218 lines
7.6 KiB
Rust
218 lines
7.6 KiB
Rust
use crate::common::*;
|
|
use crate::d2s;
|
|
use crate::d2s_intrinsics::*;
|
|
use crate::parse::Error;
|
|
#[cfg(feature = "no-panic")]
|
|
use no_panic::no_panic;
|
|
|
|
const DOUBLE_EXPONENT_BIAS: usize = 1023;
|
|
|
|
fn floor_log2(value: u64) -> u32 {
|
|
63_u32.wrapping_sub(value.leading_zeros())
|
|
}
|
|
|
|
#[cfg_attr(feature = "no-panic", no_panic)]
|
|
pub fn s2d(buffer: &[u8]) -> Result<f64, Error> {
|
|
let len = buffer.len();
|
|
if len == 0 {
|
|
return Err(Error::InputTooShort);
|
|
}
|
|
|
|
let mut m10digits = 0;
|
|
let mut e10digits = 0;
|
|
let mut dot_index = len;
|
|
let mut e_index = len;
|
|
let mut m10 = 0u64;
|
|
let mut e10 = 0i32;
|
|
let mut signed_m = false;
|
|
let mut signed_e = false;
|
|
|
|
let mut i = 0;
|
|
if unsafe { *buffer.get_unchecked(0) } == b'-' {
|
|
signed_m = true;
|
|
i += 1;
|
|
}
|
|
|
|
while let Some(c) = buffer.get(i).copied() {
|
|
if c == b'.' {
|
|
if dot_index != len {
|
|
return Err(Error::MalformedInput);
|
|
}
|
|
dot_index = i;
|
|
i += 1;
|
|
continue;
|
|
}
|
|
if c < b'0' || c > b'9' {
|
|
break;
|
|
}
|
|
if m10digits >= 17 {
|
|
return Err(Error::InputTooLong);
|
|
}
|
|
m10 = 10 * m10 + (c - b'0') as u64;
|
|
if m10 != 0 {
|
|
m10digits += 1;
|
|
}
|
|
i += 1;
|
|
}
|
|
|
|
if let Some(b'e') | Some(b'E') = buffer.get(i) {
|
|
e_index = i;
|
|
i += 1;
|
|
match buffer.get(i) {
|
|
Some(b'-') => {
|
|
signed_e = true;
|
|
i += 1;
|
|
}
|
|
Some(b'+') => i += 1,
|
|
_ => {}
|
|
}
|
|
while let Some(c) = buffer.get(i).copied() {
|
|
if c < b'0' || c > b'9' {
|
|
return Err(Error::MalformedInput);
|
|
}
|
|
if e10digits > 3 {
|
|
// TODO: Be more lenient. Return +/-Infinity or +/-0 instead.
|
|
return Err(Error::InputTooLong);
|
|
}
|
|
e10 = 10 * e10 + (c - b'0') as i32;
|
|
if e10 != 0 {
|
|
e10digits += 1;
|
|
}
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
if i < len {
|
|
return Err(Error::MalformedInput);
|
|
}
|
|
if signed_e {
|
|
e10 = -e10;
|
|
}
|
|
e10 -= if dot_index < e_index {
|
|
(e_index - dot_index - 1) as i32
|
|
} else {
|
|
0
|
|
};
|
|
if m10 == 0 {
|
|
return Ok(if signed_m { -0.0 } else { 0.0 });
|
|
}
|
|
|
|
if m10digits + e10 <= -324 || m10 == 0 {
|
|
// Number is less than 1e-324, which should be rounded down to 0; return
|
|
// +/-0.0.
|
|
let ieee = (signed_m as u64) << (d2s::DOUBLE_EXPONENT_BITS + d2s::DOUBLE_MANTISSA_BITS);
|
|
return Ok(f64::from_bits(ieee));
|
|
}
|
|
if m10digits + e10 >= 310 {
|
|
// Number is larger than 1e+309, which should be rounded to +/-Infinity.
|
|
let ieee = ((signed_m as u64) << (d2s::DOUBLE_EXPONENT_BITS + d2s::DOUBLE_MANTISSA_BITS))
|
|
| (0x7ff_u64 << d2s::DOUBLE_MANTISSA_BITS);
|
|
return Ok(f64::from_bits(ieee));
|
|
}
|
|
|
|
// Convert to binary float m2 * 2^e2, while retaining information about
|
|
// whether the conversion was exact (trailing_zeros).
|
|
let e2: i32;
|
|
let m2: u64;
|
|
let mut trailing_zeros: bool;
|
|
if e10 >= 0 {
|
|
// The length of m * 10^e in bits is:
|
|
// log2(m10 * 10^e10) = log2(m10) + e10 log2(10) = log2(m10) + e10 + e10 * log2(5)
|
|
//
|
|
// We want to compute the DOUBLE_MANTISSA_BITS + 1 top-most bits (+1 for
|
|
// the implicit leading one in IEEE format). We therefore choose a
|
|
// binary output exponent of
|
|
// log2(m10 * 10^e10) - (DOUBLE_MANTISSA_BITS + 1).
|
|
//
|
|
// We use floor(log2(5^e10)) so that we get at least this many bits;
|
|
// better to have an additional bit than to not have enough bits.
|
|
e2 = floor_log2(m10)
|
|
.wrapping_add(e10 as u32)
|
|
.wrapping_add(log2_pow5(e10) as u32)
|
|
.wrapping_sub(d2s::DOUBLE_MANTISSA_BITS + 1) as i32;
|
|
|
|
// We now compute [m10 * 10^e10 / 2^e2] = [m10 * 5^e10 / 2^(e2-e10)].
|
|
// To that end, we use the DOUBLE_POW5_SPLIT table.
|
|
let j = e2
|
|
.wrapping_sub(e10)
|
|
.wrapping_sub(ceil_log2_pow5(e10))
|
|
.wrapping_add(d2s::DOUBLE_POW5_BITCOUNT);
|
|
debug_assert!(j >= 0);
|
|
debug_assert!(e10 < d2s::DOUBLE_POW5_SPLIT.len() as i32);
|
|
m2 = mul_shift_64(
|
|
m10,
|
|
unsafe { d2s::DOUBLE_POW5_SPLIT.get_unchecked(e10 as usize) },
|
|
j as u32,
|
|
);
|
|
|
|
// We also compute if the result is exact, i.e.,
|
|
// [m10 * 10^e10 / 2^e2] == m10 * 10^e10 / 2^e2.
|
|
// This can only be the case if 2^e2 divides m10 * 10^e10, which in turn
|
|
// requires that the largest power of 2 that divides m10 + e10 is
|
|
// greater than e2. If e2 is less than e10, then the result must be
|
|
// exact. Otherwise we use the existing multiple_of_power_of_2 function.
|
|
trailing_zeros =
|
|
e2 < e10 || e2 - e10 < 64 && multiple_of_power_of_2(m10, (e2 - e10) as u32);
|
|
} else {
|
|
e2 = floor_log2(m10)
|
|
.wrapping_add(e10 as u32)
|
|
.wrapping_sub(ceil_log2_pow5(-e10) as u32)
|
|
.wrapping_sub(d2s::DOUBLE_MANTISSA_BITS + 1) as i32;
|
|
let j = e2
|
|
.wrapping_sub(e10)
|
|
.wrapping_add(ceil_log2_pow5(-e10))
|
|
.wrapping_sub(1)
|
|
.wrapping_add(d2s::DOUBLE_POW5_INV_BITCOUNT);
|
|
debug_assert!(-e10 < d2s::DOUBLE_POW5_INV_SPLIT.len() as i32);
|
|
m2 = mul_shift_64(
|
|
m10,
|
|
unsafe { d2s::DOUBLE_POW5_INV_SPLIT.get_unchecked(-e10 as usize) },
|
|
j as u32,
|
|
);
|
|
trailing_zeros = multiple_of_power_of_5(m10, -e10 as u32);
|
|
}
|
|
|
|
// Compute the final IEEE exponent.
|
|
let mut ieee_e2 = i32::max(0, e2 + DOUBLE_EXPONENT_BIAS as i32 + floor_log2(m2) as i32) as u32;
|
|
|
|
if ieee_e2 > 0x7fe {
|
|
// Final IEEE exponent is larger than the maximum representable; return +/-Infinity.
|
|
let ieee = ((signed_m as u64) << (d2s::DOUBLE_EXPONENT_BITS + d2s::DOUBLE_MANTISSA_BITS))
|
|
| (0x7ff_u64 << d2s::DOUBLE_MANTISSA_BITS);
|
|
return Ok(f64::from_bits(ieee));
|
|
}
|
|
|
|
// We need to figure out how much we need to shift m2. The tricky part is
|
|
// that we need to take the final IEEE exponent into account, so we need to
|
|
// reverse the bias and also special-case the value 0.
|
|
let shift = if ieee_e2 == 0 { 1 } else { ieee_e2 as i32 }
|
|
.wrapping_sub(e2)
|
|
.wrapping_sub(DOUBLE_EXPONENT_BIAS as i32)
|
|
.wrapping_sub(d2s::DOUBLE_MANTISSA_BITS as i32);
|
|
debug_assert!(shift >= 0);
|
|
|
|
// We need to round up if the exact value is more than 0.5 above the value
|
|
// we computed. That's equivalent to checking if the last removed bit was 1
|
|
// and either the value was not just trailing zeros or the result would
|
|
// otherwise be odd.
|
|
//
|
|
// We need to update trailing_zeros given that we have the exact output
|
|
// exponent ieee_e2 now.
|
|
trailing_zeros &= (m2 & ((1_u64 << (shift - 1)) - 1)) == 0;
|
|
let last_removed_bit = (m2 >> (shift - 1)) & 1;
|
|
let round_up = last_removed_bit != 0 && (!trailing_zeros || ((m2 >> shift) & 1) != 0);
|
|
|
|
let mut ieee_m2 = (m2 >> shift).wrapping_add(round_up as u64);
|
|
debug_assert!(ieee_m2 <= 1_u64 << (d2s::DOUBLE_MANTISSA_BITS + 1));
|
|
ieee_m2 &= (1_u64 << d2s::DOUBLE_MANTISSA_BITS) - 1;
|
|
if ieee_m2 == 0 && round_up {
|
|
// Due to how the IEEE represents +/-Infinity, we don't need to check
|
|
// for overflow here.
|
|
ieee_e2 += 1;
|
|
}
|
|
let ieee = ((((signed_m as u64) << d2s::DOUBLE_EXPONENT_BITS) | ieee_e2 as u64)
|
|
<< d2s::DOUBLE_MANTISSA_BITS)
|
|
| ieee_m2;
|
|
Ok(f64::from_bits(ieee))
|
|
}
|