {:?}", old_set);
|
||
println!("set: {:?}", set);
|
||
panic!("did not find {} in set", value);
|
||
}
|
||
}
|
||
}
|
||
|
||
for &i in &values {
|
||
assert!(set.get(&i).is_some(), "did not find {}", i);
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn insert_dup() {
|
||
let mut elements = vec![0, 2, 4, 6, 8];
|
||
let mut set: IndexSet<u8> = elements.drain(..).collect();
|
||
{
|
||
let (i, v) = set.get_full(&0).unwrap();
|
||
assert_eq!(set.len(), 5);
|
||
assert_eq!(i, 0);
|
||
assert_eq!(*v, 0);
|
||
}
|
||
{
|
||
let inserted = set.insert(0);
|
||
let (i, v) = set.get_full(&0).unwrap();
|
||
assert_eq!(set.len(), 5);
|
||
assert_eq!(inserted, false);
|
||
assert_eq!(i, 0);
|
||
assert_eq!(*v, 0);
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn insert_order() {
|
||
let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23];
|
||
let mut set = IndexSet::new();
|
||
|
||
for &elt in &insert {
|
||
set.insert(elt);
|
||
}
|
||
|
||
assert_eq!(set.iter().count(), set.len());
|
||
assert_eq!(set.iter().count(), insert.len());
|
||
for (a, b) in insert.iter().zip(set.iter()) {
|
||
assert_eq!(a, b);
|
||
}
|
||
for (i, v) in (0..insert.len()).zip(set.iter()) {
|
||
assert_eq!(set.get_index(i).unwrap(), v);
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn replace() {
|
||
let replace = [0, 4, 2, 12, 8, 7, 11, 5];
|
||
let not_present = [1, 3, 6, 9, 10];
|
||
let mut set = IndexSet::with_capacity(replace.len());
|
||
|
||
for (i, &elt) in enumerate(&replace) {
|
||
assert_eq!(set.len(), i);
|
||
set.replace(elt);
|
||
assert_eq!(set.len(), i + 1);
|
||
assert_eq!(set.get(&elt), Some(&elt));
|
||
}
|
||
println!("{:?}", set);
|
||
|
||
for &elt in ¬_present {
|
||
assert!(set.get(&elt).is_none());
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn replace_full() {
|
||
let replace = vec![9, 2, 7, 1, 4, 6, 13];
|
||
let present = vec![1, 6, 2];
|
||
let mut set = IndexSet::with_capacity(replace.len());
|
||
|
||
for (i, &elt) in enumerate(&replace) {
|
||
assert_eq!(set.len(), i);
|
||
let (index, replaced) = set.replace_full(elt);
|
||
assert!(replaced.is_none());
|
||
assert_eq!(Some(index), set.get_full(&elt).map(|x| x.0));
|
||
assert_eq!(set.len(), i + 1);
|
||
}
|
||
|
||
let len = set.len();
|
||
for &elt in &present {
|
||
let (index, replaced) = set.replace_full(elt);
|
||
assert_eq!(Some(elt), replaced);
|
||
assert_eq!(Some(index), set.get_full(&elt).map(|x| x.0));
|
||
assert_eq!(set.len(), len);
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn replace_2() {
|
||
let mut set = IndexSet::with_capacity(16);
|
||
|
||
let mut values = vec![];
|
||
values.extend(0..16);
|
||
values.extend(if cfg!(miri) { 32..64 } else { 128..267 });
|
||
|
||
for &i in &values {
|
||
let old_set = set.clone();
|
||
set.replace(i);
|
||
for value in old_set.iter() {
|
||
if set.get(value).is_none() {
|
||
println!("old_set: {:?}", old_set);
|
||
println!("set: {:?}", set);
|
||
panic!("did not find {} in set", value);
|
||
}
|
||
}
|
||
}
|
||
|
||
for &i in &values {
|
||
assert!(set.get(&i).is_some(), "did not find {}", i);
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn replace_dup() {
|
||
let mut elements = vec![0, 2, 4, 6, 8];
|
||
let mut set: IndexSet<u8> = elements.drain(..).collect();
|
||
{
|
||
let (i, v) = set.get_full(&0).unwrap();
|
||
assert_eq!(set.len(), 5);
|
||
assert_eq!(i, 0);
|
||
assert_eq!(*v, 0);
|
||
}
|
||
{
|
||
let replaced = set.replace(0);
|
||
let (i, v) = set.get_full(&0).unwrap();
|
||
assert_eq!(set.len(), 5);
|
||
assert_eq!(replaced, Some(0));
|
||
assert_eq!(i, 0);
|
||
assert_eq!(*v, 0);
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn replace_order() {
|
||
let replace = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23];
|
||
let mut set = IndexSet::new();
|
||
|
||
for &elt in &replace {
|
||
set.replace(elt);
|
||
}
|
||
|
||
assert_eq!(set.iter().count(), set.len());
|
||
assert_eq!(set.iter().count(), replace.len());
|
||
for (a, b) in replace.iter().zip(set.iter()) {
|
||
assert_eq!(a, b);
|
||
}
|
||
for (i, v) in (0..replace.len()).zip(set.iter()) {
|
||
assert_eq!(set.get_index(i).unwrap(), v);
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn grow() {
|
||
let insert = [0, 4, 2, 12, 8, 7, 11];
|
||
let not_present = [1, 3, 6, 9, 10];
|
||
let mut set = IndexSet::with_capacity(insert.len());
|
||
|
||
for (i, &elt) in enumerate(&insert) {
|
||
assert_eq!(set.len(), i);
|
||
set.insert(elt);
|
||
assert_eq!(set.len(), i + 1);
|
||
assert_eq!(set.get(&elt), Some(&elt));
|
||
}
|
||
|
||
println!("{:?}", set);
|
||
for &elt in &insert {
|
||
set.insert(elt * 10);
|
||
}
|
||
for &elt in &insert {
|
||
set.insert(elt * 100);
|
||
}
|
||
for (i, &elt) in insert.iter().cycle().enumerate().take(100) {
|
||
set.insert(elt * 100 + i as i32);
|
||
}
|
||
println!("{:?}", set);
|
||
for &elt in ¬_present {
|
||
assert!(set.get(&elt).is_none());
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn reserve() {
|
||
let mut set = IndexSet::<usize>::new();
|
||
assert_eq!(set.capacity(), 0);
|
||
set.reserve(100);
|
||
let capacity = set.capacity();
|
||
assert!(capacity >= 100);
|
||
for i in 0..capacity {
|
||
assert_eq!(set.len(), i);
|
||
set.insert(i);
|
||
assert_eq!(set.len(), i + 1);
|
||
assert_eq!(set.capacity(), capacity);
|
||
assert_eq!(set.get(&i), Some(&i));
|
||
}
|
||
set.insert(capacity);
|
||
assert_eq!(set.len(), capacity + 1);
|
||
assert!(set.capacity() > capacity);
|
||
assert_eq!(set.get(&capacity), Some(&capacity));
|
||
}
|
||
|
||
#[test]
|
||
fn shrink_to_fit() {
|
||
let mut set = IndexSet::<usize>::new();
|
||
assert_eq!(set.capacity(), 0);
|
||
for i in 0..100 {
|
||
assert_eq!(set.len(), i);
|
||
set.insert(i);
|
||
assert_eq!(set.len(), i + 1);
|
||
assert!(set.capacity() >= i + 1);
|
||
assert_eq!(set.get(&i), Some(&i));
|
||
set.shrink_to_fit();
|
||
assert_eq!(set.len(), i + 1);
|
||
assert_eq!(set.capacity(), i + 1);
|
||
assert_eq!(set.get(&i), Some(&i));
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn remove() {
|
||
let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23];
|
||
let mut set = IndexSet::new();
|
||
|
||
for &elt in &insert {
|
||
set.insert(elt);
|
||
}
|
||
|
||
assert_eq!(set.iter().count(), set.len());
|
||
assert_eq!(set.iter().count(), insert.len());
|
||
for (a, b) in insert.iter().zip(set.iter()) {
|
||
assert_eq!(a, b);
|
||
}
|
||
|
||
let remove_fail = [99, 77];
|
||
let remove = [4, 12, 8, 7];
|
||
|
||
for &value in &remove_fail {
|
||
assert!(set.swap_remove_full(&value).is_none());
|
||
}
|
||
println!("{:?}", set);
|
||
for &value in &remove {
|
||
//println!("{:?}", set);
|
||
let index = set.get_full(&value).unwrap().0;
|
||
assert_eq!(set.swap_remove_full(&value), Some((index, value)));
|
||
}
|
||
println!("{:?}", set);
|
||
|
||
for value in &insert {
|
||
assert_eq!(set.get(value).is_some(), !remove.contains(value));
|
||
}
|
||
assert_eq!(set.len(), insert.len() - remove.len());
|
||
assert_eq!(set.iter().count(), insert.len() - remove.len());
|
||
}
|
||
|
||
#[test]
|
||
fn swap_remove_index() {
|
||
let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23];
|
||
let mut set = IndexSet::new();
|
||
|
||
for &elt in &insert {
|
||
set.insert(elt);
|
||
}
|
||
|
||
let mut vector = insert.to_vec();
|
||
let remove_sequence = &[3, 3, 10, 4, 5, 4, 3, 0, 1];
|
||
|
||
// check that the same swap remove sequence on vec and set
|
||
// have the same result.
|
||
for &rm in remove_sequence {
|
||
let out_vec = vector.swap_remove(rm);
|
||
let out_set = set.swap_remove_index(rm).unwrap();
|
||
assert_eq!(out_vec, out_set);
|
||
}
|
||
assert_eq!(vector.len(), set.len());
|
||
for (a, b) in vector.iter().zip(set.iter()) {
|
||
assert_eq!(a, b);
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn partial_eq_and_eq() {
|
||
let mut set_a = IndexSet::new();
|
||
set_a.insert(1);
|
||
set_a.insert(2);
|
||
let mut set_b = set_a.clone();
|
||
assert_eq!(set_a, set_b);
|
||
set_b.swap_remove(&1);
|
||
assert_ne!(set_a, set_b);
|
||
|
||
let set_c: IndexSet<_> = set_b.into_iter().collect();
|
||
assert_ne!(set_a, set_c);
|
||
assert_ne!(set_c, set_a);
|
||
}
|
||
|
||
#[test]
|
||
fn extend() {
|
||
let mut set = IndexSet::new();
|
||
set.extend(vec![&1, &2, &3, &4]);
|
||
set.extend(vec![5, 6]);
|
||
assert_eq!(set.into_iter().collect::<Vec<_>>(), vec![1, 2, 3, 4, 5, 6]);
|
||
}
|
||
|
||
#[test]
|
||
fn comparisons() {
|
||
let set_a: IndexSet<_> = (0..3).collect();
|
||
let set_b: IndexSet<_> = (3..6).collect();
|
||
let set_c: IndexSet<_> = (0..6).collect();
|
||
let set_d: IndexSet<_> = (3..9).collect();
|
||
|
||
assert!(!set_a.is_disjoint(&set_a));
|
||
assert!(set_a.is_subset(&set_a));
|
||
assert!(set_a.is_superset(&set_a));
|
||
|
||
assert!(set_a.is_disjoint(&set_b));
|
||
assert!(set_b.is_disjoint(&set_a));
|
||
assert!(!set_a.is_subset(&set_b));
|
||
assert!(!set_b.is_subset(&set_a));
|
||
assert!(!set_a.is_superset(&set_b));
|
||
assert!(!set_b.is_superset(&set_a));
|
||
|
||
assert!(!set_a.is_disjoint(&set_c));
|
||
assert!(!set_c.is_disjoint(&set_a));
|
||
assert!(set_a.is_subset(&set_c));
|
||
assert!(!set_c.is_subset(&set_a));
|
||
assert!(!set_a.is_superset(&set_c));
|
||
assert!(set_c.is_superset(&set_a));
|
||
|
||
assert!(!set_c.is_disjoint(&set_d));
|
||
assert!(!set_d.is_disjoint(&set_c));
|
||
assert!(!set_c.is_subset(&set_d));
|
||
assert!(!set_d.is_subset(&set_c));
|
||
assert!(!set_c.is_superset(&set_d));
|
||
assert!(!set_d.is_superset(&set_c));
|
||
}
|
||
|
||
#[test]
|
||
fn iter_comparisons() {
|
||
use std::iter::empty;
|
||
|
||
fn check<'a, I1, I2>(iter1: I1, iter2: I2)
|
||
where
|
||
I1: Iterator<Item = &'a i32>,
|
||
I2: Iterator<Item = i32>,
|
||
{
|
||
assert!(iter1.copied().eq(iter2));
|
||
}
|
||
|
||
let set_a: IndexSet<_> = (0..3).collect();
|
||
let set_b: IndexSet<_> = (3..6).collect();
|
||
let set_c: IndexSet<_> = (0..6).collect();
|
||
let set_d: IndexSet<_> = (3..9).rev().collect();
|
||
|
||
check(set_a.difference(&set_a), empty());
|
||
check(set_a.symmetric_difference(&set_a), empty());
|
||
check(set_a.intersection(&set_a), 0..3);
|
||
check(set_a.union(&set_a), 0..3);
|
||
|
||
check(set_a.difference(&set_b), 0..3);
|
||
check(set_b.difference(&set_a), 3..6);
|
||
check(set_a.symmetric_difference(&set_b), 0..6);
|
||
check(set_b.symmetric_difference(&set_a), (3..6).chain(0..3));
|
||
check(set_a.intersection(&set_b), empty());
|
||
check(set_b.intersection(&set_a), empty());
|
||
check(set_a.union(&set_b), 0..6);
|
||
check(set_b.union(&set_a), (3..6).chain(0..3));
|
||
|
||
check(set_a.difference(&set_c), empty());
|
||
check(set_c.difference(&set_a), 3..6);
|
||
check(set_a.symmetric_difference(&set_c), 3..6);
|
||
check(set_c.symmetric_difference(&set_a), 3..6);
|
||
check(set_a.intersection(&set_c), 0..3);
|
||
check(set_c.intersection(&set_a), 0..3);
|
||
check(set_a.union(&set_c), 0..6);
|
||
check(set_c.union(&set_a), 0..6);
|
||
|
||
check(set_c.difference(&set_d), 0..3);
|
||
check(set_d.difference(&set_c), (6..9).rev());
|
||
check(
|
||
set_c.symmetric_difference(&set_d),
|
||
(0..3).chain((6..9).rev()),
|
||
);
|
||
check(set_d.symmetric_difference(&set_c), (6..9).rev().chain(0..3));
|
||
check(set_c.intersection(&set_d), 3..6);
|
||
check(set_d.intersection(&set_c), (3..6).rev());
|
||
check(set_c.union(&set_d), (0..6).chain((6..9).rev()));
|
||
check(set_d.union(&set_c), (3..9).rev().chain(0..3));
|
||
}
|
||
|
||
#[test]
|
||
fn ops() {
|
||
let empty = IndexSet::<i32>::new();
|
||
let set_a: IndexSet<_> = (0..3).collect();
|
||
let set_b: IndexSet<_> = (3..6).collect();
|
||
let set_c: IndexSet<_> = (0..6).collect();
|
||
let set_d: IndexSet<_> = (3..9).rev().collect();
|
||
|
||
#[allow(clippy::eq_op)]
|
||
{
|
||
assert_eq!(&set_a & &set_a, set_a);
|
||
assert_eq!(&set_a | &set_a, set_a);
|
||
assert_eq!(&set_a ^ &set_a, empty);
|
||
assert_eq!(&set_a - &set_a, empty);
|
||
}
|
||
|
||
assert_eq!(&set_a & &set_b, empty);
|
||
assert_eq!(&set_b & &set_a, empty);
|
||
assert_eq!(&set_a | &set_b, set_c);
|
||
assert_eq!(&set_b | &set_a, set_c);
|
||
assert_eq!(&set_a ^ &set_b, set_c);
|
||
assert_eq!(&set_b ^ &set_a, set_c);
|
||
assert_eq!(&set_a - &set_b, set_a);
|
||
assert_eq!(&set_b - &set_a, set_b);
|
||
|
||
assert_eq!(&set_a & &set_c, set_a);
|
||
assert_eq!(&set_c & &set_a, set_a);
|
||
assert_eq!(&set_a | &set_c, set_c);
|
||
assert_eq!(&set_c | &set_a, set_c);
|
||
assert_eq!(&set_a ^ &set_c, set_b);
|
||
assert_eq!(&set_c ^ &set_a, set_b);
|
||
assert_eq!(&set_a - &set_c, empty);
|
||
assert_eq!(&set_c - &set_a, set_b);
|
||
|
||
assert_eq!(&set_c & &set_d, set_b);
|
||
assert_eq!(&set_d & &set_c, set_b);
|
||
assert_eq!(&set_c | &set_d, &set_a | &set_d);
|
||
assert_eq!(&set_d | &set_c, &set_a | &set_d);
|
||
assert_eq!(&set_c ^ &set_d, &set_a | &(&set_d - &set_b));
|
||
assert_eq!(&set_d ^ &set_c, &set_a | &(&set_d - &set_b));
|
||
assert_eq!(&set_c - &set_d, set_a);
|
||
assert_eq!(&set_d - &set_c, &set_d - &set_b);
|
||
}
|
||
|
||
#[test]
|
||
#[cfg(all(has_std, rustc_1_51))]
|
||
fn from_array() {
|
||
let set1 = IndexSet::from([1, 2, 3, 4]);
|
||
let set2: IndexSet<_> = [1, 2, 3, 4].into();
|
||
|
||
assert_eq!(set1, set2);
|
||
}
|
||
}
|