RPM build fix (reverted CI changes which will need to be un-reverted or made conditional) and vendor Rust dependencies to make builds much faster in any CI system.
This commit is contained in:
901
zeroidc/vendor/ring/crypto/fipsmodule/ec/asm/ecp_nistz256-armv4.pl
vendored
Normal file
901
zeroidc/vendor/ring/crypto/fipsmodule/ec/asm/ecp_nistz256-armv4.pl
vendored
Normal file
@@ -0,0 +1,901 @@
|
||||
#! /usr/bin/env perl
|
||||
# Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the OpenSSL license (the "License"). You may not use
|
||||
# this file except in compliance with the License. You can obtain a copy
|
||||
# in the file LICENSE in the source distribution or at
|
||||
# https://www.openssl.org/source/license.html
|
||||
|
||||
|
||||
# ====================================================================
|
||||
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
||||
# project. The module is, however, dual licensed under OpenSSL and
|
||||
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
||||
# details see http://www.openssl.org/~appro/cryptogams/.
|
||||
# ====================================================================
|
||||
#
|
||||
# ECP_NISTZ256 module for ARMv4.
|
||||
#
|
||||
# October 2014.
|
||||
#
|
||||
# Original ECP_NISTZ256 submission targeting x86_64 is detailed in
|
||||
# http://eprint.iacr.org/2013/816. In the process of adaptation
|
||||
# original .c module was made 32-bit savvy in order to make this
|
||||
# implementation possible.
|
||||
#
|
||||
# with/without -DECP_NISTZ256_ASM
|
||||
# Cortex-A8 +53-170%
|
||||
# Cortex-A9 +76-205%
|
||||
# Cortex-A15 +100-316%
|
||||
# Snapdragon S4 +66-187%
|
||||
#
|
||||
# Ranges denote minimum and maximum improvement coefficients depending
|
||||
# on benchmark. Lower coefficients are for ECDSA sign, server-side
|
||||
# operation. Keep in mind that +200% means 3x improvement.
|
||||
|
||||
$flavour = shift;
|
||||
if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; }
|
||||
else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} }
|
||||
|
||||
if ($flavour && $flavour ne "void") {
|
||||
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
||||
( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
|
||||
( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or
|
||||
die "can't locate arm-xlate.pl";
|
||||
|
||||
open STDOUT,"| \"$^X\" $xlate $flavour $output";
|
||||
} else {
|
||||
open STDOUT,">$output";
|
||||
}
|
||||
|
||||
$code.=<<___;
|
||||
#include <GFp/arm_arch.h>
|
||||
|
||||
.text
|
||||
#if defined(__thumb2__)
|
||||
.syntax unified
|
||||
.thumb
|
||||
#else
|
||||
.code 32
|
||||
#endif
|
||||
|
||||
.asciz "ECP_NISTZ256 for ARMv4, CRYPTOGAMS by <appro\@openssl.org>"
|
||||
.align 6
|
||||
___
|
||||
|
||||
########################################################################
|
||||
# common register layout, note that $t2 is link register, so that if
|
||||
# internal subroutine uses $t2, then it has to offload lr...
|
||||
|
||||
($r_ptr,$a_ptr,$b_ptr,$ff,$a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7,$t1,$t2)=
|
||||
map("r$_",(0..12,14));
|
||||
($t0,$t3)=($ff,$a_ptr);
|
||||
|
||||
$code.=<<___;
|
||||
.type __ecp_nistz256_mul_by_2,%function
|
||||
.align 4
|
||||
__ecp_nistz256_mul_by_2:
|
||||
ldr $a0,[$a_ptr,#0]
|
||||
ldr $a1,[$a_ptr,#4]
|
||||
ldr $a2,[$a_ptr,#8]
|
||||
adds $a0,$a0,$a0 @ a[0:7]+=a[0:7], i.e. add with itself
|
||||
ldr $a3,[$a_ptr,#12]
|
||||
adcs $a1,$a1,$a1
|
||||
ldr $a4,[$a_ptr,#16]
|
||||
adcs $a2,$a2,$a2
|
||||
ldr $a5,[$a_ptr,#20]
|
||||
adcs $a3,$a3,$a3
|
||||
ldr $a6,[$a_ptr,#24]
|
||||
adcs $a4,$a4,$a4
|
||||
ldr $a7,[$a_ptr,#28]
|
||||
adcs $a5,$a5,$a5
|
||||
adcs $a6,$a6,$a6
|
||||
mov $ff,#0
|
||||
adcs $a7,$a7,$a7
|
||||
adc $ff,$ff,#0
|
||||
|
||||
b .Lreduce_by_sub
|
||||
.size __ecp_nistz256_mul_by_2,.-__ecp_nistz256_mul_by_2
|
||||
|
||||
@ void GFp_nistz256_add(BN_ULONG r0[8],const BN_ULONG r1[8],
|
||||
@ const BN_ULONG r2[8]);
|
||||
.globl GFp_nistz256_add
|
||||
.type GFp_nistz256_add,%function
|
||||
.align 4
|
||||
GFp_nistz256_add:
|
||||
stmdb sp!,{r4-r12,lr}
|
||||
bl __ecp_nistz256_add
|
||||
#if __ARM_ARCH__>=5 || !defined(__thumb__)
|
||||
ldmia sp!,{r4-r12,pc}
|
||||
#else
|
||||
ldmia sp!,{r4-r12,lr}
|
||||
bx lr @ interoperable with Thumb ISA:-)
|
||||
#endif
|
||||
.size GFp_nistz256_add,.-GFp_nistz256_add
|
||||
|
||||
.type __ecp_nistz256_add,%function
|
||||
.align 4
|
||||
__ecp_nistz256_add:
|
||||
str lr,[sp,#-4]! @ push lr
|
||||
|
||||
ldr $a0,[$a_ptr,#0]
|
||||
ldr $a1,[$a_ptr,#4]
|
||||
ldr $a2,[$a_ptr,#8]
|
||||
ldr $a3,[$a_ptr,#12]
|
||||
ldr $a4,[$a_ptr,#16]
|
||||
ldr $t0,[$b_ptr,#0]
|
||||
ldr $a5,[$a_ptr,#20]
|
||||
ldr $t1,[$b_ptr,#4]
|
||||
ldr $a6,[$a_ptr,#24]
|
||||
ldr $t2,[$b_ptr,#8]
|
||||
ldr $a7,[$a_ptr,#28]
|
||||
ldr $t3,[$b_ptr,#12]
|
||||
adds $a0,$a0,$t0
|
||||
ldr $t0,[$b_ptr,#16]
|
||||
adcs $a1,$a1,$t1
|
||||
ldr $t1,[$b_ptr,#20]
|
||||
adcs $a2,$a2,$t2
|
||||
ldr $t2,[$b_ptr,#24]
|
||||
adcs $a3,$a3,$t3
|
||||
ldr $t3,[$b_ptr,#28]
|
||||
adcs $a4,$a4,$t0
|
||||
adcs $a5,$a5,$t1
|
||||
adcs $a6,$a6,$t2
|
||||
mov $ff,#0
|
||||
adcs $a7,$a7,$t3
|
||||
adc $ff,$ff,#0
|
||||
ldr lr,[sp],#4 @ pop lr
|
||||
|
||||
.Lreduce_by_sub:
|
||||
|
||||
@ if a+b >= modulus, subtract modulus.
|
||||
@
|
||||
@ But since comparison implies subtraction, we subtract
|
||||
@ modulus and then add it back if subtraction borrowed.
|
||||
|
||||
subs $a0,$a0,#-1
|
||||
sbcs $a1,$a1,#-1
|
||||
sbcs $a2,$a2,#-1
|
||||
sbcs $a3,$a3,#0
|
||||
sbcs $a4,$a4,#0
|
||||
sbcs $a5,$a5,#0
|
||||
sbcs $a6,$a6,#1
|
||||
sbcs $a7,$a7,#-1
|
||||
sbc $ff,$ff,#0
|
||||
|
||||
@ Note that because mod has special form, i.e. consists of
|
||||
@ 0xffffffff, 1 and 0s, we can conditionally synthesize it by
|
||||
@ using value of borrow as a whole or extracting single bit.
|
||||
@ Follow $ff register...
|
||||
|
||||
adds $a0,$a0,$ff @ add synthesized modulus
|
||||
adcs $a1,$a1,$ff
|
||||
str $a0,[$r_ptr,#0]
|
||||
adcs $a2,$a2,$ff
|
||||
str $a1,[$r_ptr,#4]
|
||||
adcs $a3,$a3,#0
|
||||
str $a2,[$r_ptr,#8]
|
||||
adcs $a4,$a4,#0
|
||||
str $a3,[$r_ptr,#12]
|
||||
adcs $a5,$a5,#0
|
||||
str $a4,[$r_ptr,#16]
|
||||
adcs $a6,$a6,$ff,lsr#31
|
||||
str $a5,[$r_ptr,#20]
|
||||
adcs $a7,$a7,$ff
|
||||
str $a6,[$r_ptr,#24]
|
||||
str $a7,[$r_ptr,#28]
|
||||
|
||||
mov pc,lr
|
||||
.size __ecp_nistz256_add,.-__ecp_nistz256_add
|
||||
|
||||
.type __ecp_nistz256_mul_by_3,%function
|
||||
.align 4
|
||||
__ecp_nistz256_mul_by_3:
|
||||
str lr,[sp,#-4]! @ push lr
|
||||
|
||||
@ As multiplication by 3 is performed as 2*n+n, below are inline
|
||||
@ copies of __ecp_nistz256_mul_by_2 and __ecp_nistz256_add, see
|
||||
@ corresponding subroutines for details.
|
||||
|
||||
ldr $a0,[$a_ptr,#0]
|
||||
ldr $a1,[$a_ptr,#4]
|
||||
ldr $a2,[$a_ptr,#8]
|
||||
adds $a0,$a0,$a0 @ a[0:7]+=a[0:7]
|
||||
ldr $a3,[$a_ptr,#12]
|
||||
adcs $a1,$a1,$a1
|
||||
ldr $a4,[$a_ptr,#16]
|
||||
adcs $a2,$a2,$a2
|
||||
ldr $a5,[$a_ptr,#20]
|
||||
adcs $a3,$a3,$a3
|
||||
ldr $a6,[$a_ptr,#24]
|
||||
adcs $a4,$a4,$a4
|
||||
ldr $a7,[$a_ptr,#28]
|
||||
adcs $a5,$a5,$a5
|
||||
adcs $a6,$a6,$a6
|
||||
mov $ff,#0
|
||||
adcs $a7,$a7,$a7
|
||||
adc $ff,$ff,#0
|
||||
|
||||
subs $a0,$a0,#-1 @ .Lreduce_by_sub but without stores
|
||||
sbcs $a1,$a1,#-1
|
||||
sbcs $a2,$a2,#-1
|
||||
sbcs $a3,$a3,#0
|
||||
sbcs $a4,$a4,#0
|
||||
sbcs $a5,$a5,#0
|
||||
sbcs $a6,$a6,#1
|
||||
sbcs $a7,$a7,#-1
|
||||
sbc $ff,$ff,#0
|
||||
|
||||
adds $a0,$a0,$ff @ add synthesized modulus
|
||||
adcs $a1,$a1,$ff
|
||||
adcs $a2,$a2,$ff
|
||||
adcs $a3,$a3,#0
|
||||
adcs $a4,$a4,#0
|
||||
ldr $b_ptr,[$a_ptr,#0]
|
||||
adcs $a5,$a5,#0
|
||||
ldr $t1,[$a_ptr,#4]
|
||||
adcs $a6,$a6,$ff,lsr#31
|
||||
ldr $t2,[$a_ptr,#8]
|
||||
adc $a7,$a7,$ff
|
||||
|
||||
ldr $t0,[$a_ptr,#12]
|
||||
adds $a0,$a0,$b_ptr @ 2*a[0:7]+=a[0:7]
|
||||
ldr $b_ptr,[$a_ptr,#16]
|
||||
adcs $a1,$a1,$t1
|
||||
ldr $t1,[$a_ptr,#20]
|
||||
adcs $a2,$a2,$t2
|
||||
ldr $t2,[$a_ptr,#24]
|
||||
adcs $a3,$a3,$t0
|
||||
ldr $t3,[$a_ptr,#28]
|
||||
adcs $a4,$a4,$b_ptr
|
||||
adcs $a5,$a5,$t1
|
||||
adcs $a6,$a6,$t2
|
||||
mov $ff,#0
|
||||
adcs $a7,$a7,$t3
|
||||
adc $ff,$ff,#0
|
||||
ldr lr,[sp],#4 @ pop lr
|
||||
|
||||
b .Lreduce_by_sub
|
||||
.size __ecp_nistz256_mul_by_3,.-__ecp_nistz256_mul_by_3
|
||||
|
||||
.type __ecp_nistz256_div_by_2,%function
|
||||
.align 4
|
||||
__ecp_nistz256_div_by_2:
|
||||
@ ret = (a is odd ? a+mod : a) >> 1
|
||||
|
||||
ldr $a0,[$a_ptr,#0]
|
||||
ldr $a1,[$a_ptr,#4]
|
||||
ldr $a2,[$a_ptr,#8]
|
||||
mov $ff,$a0,lsl#31 @ place least significant bit to most
|
||||
@ significant position, now arithmetic
|
||||
@ right shift by 31 will produce -1 or
|
||||
@ 0, while logical right shift 1 or 0,
|
||||
@ this is how modulus is conditionally
|
||||
@ synthesized in this case...
|
||||
ldr $a3,[$a_ptr,#12]
|
||||
adds $a0,$a0,$ff,asr#31
|
||||
ldr $a4,[$a_ptr,#16]
|
||||
adcs $a1,$a1,$ff,asr#31
|
||||
ldr $a5,[$a_ptr,#20]
|
||||
adcs $a2,$a2,$ff,asr#31
|
||||
ldr $a6,[$a_ptr,#24]
|
||||
adcs $a3,$a3,#0
|
||||
ldr $a7,[$a_ptr,#28]
|
||||
adcs $a4,$a4,#0
|
||||
mov $a0,$a0,lsr#1 @ a[0:7]>>=1, we can start early
|
||||
@ because it doesn't affect flags
|
||||
adcs $a5,$a5,#0
|
||||
orr $a0,$a0,$a1,lsl#31
|
||||
adcs $a6,$a6,$ff,lsr#31
|
||||
mov $b_ptr,#0
|
||||
adcs $a7,$a7,$ff,asr#31
|
||||
mov $a1,$a1,lsr#1
|
||||
adc $b_ptr,$b_ptr,#0 @ top-most carry bit from addition
|
||||
|
||||
orr $a1,$a1,$a2,lsl#31
|
||||
mov $a2,$a2,lsr#1
|
||||
str $a0,[$r_ptr,#0]
|
||||
orr $a2,$a2,$a3,lsl#31
|
||||
mov $a3,$a3,lsr#1
|
||||
str $a1,[$r_ptr,#4]
|
||||
orr $a3,$a3,$a4,lsl#31
|
||||
mov $a4,$a4,lsr#1
|
||||
str $a2,[$r_ptr,#8]
|
||||
orr $a4,$a4,$a5,lsl#31
|
||||
mov $a5,$a5,lsr#1
|
||||
str $a3,[$r_ptr,#12]
|
||||
orr $a5,$a5,$a6,lsl#31
|
||||
mov $a6,$a6,lsr#1
|
||||
str $a4,[$r_ptr,#16]
|
||||
orr $a6,$a6,$a7,lsl#31
|
||||
mov $a7,$a7,lsr#1
|
||||
str $a5,[$r_ptr,#20]
|
||||
orr $a7,$a7,$b_ptr,lsl#31 @ don't forget the top-most carry bit
|
||||
str $a6,[$r_ptr,#24]
|
||||
str $a7,[$r_ptr,#28]
|
||||
|
||||
mov pc,lr
|
||||
.size __ecp_nistz256_div_by_2,.-__ecp_nistz256_div_by_2
|
||||
|
||||
.type __ecp_nistz256_sub,%function
|
||||
.align 4
|
||||
__ecp_nistz256_sub:
|
||||
str lr,[sp,#-4]! @ push lr
|
||||
|
||||
ldr $a0,[$a_ptr,#0]
|
||||
ldr $a1,[$a_ptr,#4]
|
||||
ldr $a2,[$a_ptr,#8]
|
||||
ldr $a3,[$a_ptr,#12]
|
||||
ldr $a4,[$a_ptr,#16]
|
||||
ldr $t0,[$b_ptr,#0]
|
||||
ldr $a5,[$a_ptr,#20]
|
||||
ldr $t1,[$b_ptr,#4]
|
||||
ldr $a6,[$a_ptr,#24]
|
||||
ldr $t2,[$b_ptr,#8]
|
||||
ldr $a7,[$a_ptr,#28]
|
||||
ldr $t3,[$b_ptr,#12]
|
||||
subs $a0,$a0,$t0
|
||||
ldr $t0,[$b_ptr,#16]
|
||||
sbcs $a1,$a1,$t1
|
||||
ldr $t1,[$b_ptr,#20]
|
||||
sbcs $a2,$a2,$t2
|
||||
ldr $t2,[$b_ptr,#24]
|
||||
sbcs $a3,$a3,$t3
|
||||
ldr $t3,[$b_ptr,#28]
|
||||
sbcs $a4,$a4,$t0
|
||||
sbcs $a5,$a5,$t1
|
||||
sbcs $a6,$a6,$t2
|
||||
sbcs $a7,$a7,$t3
|
||||
sbc $ff,$ff,$ff @ broadcast borrow bit
|
||||
ldr lr,[sp],#4 @ pop lr
|
||||
|
||||
.Lreduce_by_add:
|
||||
|
||||
@ if a-b borrows, add modulus.
|
||||
@
|
||||
@ Note that because mod has special form, i.e. consists of
|
||||
@ 0xffffffff, 1 and 0s, we can conditionally synthesize it by
|
||||
@ broadcasting borrow bit to a register, $ff, and using it as
|
||||
@ a whole or extracting single bit.
|
||||
|
||||
adds $a0,$a0,$ff @ add synthesized modulus
|
||||
adcs $a1,$a1,$ff
|
||||
str $a0,[$r_ptr,#0]
|
||||
adcs $a2,$a2,$ff
|
||||
str $a1,[$r_ptr,#4]
|
||||
adcs $a3,$a3,#0
|
||||
str $a2,[$r_ptr,#8]
|
||||
adcs $a4,$a4,#0
|
||||
str $a3,[$r_ptr,#12]
|
||||
adcs $a5,$a5,#0
|
||||
str $a4,[$r_ptr,#16]
|
||||
adcs $a6,$a6,$ff,lsr#31
|
||||
str $a5,[$r_ptr,#20]
|
||||
adcs $a7,$a7,$ff
|
||||
str $a6,[$r_ptr,#24]
|
||||
str $a7,[$r_ptr,#28]
|
||||
|
||||
mov pc,lr
|
||||
.size __ecp_nistz256_sub,.-__ecp_nistz256_sub
|
||||
|
||||
@ void GFp_nistz256_neg(BN_ULONG r0[8],const BN_ULONG r1[8]);
|
||||
.globl GFp_nistz256_neg
|
||||
.type GFp_nistz256_neg,%function
|
||||
.align 4
|
||||
GFp_nistz256_neg:
|
||||
stmdb sp!,{r4-r12,lr}
|
||||
bl __ecp_nistz256_neg
|
||||
#if __ARM_ARCH__>=5 || !defined(__thumb__)
|
||||
ldmia sp!,{r4-r12,pc}
|
||||
#else
|
||||
ldmia sp!,{r4-r12,lr}
|
||||
bx lr @ interoperable with Thumb ISA:-)
|
||||
#endif
|
||||
.size GFp_nistz256_neg,.-GFp_nistz256_neg
|
||||
|
||||
.type __ecp_nistz256_neg,%function
|
||||
.align 4
|
||||
__ecp_nistz256_neg:
|
||||
ldr $a0,[$a_ptr,#0]
|
||||
eor $ff,$ff,$ff
|
||||
ldr $a1,[$a_ptr,#4]
|
||||
ldr $a2,[$a_ptr,#8]
|
||||
subs $a0,$ff,$a0
|
||||
ldr $a3,[$a_ptr,#12]
|
||||
sbcs $a1,$ff,$a1
|
||||
ldr $a4,[$a_ptr,#16]
|
||||
sbcs $a2,$ff,$a2
|
||||
ldr $a5,[$a_ptr,#20]
|
||||
sbcs $a3,$ff,$a3
|
||||
ldr $a6,[$a_ptr,#24]
|
||||
sbcs $a4,$ff,$a4
|
||||
ldr $a7,[$a_ptr,#28]
|
||||
sbcs $a5,$ff,$a5
|
||||
sbcs $a6,$ff,$a6
|
||||
sbcs $a7,$ff,$a7
|
||||
sbc $ff,$ff,$ff
|
||||
|
||||
b .Lreduce_by_add
|
||||
.size __ecp_nistz256_neg,.-__ecp_nistz256_neg
|
||||
___
|
||||
{
|
||||
my @acc=map("r$_",(3..11));
|
||||
my ($t0,$t1,$bj,$t2,$t3)=map("r$_",(0,1,2,12,14));
|
||||
|
||||
$code.=<<___;
|
||||
@ void GFp_nistz256_mul_mont(BN_ULONG r0[8],const BN_ULONG r1[8],
|
||||
@ const BN_ULONG r2[8]);
|
||||
.globl GFp_nistz256_mul_mont
|
||||
.type GFp_nistz256_mul_mont,%function
|
||||
.align 4
|
||||
GFp_nistz256_mul_mont:
|
||||
stmdb sp!,{r4-r12,lr}
|
||||
bl __ecp_nistz256_mul_mont
|
||||
#if __ARM_ARCH__>=5 || !defined(__thumb__)
|
||||
ldmia sp!,{r4-r12,pc}
|
||||
#else
|
||||
ldmia sp!,{r4-r12,lr}
|
||||
bx lr @ interoperable with Thumb ISA:-)
|
||||
#endif
|
||||
.size GFp_nistz256_mul_mont,.-GFp_nistz256_mul_mont
|
||||
|
||||
.type __ecp_nistz256_mul_mont,%function
|
||||
.align 4
|
||||
__ecp_nistz256_mul_mont:
|
||||
stmdb sp!,{r0-r2,lr} @ make a copy of arguments too
|
||||
|
||||
ldr $bj,[$b_ptr,#0] @ b[0]
|
||||
ldmia $a_ptr,{@acc[1]-@acc[8]}
|
||||
|
||||
umull @acc[0],$t3,@acc[1],$bj @ r[0]=a[0]*b[0]
|
||||
stmdb sp!,{$acc[1]-@acc[8]} @ copy a[0-7] to stack, so
|
||||
@ that it can be addressed
|
||||
@ without spending register
|
||||
@ on address
|
||||
umull @acc[1],$t0,@acc[2],$bj @ r[1]=a[1]*b[0]
|
||||
umull @acc[2],$t1,@acc[3],$bj
|
||||
adds @acc[1],@acc[1],$t3 @ accumulate high part of mult
|
||||
umull @acc[3],$t2,@acc[4],$bj
|
||||
adcs @acc[2],@acc[2],$t0
|
||||
umull @acc[4],$t3,@acc[5],$bj
|
||||
adcs @acc[3],@acc[3],$t1
|
||||
umull @acc[5],$t0,@acc[6],$bj
|
||||
adcs @acc[4],@acc[4],$t2
|
||||
umull @acc[6],$t1,@acc[7],$bj
|
||||
adcs @acc[5],@acc[5],$t3
|
||||
umull @acc[7],$t2,@acc[8],$bj
|
||||
adcs @acc[6],@acc[6],$t0
|
||||
adcs @acc[7],@acc[7],$t1
|
||||
eor $t3,$t3,$t3 @ first overflow bit is zero
|
||||
adc @acc[8],$t2,#0
|
||||
___
|
||||
for(my $i=1;$i<8;$i++) {
|
||||
my $t4=@acc[0];
|
||||
|
||||
# Reduction iteration is normally performed by accumulating
|
||||
# result of multiplication of modulus by "magic" digit [and
|
||||
# omitting least significant word, which is guaranteed to
|
||||
# be 0], but thanks to special form of modulus and "magic"
|
||||
# digit being equal to least significant word, it can be
|
||||
# performed with additions and subtractions alone. Indeed:
|
||||
#
|
||||
# ffff.0001.0000.0000.0000.ffff.ffff.ffff
|
||||
# * abcd
|
||||
# + xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd
|
||||
#
|
||||
# Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we
|
||||
# rewrite above as:
|
||||
#
|
||||
# xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd
|
||||
# + abcd.0000.abcd.0000.0000.abcd.0000.0000.0000
|
||||
# - abcd.0000.0000.0000.0000.0000.0000.abcd
|
||||
#
|
||||
# or marking redundant operations:
|
||||
#
|
||||
# xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.----
|
||||
# + abcd.0000.abcd.0000.0000.abcd.----.----.----
|
||||
# - abcd.----.----.----.----.----.----.----
|
||||
|
||||
$code.=<<___;
|
||||
@ multiplication-less reduction $i
|
||||
adds @acc[3],@acc[3],@acc[0] @ r[3]+=r[0]
|
||||
ldr $bj,[sp,#40] @ restore b_ptr
|
||||
adcs @acc[4],@acc[4],#0 @ r[4]+=0
|
||||
adcs @acc[5],@acc[5],#0 @ r[5]+=0
|
||||
adcs @acc[6],@acc[6],@acc[0] @ r[6]+=r[0]
|
||||
ldr $t1,[sp,#0] @ load a[0]
|
||||
adcs @acc[7],@acc[7],#0 @ r[7]+=0
|
||||
ldr $bj,[$bj,#4*$i] @ load b[i]
|
||||
adcs @acc[8],@acc[8],@acc[0] @ r[8]+=r[0]
|
||||
eor $t0,$t0,$t0
|
||||
adc $t3,$t3,#0 @ overflow bit
|
||||
subs @acc[7],@acc[7],@acc[0] @ r[7]-=r[0]
|
||||
ldr $t2,[sp,#4] @ a[1]
|
||||
sbcs @acc[8],@acc[8],#0 @ r[8]-=0
|
||||
umlal @acc[1],$t0,$t1,$bj @ "r[0]"+=a[0]*b[i]
|
||||
eor $t1,$t1,$t1
|
||||
sbc @acc[0],$t3,#0 @ overflow bit, keep in mind
|
||||
@ that netto result is
|
||||
@ addition of a value which
|
||||
@ makes underflow impossible
|
||||
|
||||
ldr $t3,[sp,#8] @ a[2]
|
||||
umlal @acc[2],$t1,$t2,$bj @ "r[1]"+=a[1]*b[i]
|
||||
str @acc[0],[sp,#36] @ temporarily offload overflow
|
||||
eor $t2,$t2,$t2
|
||||
ldr $t4,[sp,#12] @ a[3], $t4 is alias @acc[0]
|
||||
umlal @acc[3],$t2,$t3,$bj @ "r[2]"+=a[2]*b[i]
|
||||
eor $t3,$t3,$t3
|
||||
adds @acc[2],@acc[2],$t0 @ accumulate high part of mult
|
||||
ldr $t0,[sp,#16] @ a[4]
|
||||
umlal @acc[4],$t3,$t4,$bj @ "r[3]"+=a[3]*b[i]
|
||||
eor $t4,$t4,$t4
|
||||
adcs @acc[3],@acc[3],$t1
|
||||
ldr $t1,[sp,#20] @ a[5]
|
||||
umlal @acc[5],$t4,$t0,$bj @ "r[4]"+=a[4]*b[i]
|
||||
eor $t0,$t0,$t0
|
||||
adcs @acc[4],@acc[4],$t2
|
||||
ldr $t2,[sp,#24] @ a[6]
|
||||
umlal @acc[6],$t0,$t1,$bj @ "r[5]"+=a[5]*b[i]
|
||||
eor $t1,$t1,$t1
|
||||
adcs @acc[5],@acc[5],$t3
|
||||
ldr $t3,[sp,#28] @ a[7]
|
||||
umlal @acc[7],$t1,$t2,$bj @ "r[6]"+=a[6]*b[i]
|
||||
eor $t2,$t2,$t2
|
||||
adcs @acc[6],@acc[6],$t4
|
||||
ldr @acc[0],[sp,#36] @ restore overflow bit
|
||||
umlal @acc[8],$t2,$t3,$bj @ "r[7]"+=a[7]*b[i]
|
||||
eor $t3,$t3,$t3
|
||||
adcs @acc[7],@acc[7],$t0
|
||||
adcs @acc[8],@acc[8],$t1
|
||||
adcs @acc[0],$acc[0],$t2
|
||||
adc $t3,$t3,#0 @ new overflow bit
|
||||
___
|
||||
push(@acc,shift(@acc)); # rotate registers, so that
|
||||
# "r[i]" becomes r[i]
|
||||
}
|
||||
$code.=<<___;
|
||||
@ last multiplication-less reduction
|
||||
adds @acc[3],@acc[3],@acc[0]
|
||||
ldr $r_ptr,[sp,#32] @ restore r_ptr
|
||||
adcs @acc[4],@acc[4],#0
|
||||
adcs @acc[5],@acc[5],#0
|
||||
adcs @acc[6],@acc[6],@acc[0]
|
||||
adcs @acc[7],@acc[7],#0
|
||||
adcs @acc[8],@acc[8],@acc[0]
|
||||
adc $t3,$t3,#0
|
||||
subs @acc[7],@acc[7],@acc[0]
|
||||
sbcs @acc[8],@acc[8],#0
|
||||
sbc @acc[0],$t3,#0 @ overflow bit
|
||||
|
||||
@ Final step is "if result > mod, subtract mod", but we do it
|
||||
@ "other way around", namely subtract modulus from result
|
||||
@ and if it borrowed, add modulus back.
|
||||
|
||||
adds @acc[1],@acc[1],#1 @ subs @acc[1],@acc[1],#-1
|
||||
adcs @acc[2],@acc[2],#0 @ sbcs @acc[2],@acc[2],#-1
|
||||
adcs @acc[3],@acc[3],#0 @ sbcs @acc[3],@acc[3],#-1
|
||||
sbcs @acc[4],@acc[4],#0
|
||||
sbcs @acc[5],@acc[5],#0
|
||||
sbcs @acc[6],@acc[6],#0
|
||||
sbcs @acc[7],@acc[7],#1
|
||||
adcs @acc[8],@acc[8],#0 @ sbcs @acc[8],@acc[8],#-1
|
||||
ldr lr,[sp,#44] @ restore lr
|
||||
sbc @acc[0],@acc[0],#0 @ broadcast borrow bit
|
||||
add sp,sp,#48
|
||||
|
||||
@ Note that because mod has special form, i.e. consists of
|
||||
@ 0xffffffff, 1 and 0s, we can conditionally synthesize it by
|
||||
@ broadcasting borrow bit to a register, @acc[0], and using it as
|
||||
@ a whole or extracting single bit.
|
||||
|
||||
adds @acc[1],@acc[1],@acc[0] @ add modulus or zero
|
||||
adcs @acc[2],@acc[2],@acc[0]
|
||||
str @acc[1],[$r_ptr,#0]
|
||||
adcs @acc[3],@acc[3],@acc[0]
|
||||
str @acc[2],[$r_ptr,#4]
|
||||
adcs @acc[4],@acc[4],#0
|
||||
str @acc[3],[$r_ptr,#8]
|
||||
adcs @acc[5],@acc[5],#0
|
||||
str @acc[4],[$r_ptr,#12]
|
||||
adcs @acc[6],@acc[6],#0
|
||||
str @acc[5],[$r_ptr,#16]
|
||||
adcs @acc[7],@acc[7],@acc[0],lsr#31
|
||||
str @acc[6],[$r_ptr,#20]
|
||||
adc @acc[8],@acc[8],@acc[0]
|
||||
str @acc[7],[$r_ptr,#24]
|
||||
str @acc[8],[$r_ptr,#28]
|
||||
|
||||
mov pc,lr
|
||||
.size __ecp_nistz256_mul_mont,.-__ecp_nistz256_mul_mont
|
||||
___
|
||||
}
|
||||
|
||||
{{{
|
||||
########################################################################
|
||||
# Below $aN assignment matches order in which 256-bit result appears in
|
||||
# register bank at return from __ecp_nistz256_mul_mont, so that we can
|
||||
# skip over reloading it from memory. This means that below functions
|
||||
# use custom calling sequence accepting 256-bit input in registers,
|
||||
# output pointer in r0, $r_ptr, and optional pointer in r2, $b_ptr.
|
||||
#
|
||||
# See their "normal" counterparts for insights on calculations.
|
||||
|
||||
my ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7,
|
||||
$t0,$t1,$t2,$t3)=map("r$_",(11,3..10,12,14,1));
|
||||
my $ff=$b_ptr;
|
||||
|
||||
$code.=<<___;
|
||||
.type __ecp_nistz256_sub_from,%function
|
||||
.align 5
|
||||
__ecp_nistz256_sub_from:
|
||||
str lr,[sp,#-4]! @ push lr
|
||||
|
||||
ldr $t0,[$b_ptr,#0]
|
||||
ldr $t1,[$b_ptr,#4]
|
||||
ldr $t2,[$b_ptr,#8]
|
||||
ldr $t3,[$b_ptr,#12]
|
||||
subs $a0,$a0,$t0
|
||||
ldr $t0,[$b_ptr,#16]
|
||||
sbcs $a1,$a1,$t1
|
||||
ldr $t1,[$b_ptr,#20]
|
||||
sbcs $a2,$a2,$t2
|
||||
ldr $t2,[$b_ptr,#24]
|
||||
sbcs $a3,$a3,$t3
|
||||
ldr $t3,[$b_ptr,#28]
|
||||
sbcs $a4,$a4,$t0
|
||||
sbcs $a5,$a5,$t1
|
||||
sbcs $a6,$a6,$t2
|
||||
sbcs $a7,$a7,$t3
|
||||
sbc $ff,$ff,$ff @ broadcast borrow bit
|
||||
ldr lr,[sp],#4 @ pop lr
|
||||
|
||||
adds $a0,$a0,$ff @ add synthesized modulus
|
||||
adcs $a1,$a1,$ff
|
||||
str $a0,[$r_ptr,#0]
|
||||
adcs $a2,$a2,$ff
|
||||
str $a1,[$r_ptr,#4]
|
||||
adcs $a3,$a3,#0
|
||||
str $a2,[$r_ptr,#8]
|
||||
adcs $a4,$a4,#0
|
||||
str $a3,[$r_ptr,#12]
|
||||
adcs $a5,$a5,#0
|
||||
str $a4,[$r_ptr,#16]
|
||||
adcs $a6,$a6,$ff,lsr#31
|
||||
str $a5,[$r_ptr,#20]
|
||||
adcs $a7,$a7,$ff
|
||||
str $a6,[$r_ptr,#24]
|
||||
str $a7,[$r_ptr,#28]
|
||||
|
||||
mov pc,lr
|
||||
.size __ecp_nistz256_sub_from,.-__ecp_nistz256_sub_from
|
||||
|
||||
.type __ecp_nistz256_sub_morf,%function
|
||||
.align 5
|
||||
__ecp_nistz256_sub_morf:
|
||||
str lr,[sp,#-4]! @ push lr
|
||||
|
||||
ldr $t0,[$b_ptr,#0]
|
||||
ldr $t1,[$b_ptr,#4]
|
||||
ldr $t2,[$b_ptr,#8]
|
||||
ldr $t3,[$b_ptr,#12]
|
||||
subs $a0,$t0,$a0
|
||||
ldr $t0,[$b_ptr,#16]
|
||||
sbcs $a1,$t1,$a1
|
||||
ldr $t1,[$b_ptr,#20]
|
||||
sbcs $a2,$t2,$a2
|
||||
ldr $t2,[$b_ptr,#24]
|
||||
sbcs $a3,$t3,$a3
|
||||
ldr $t3,[$b_ptr,#28]
|
||||
sbcs $a4,$t0,$a4
|
||||
sbcs $a5,$t1,$a5
|
||||
sbcs $a6,$t2,$a6
|
||||
sbcs $a7,$t3,$a7
|
||||
sbc $ff,$ff,$ff @ broadcast borrow bit
|
||||
ldr lr,[sp],#4 @ pop lr
|
||||
|
||||
adds $a0,$a0,$ff @ add synthesized modulus
|
||||
adcs $a1,$a1,$ff
|
||||
str $a0,[$r_ptr,#0]
|
||||
adcs $a2,$a2,$ff
|
||||
str $a1,[$r_ptr,#4]
|
||||
adcs $a3,$a3,#0
|
||||
str $a2,[$r_ptr,#8]
|
||||
adcs $a4,$a4,#0
|
||||
str $a3,[$r_ptr,#12]
|
||||
adcs $a5,$a5,#0
|
||||
str $a4,[$r_ptr,#16]
|
||||
adcs $a6,$a6,$ff,lsr#31
|
||||
str $a5,[$r_ptr,#20]
|
||||
adcs $a7,$a7,$ff
|
||||
str $a6,[$r_ptr,#24]
|
||||
str $a7,[$r_ptr,#28]
|
||||
|
||||
mov pc,lr
|
||||
.size __ecp_nistz256_sub_morf,.-__ecp_nistz256_sub_morf
|
||||
|
||||
.type __ecp_nistz256_add_self,%function
|
||||
.align 4
|
||||
__ecp_nistz256_add_self:
|
||||
adds $a0,$a0,$a0 @ a[0:7]+=a[0:7]
|
||||
adcs $a1,$a1,$a1
|
||||
adcs $a2,$a2,$a2
|
||||
adcs $a3,$a3,$a3
|
||||
adcs $a4,$a4,$a4
|
||||
adcs $a5,$a5,$a5
|
||||
adcs $a6,$a6,$a6
|
||||
mov $ff,#0
|
||||
adcs $a7,$a7,$a7
|
||||
adc $ff,$ff,#0
|
||||
|
||||
@ if a+b >= modulus, subtract modulus.
|
||||
@
|
||||
@ But since comparison implies subtraction, we subtract
|
||||
@ modulus and then add it back if subtraction borrowed.
|
||||
|
||||
subs $a0,$a0,#-1
|
||||
sbcs $a1,$a1,#-1
|
||||
sbcs $a2,$a2,#-1
|
||||
sbcs $a3,$a3,#0
|
||||
sbcs $a4,$a4,#0
|
||||
sbcs $a5,$a5,#0
|
||||
sbcs $a6,$a6,#1
|
||||
sbcs $a7,$a7,#-1
|
||||
sbc $ff,$ff,#0
|
||||
|
||||
@ Note that because mod has special form, i.e. consists of
|
||||
@ 0xffffffff, 1 and 0s, we can conditionally synthesize it by
|
||||
@ using value of borrow as a whole or extracting single bit.
|
||||
@ Follow $ff register...
|
||||
|
||||
adds $a0,$a0,$ff @ add synthesized modulus
|
||||
adcs $a1,$a1,$ff
|
||||
str $a0,[$r_ptr,#0]
|
||||
adcs $a2,$a2,$ff
|
||||
str $a1,[$r_ptr,#4]
|
||||
adcs $a3,$a3,#0
|
||||
str $a2,[$r_ptr,#8]
|
||||
adcs $a4,$a4,#0
|
||||
str $a3,[$r_ptr,#12]
|
||||
adcs $a5,$a5,#0
|
||||
str $a4,[$r_ptr,#16]
|
||||
adcs $a6,$a6,$ff,lsr#31
|
||||
str $a5,[$r_ptr,#20]
|
||||
adcs $a7,$a7,$ff
|
||||
str $a6,[$r_ptr,#24]
|
||||
str $a7,[$r_ptr,#28]
|
||||
|
||||
mov pc,lr
|
||||
.size __ecp_nistz256_add_self,.-__ecp_nistz256_add_self
|
||||
|
||||
___
|
||||
|
||||
########################################################################
|
||||
# following subroutines are "literal" implementation of those found in
|
||||
# ecp_nistz256.c
|
||||
#
|
||||
########################################################################
|
||||
# void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp);
|
||||
#
|
||||
{
|
||||
my ($S,$M,$Zsqr,$in_x,$tmp0)=map(32*$_,(0..4));
|
||||
# above map() describes stack layout with 5 temporary
|
||||
# 256-bit vectors on top. Then note that we push
|
||||
# starting from r0, which means that we have copy of
|
||||
# input arguments just below these temporary vectors.
|
||||
|
||||
$code.=<<___;
|
||||
.globl GFp_nistz256_point_double
|
||||
.type GFp_nistz256_point_double,%function
|
||||
.align 5
|
||||
GFp_nistz256_point_double:
|
||||
stmdb sp!,{r0-r12,lr} @ push from r0, unusual, but intentional
|
||||
sub sp,sp,#32*5
|
||||
|
||||
.Lpoint_double_shortcut:
|
||||
add r3,sp,#$in_x
|
||||
ldmia $a_ptr!,{r4-r11} @ copy in_x
|
||||
stmia r3,{r4-r11}
|
||||
|
||||
add $r_ptr,sp,#$S
|
||||
bl __ecp_nistz256_mul_by_2 @ p256_mul_by_2(S, in_y);
|
||||
|
||||
add $b_ptr,$a_ptr,#32
|
||||
add $a_ptr,$a_ptr,#32
|
||||
add $r_ptr,sp,#$Zsqr
|
||||
bl __ecp_nistz256_mul_mont @ p256_sqr_mont(Zsqr, in_z);
|
||||
|
||||
add $a_ptr,sp,#$S
|
||||
add $b_ptr,sp,#$S
|
||||
add $r_ptr,sp,#$S
|
||||
bl __ecp_nistz256_mul_mont @ p256_sqr_mont(S, S);
|
||||
|
||||
ldr $b_ptr,[sp,#32*5+4]
|
||||
add $a_ptr,$b_ptr,#32
|
||||
add $b_ptr,$b_ptr,#64
|
||||
add $r_ptr,sp,#$tmp0
|
||||
bl __ecp_nistz256_mul_mont @ p256_mul_mont(tmp0, in_z, in_y);
|
||||
|
||||
ldr $r_ptr,[sp,#32*5]
|
||||
add $r_ptr,$r_ptr,#64
|
||||
bl __ecp_nistz256_add_self @ p256_mul_by_2(res_z, tmp0);
|
||||
|
||||
add $a_ptr,sp,#$in_x
|
||||
add $b_ptr,sp,#$Zsqr
|
||||
add $r_ptr,sp,#$M
|
||||
bl __ecp_nistz256_add @ p256_add(M, in_x, Zsqr);
|
||||
|
||||
add $a_ptr,sp,#$in_x
|
||||
add $b_ptr,sp,#$Zsqr
|
||||
add $r_ptr,sp,#$Zsqr
|
||||
bl __ecp_nistz256_sub @ p256_sub(Zsqr, in_x, Zsqr);
|
||||
|
||||
add $a_ptr,sp,#$S
|
||||
add $b_ptr,sp,#$S
|
||||
add $r_ptr,sp,#$tmp0
|
||||
bl __ecp_nistz256_mul_mont @ p256_sqr_mont(tmp0, S);
|
||||
|
||||
add $a_ptr,sp,#$Zsqr
|
||||
add $b_ptr,sp,#$M
|
||||
add $r_ptr,sp,#$M
|
||||
bl __ecp_nistz256_mul_mont @ p256_mul_mont(M, M, Zsqr);
|
||||
|
||||
ldr $r_ptr,[sp,#32*5]
|
||||
add $a_ptr,sp,#$tmp0
|
||||
add $r_ptr,$r_ptr,#32
|
||||
bl __ecp_nistz256_div_by_2 @ p256_div_by_2(res_y, tmp0);
|
||||
|
||||
add $a_ptr,sp,#$M
|
||||
add $r_ptr,sp,#$M
|
||||
bl __ecp_nistz256_mul_by_3 @ p256_mul_by_3(M, M);
|
||||
|
||||
add $a_ptr,sp,#$in_x
|
||||
add $b_ptr,sp,#$S
|
||||
add $r_ptr,sp,#$S
|
||||
bl __ecp_nistz256_mul_mont @ p256_mul_mont(S, S, in_x);
|
||||
|
||||
add $r_ptr,sp,#$tmp0
|
||||
bl __ecp_nistz256_add_self @ p256_mul_by_2(tmp0, S);
|
||||
|
||||
ldr $r_ptr,[sp,#32*5]
|
||||
add $a_ptr,sp,#$M
|
||||
add $b_ptr,sp,#$M
|
||||
bl __ecp_nistz256_mul_mont @ p256_sqr_mont(res_x, M);
|
||||
|
||||
add $b_ptr,sp,#$tmp0
|
||||
bl __ecp_nistz256_sub_from @ p256_sub(res_x, res_x, tmp0);
|
||||
|
||||
add $b_ptr,sp,#$S
|
||||
add $r_ptr,sp,#$S
|
||||
bl __ecp_nistz256_sub_morf @ p256_sub(S, S, res_x);
|
||||
|
||||
add $a_ptr,sp,#$M
|
||||
add $b_ptr,sp,#$S
|
||||
bl __ecp_nistz256_mul_mont @ p256_mul_mont(S, S, M);
|
||||
|
||||
ldr $r_ptr,[sp,#32*5]
|
||||
add $b_ptr,$r_ptr,#32
|
||||
add $r_ptr,$r_ptr,#32
|
||||
bl __ecp_nistz256_sub_from @ p256_sub(res_y, S, res_y);
|
||||
|
||||
add sp,sp,#32*5+16 @ +16 means "skip even over saved r0-r3"
|
||||
#if __ARM_ARCH__>=5 || !defined(__thumb__)
|
||||
ldmia sp!,{r4-r12,pc}
|
||||
#else
|
||||
ldmia sp!,{r4-r12,lr}
|
||||
bx lr @ interoperable with Thumb ISA:-)
|
||||
#endif
|
||||
.size GFp_nistz256_point_double,.-GFp_nistz256_point_double
|
||||
___
|
||||
}
|
||||
|
||||
}}}
|
||||
|
||||
foreach (split("\n",$code)) {
|
||||
s/\`([^\`]*)\`/eval $1/geo;
|
||||
|
||||
s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo;
|
||||
|
||||
print $_,"\n";
|
||||
}
|
||||
close STDOUT or die "error closing STDOUT";
|
||||
908
zeroidc/vendor/ring/crypto/fipsmodule/ec/asm/ecp_nistz256-armv8.pl
vendored
Normal file
908
zeroidc/vendor/ring/crypto/fipsmodule/ec/asm/ecp_nistz256-armv8.pl
vendored
Normal file
@@ -0,0 +1,908 @@
|
||||
#! /usr/bin/env perl
|
||||
# Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
#
|
||||
# 2. Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in
|
||||
# the documentation and/or other materials provided with the
|
||||
# distribution.
|
||||
#
|
||||
# 3. All advertising materials mentioning features or use of this
|
||||
# software must display the following acknowledgment:
|
||||
# "This product includes software developed by the OpenSSL Project
|
||||
# for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
||||
#
|
||||
# 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
||||
# endorse or promote products derived from this software without
|
||||
# prior written permission. For written permission, please contact
|
||||
# openssl-core@openssl.org.
|
||||
#
|
||||
# 5. Products derived from this software may not be called "OpenSSL"
|
||||
# nor may "OpenSSL" appear in their names without prior written
|
||||
# permission of the OpenSSL Project.
|
||||
#
|
||||
# 6. Redistributions of any form whatsoever must retain the following
|
||||
# acknowledgment:
|
||||
# "This product includes software developed by the OpenSSL Project
|
||||
# for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
||||
# EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
||||
# ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
# NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
||||
# OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
# ====================================================================
|
||||
#
|
||||
# This product includes cryptographic software written by Eric Young
|
||||
# (eay@cryptsoft.com). This product includes software written by Tim
|
||||
# Hudson (tjh@cryptsoft.com).
|
||||
|
||||
|
||||
# ====================================================================
|
||||
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
||||
# project. The module is, however, dual licensed under OpenSSL and
|
||||
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
||||
# details see http://www.openssl.org/~appro/cryptogams/.
|
||||
# ====================================================================
|
||||
#
|
||||
# ECP_NISTZ256 module for ARMv8.
|
||||
#
|
||||
# February 2015.
|
||||
#
|
||||
# Original ECP_NISTZ256 submission targeting x86_64 is detailed in
|
||||
# http://eprint.iacr.org/2013/816.
|
||||
#
|
||||
# with/without -DECP_NISTZ256_ASM
|
||||
# Apple A7 +120-360%
|
||||
# Cortex-A53 +120-400%
|
||||
# Cortex-A57 +120-350%
|
||||
# X-Gene +200-330%
|
||||
# Denver +140-400%
|
||||
#
|
||||
# Ranges denote minimum and maximum improvement coefficients depending
|
||||
# on benchmark. Lower coefficients are for ECDSA sign, server-side
|
||||
# operation. Keep in mind that +400% means 5x improvement.
|
||||
|
||||
$flavour = shift;
|
||||
while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {}
|
||||
|
||||
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
||||
( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
|
||||
( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or
|
||||
die "can't locate arm-xlate.pl";
|
||||
|
||||
open OUT,"| \"$^X\" $xlate $flavour $output";
|
||||
*STDOUT=*OUT;
|
||||
|
||||
{
|
||||
my ($rp,$ap,$bp,$bi,$a0,$a1,$a2,$a3,$t0,$t1,$t2,$t3,$poly1,$poly3,
|
||||
$acc0,$acc1,$acc2,$acc3,$acc4,$acc5) =
|
||||
map("x$_",(0..17,19,20));
|
||||
|
||||
my ($acc6,$acc7)=($ap,$bp); # used in __ecp_nistz256_sqr_mont
|
||||
|
||||
$code.=<<___;
|
||||
#include <GFp/arm_arch.h>
|
||||
|
||||
.text
|
||||
.align 5
|
||||
.Lpoly:
|
||||
.quad 0xffffffffffffffff,0x00000000ffffffff,0x0000000000000000,0xffffffff00000001
|
||||
.Lone_mont:
|
||||
.quad 0x0000000000000001,0xffffffff00000000,0xffffffffffffffff,0x00000000fffffffe
|
||||
.Lone:
|
||||
.quad 1,0,0,0
|
||||
.asciz "ECP_NISTZ256 for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
|
||||
|
||||
// void GFp_nistz256_mul_mont(BN_ULONG x0[4],const BN_ULONG x1[4],
|
||||
// const BN_ULONG x2[4]);
|
||||
.globl GFp_nistz256_mul_mont
|
||||
.type GFp_nistz256_mul_mont,%function
|
||||
.align 4
|
||||
GFp_nistz256_mul_mont:
|
||||
stp x29,x30,[sp,#-32]!
|
||||
add x29,sp,#0
|
||||
stp x19,x20,[sp,#16]
|
||||
|
||||
ldr $bi,[$bp] // bp[0]
|
||||
ldp $a0,$a1,[$ap]
|
||||
ldp $a2,$a3,[$ap,#16]
|
||||
ldr $poly1,.Lpoly+8
|
||||
ldr $poly3,.Lpoly+24
|
||||
|
||||
bl __ecp_nistz256_mul_mont
|
||||
|
||||
ldp x19,x20,[sp,#16]
|
||||
ldp x29,x30,[sp],#32
|
||||
ret
|
||||
.size GFp_nistz256_mul_mont,.-GFp_nistz256_mul_mont
|
||||
|
||||
// void GFp_nistz256_sqr_mont(BN_ULONG x0[4],const BN_ULONG x1[4]);
|
||||
.globl GFp_nistz256_sqr_mont
|
||||
.type GFp_nistz256_sqr_mont,%function
|
||||
.align 4
|
||||
GFp_nistz256_sqr_mont:
|
||||
stp x29,x30,[sp,#-32]!
|
||||
add x29,sp,#0
|
||||
stp x19,x20,[sp,#16]
|
||||
|
||||
ldp $a0,$a1,[$ap]
|
||||
ldp $a2,$a3,[$ap,#16]
|
||||
ldr $poly1,.Lpoly+8
|
||||
ldr $poly3,.Lpoly+24
|
||||
|
||||
bl __ecp_nistz256_sqr_mont
|
||||
|
||||
ldp x19,x20,[sp,#16]
|
||||
ldp x29,x30,[sp],#32
|
||||
ret
|
||||
.size GFp_nistz256_sqr_mont,.-GFp_nistz256_sqr_mont
|
||||
|
||||
// void GFp_nistz256_add(BN_ULONG x0[4],const BN_ULONG x1[4],
|
||||
// const BN_ULONG x2[4]);
|
||||
.globl GFp_nistz256_add
|
||||
.type GFp_nistz256_add,%function
|
||||
.align 4
|
||||
GFp_nistz256_add:
|
||||
stp x29,x30,[sp,#-16]!
|
||||
add x29,sp,#0
|
||||
|
||||
ldp $acc0,$acc1,[$ap]
|
||||
ldp $t0,$t1,[$bp]
|
||||
ldp $acc2,$acc3,[$ap,#16]
|
||||
ldp $t2,$t3,[$bp,#16]
|
||||
ldr $poly1,.Lpoly+8
|
||||
ldr $poly3,.Lpoly+24
|
||||
|
||||
bl __ecp_nistz256_add
|
||||
|
||||
ldp x29,x30,[sp],#16
|
||||
ret
|
||||
.size GFp_nistz256_add,.-GFp_nistz256_add
|
||||
|
||||
// void GFp_nistz256_neg(BN_ULONG x0[4],const BN_ULONG x1[4]);
|
||||
.globl GFp_nistz256_neg
|
||||
.type GFp_nistz256_neg,%function
|
||||
.align 4
|
||||
GFp_nistz256_neg:
|
||||
stp x29,x30,[sp,#-16]!
|
||||
add x29,sp,#0
|
||||
|
||||
mov $bp,$ap
|
||||
mov $acc0,xzr // a = 0
|
||||
mov $acc1,xzr
|
||||
mov $acc2,xzr
|
||||
mov $acc3,xzr
|
||||
ldr $poly1,.Lpoly+8
|
||||
ldr $poly3,.Lpoly+24
|
||||
|
||||
bl __ecp_nistz256_sub_from
|
||||
|
||||
ldp x29,x30,[sp],#16
|
||||
ret
|
||||
.size GFp_nistz256_neg,.-GFp_nistz256_neg
|
||||
|
||||
// note that __ecp_nistz256_mul_mont expects a[0-3] input pre-loaded
|
||||
// to $a0-$a3 and b[0] - to $bi
|
||||
.type __ecp_nistz256_mul_mont,%function
|
||||
.align 4
|
||||
__ecp_nistz256_mul_mont:
|
||||
mul $acc0,$a0,$bi // a[0]*b[0]
|
||||
umulh $t0,$a0,$bi
|
||||
|
||||
mul $acc1,$a1,$bi // a[1]*b[0]
|
||||
umulh $t1,$a1,$bi
|
||||
|
||||
mul $acc2,$a2,$bi // a[2]*b[0]
|
||||
umulh $t2,$a2,$bi
|
||||
|
||||
mul $acc3,$a3,$bi // a[3]*b[0]
|
||||
umulh $t3,$a3,$bi
|
||||
ldr $bi,[$bp,#8] // b[1]
|
||||
|
||||
adds $acc1,$acc1,$t0 // accumulate high parts of multiplication
|
||||
lsl $t0,$acc0,#32
|
||||
adcs $acc2,$acc2,$t1
|
||||
lsr $t1,$acc0,#32
|
||||
adcs $acc3,$acc3,$t2
|
||||
adc $acc4,xzr,$t3
|
||||
mov $acc5,xzr
|
||||
___
|
||||
for($i=1;$i<4;$i++) {
|
||||
# Reduction iteration is normally performed by accumulating
|
||||
# result of multiplication of modulus by "magic" digit [and
|
||||
# omitting least significant word, which is guaranteed to
|
||||
# be 0], but thanks to special form of modulus and "magic"
|
||||
# digit being equal to least significant word, it can be
|
||||
# performed with additions and subtractions alone. Indeed:
|
||||
#
|
||||
# ffff0001.00000000.0000ffff.ffffffff
|
||||
# * abcdefgh
|
||||
# + xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.abcdefgh
|
||||
#
|
||||
# Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we
|
||||
# rewrite above as:
|
||||
#
|
||||
# xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.abcdefgh
|
||||
# + abcdefgh.abcdefgh.0000abcd.efgh0000.00000000
|
||||
# - 0000abcd.efgh0000.00000000.00000000.abcdefgh
|
||||
#
|
||||
# or marking redundant operations:
|
||||
#
|
||||
# xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.--------
|
||||
# + abcdefgh.abcdefgh.0000abcd.efgh0000.--------
|
||||
# - 0000abcd.efgh0000.--------.--------.--------
|
||||
|
||||
$code.=<<___;
|
||||
subs $t2,$acc0,$t0 // "*0xffff0001"
|
||||
sbc $t3,$acc0,$t1
|
||||
adds $acc0,$acc1,$t0 // +=acc[0]<<96 and omit acc[0]
|
||||
mul $t0,$a0,$bi // lo(a[0]*b[i])
|
||||
adcs $acc1,$acc2,$t1
|
||||
mul $t1,$a1,$bi // lo(a[1]*b[i])
|
||||
adcs $acc2,$acc3,$t2 // +=acc[0]*0xffff0001
|
||||
mul $t2,$a2,$bi // lo(a[2]*b[i])
|
||||
adcs $acc3,$acc4,$t3
|
||||
mul $t3,$a3,$bi // lo(a[3]*b[i])
|
||||
adc $acc4,$acc5,xzr
|
||||
|
||||
adds $acc0,$acc0,$t0 // accumulate low parts of multiplication
|
||||
umulh $t0,$a0,$bi // hi(a[0]*b[i])
|
||||
adcs $acc1,$acc1,$t1
|
||||
umulh $t1,$a1,$bi // hi(a[1]*b[i])
|
||||
adcs $acc2,$acc2,$t2
|
||||
umulh $t2,$a2,$bi // hi(a[2]*b[i])
|
||||
adcs $acc3,$acc3,$t3
|
||||
umulh $t3,$a3,$bi // hi(a[3]*b[i])
|
||||
adc $acc4,$acc4,xzr
|
||||
___
|
||||
$code.=<<___ if ($i<3);
|
||||
ldr $bi,[$bp,#8*($i+1)] // b[$i+1]
|
||||
___
|
||||
$code.=<<___;
|
||||
adds $acc1,$acc1,$t0 // accumulate high parts of multiplication
|
||||
lsl $t0,$acc0,#32
|
||||
adcs $acc2,$acc2,$t1
|
||||
lsr $t1,$acc0,#32
|
||||
adcs $acc3,$acc3,$t2
|
||||
adcs $acc4,$acc4,$t3
|
||||
adc $acc5,xzr,xzr
|
||||
___
|
||||
}
|
||||
$code.=<<___;
|
||||
// last reduction
|
||||
subs $t2,$acc0,$t0 // "*0xffff0001"
|
||||
sbc $t3,$acc0,$t1
|
||||
adds $acc0,$acc1,$t0 // +=acc[0]<<96 and omit acc[0]
|
||||
adcs $acc1,$acc2,$t1
|
||||
adcs $acc2,$acc3,$t2 // +=acc[0]*0xffff0001
|
||||
adcs $acc3,$acc4,$t3
|
||||
adc $acc4,$acc5,xzr
|
||||
|
||||
adds $t0,$acc0,#1 // subs $t0,$acc0,#-1 // tmp = ret-modulus
|
||||
sbcs $t1,$acc1,$poly1
|
||||
sbcs $t2,$acc2,xzr
|
||||
sbcs $t3,$acc3,$poly3
|
||||
sbcs xzr,$acc4,xzr // did it borrow?
|
||||
|
||||
csel $acc0,$acc0,$t0,lo // ret = borrow ? ret : ret-modulus
|
||||
csel $acc1,$acc1,$t1,lo
|
||||
csel $acc2,$acc2,$t2,lo
|
||||
stp $acc0,$acc1,[$rp]
|
||||
csel $acc3,$acc3,$t3,lo
|
||||
stp $acc2,$acc3,[$rp,#16]
|
||||
|
||||
ret
|
||||
.size __ecp_nistz256_mul_mont,.-__ecp_nistz256_mul_mont
|
||||
|
||||
// note that __ecp_nistz256_sqr_mont expects a[0-3] input pre-loaded
|
||||
// to $a0-$a3
|
||||
.type __ecp_nistz256_sqr_mont,%function
|
||||
.align 4
|
||||
__ecp_nistz256_sqr_mont:
|
||||
// | | | | | |a1*a0| |
|
||||
// | | | | |a2*a0| | |
|
||||
// | |a3*a2|a3*a0| | | |
|
||||
// | | | |a2*a1| | | |
|
||||
// | | |a3*a1| | | | |
|
||||
// *| | | | | | | | 2|
|
||||
// +|a3*a3|a2*a2|a1*a1|a0*a0|
|
||||
// |--+--+--+--+--+--+--+--|
|
||||
// |A7|A6|A5|A4|A3|A2|A1|A0|, where Ax is $accx, i.e. follow $accx
|
||||
//
|
||||
// "can't overflow" below mark carrying into high part of
|
||||
// multiplication result, which can't overflow, because it
|
||||
// can never be all ones.
|
||||
|
||||
mul $acc1,$a1,$a0 // a[1]*a[0]
|
||||
umulh $t1,$a1,$a0
|
||||
mul $acc2,$a2,$a0 // a[2]*a[0]
|
||||
umulh $t2,$a2,$a0
|
||||
mul $acc3,$a3,$a0 // a[3]*a[0]
|
||||
umulh $acc4,$a3,$a0
|
||||
|
||||
adds $acc2,$acc2,$t1 // accumulate high parts of multiplication
|
||||
mul $t0,$a2,$a1 // a[2]*a[1]
|
||||
umulh $t1,$a2,$a1
|
||||
adcs $acc3,$acc3,$t2
|
||||
mul $t2,$a3,$a1 // a[3]*a[1]
|
||||
umulh $t3,$a3,$a1
|
||||
adc $acc4,$acc4,xzr // can't overflow
|
||||
|
||||
mul $acc5,$a3,$a2 // a[3]*a[2]
|
||||
umulh $acc6,$a3,$a2
|
||||
|
||||
adds $t1,$t1,$t2 // accumulate high parts of multiplication
|
||||
mul $acc0,$a0,$a0 // a[0]*a[0]
|
||||
adc $t2,$t3,xzr // can't overflow
|
||||
|
||||
adds $acc3,$acc3,$t0 // accumulate low parts of multiplication
|
||||
umulh $a0,$a0,$a0
|
||||
adcs $acc4,$acc4,$t1
|
||||
mul $t1,$a1,$a1 // a[1]*a[1]
|
||||
adcs $acc5,$acc5,$t2
|
||||
umulh $a1,$a1,$a1
|
||||
adc $acc6,$acc6,xzr // can't overflow
|
||||
|
||||
adds $acc1,$acc1,$acc1 // acc[1-6]*=2
|
||||
mul $t2,$a2,$a2 // a[2]*a[2]
|
||||
adcs $acc2,$acc2,$acc2
|
||||
umulh $a2,$a2,$a2
|
||||
adcs $acc3,$acc3,$acc3
|
||||
mul $t3,$a3,$a3 // a[3]*a[3]
|
||||
adcs $acc4,$acc4,$acc4
|
||||
umulh $a3,$a3,$a3
|
||||
adcs $acc5,$acc5,$acc5
|
||||
adcs $acc6,$acc6,$acc6
|
||||
adc $acc7,xzr,xzr
|
||||
|
||||
adds $acc1,$acc1,$a0 // +a[i]*a[i]
|
||||
adcs $acc2,$acc2,$t1
|
||||
adcs $acc3,$acc3,$a1
|
||||
adcs $acc4,$acc4,$t2
|
||||
adcs $acc5,$acc5,$a2
|
||||
lsl $t0,$acc0,#32
|
||||
adcs $acc6,$acc6,$t3
|
||||
lsr $t1,$acc0,#32
|
||||
adc $acc7,$acc7,$a3
|
||||
___
|
||||
for($i=0;$i<3;$i++) { # reductions, see commentary in
|
||||
# multiplication for details
|
||||
$code.=<<___;
|
||||
subs $t2,$acc0,$t0 // "*0xffff0001"
|
||||
sbc $t3,$acc0,$t1
|
||||
adds $acc0,$acc1,$t0 // +=acc[0]<<96 and omit acc[0]
|
||||
adcs $acc1,$acc2,$t1
|
||||
lsl $t0,$acc0,#32
|
||||
adcs $acc2,$acc3,$t2 // +=acc[0]*0xffff0001
|
||||
lsr $t1,$acc0,#32
|
||||
adc $acc3,$t3,xzr // can't overflow
|
||||
___
|
||||
}
|
||||
$code.=<<___;
|
||||
subs $t2,$acc0,$t0 // "*0xffff0001"
|
||||
sbc $t3,$acc0,$t1
|
||||
adds $acc0,$acc1,$t0 // +=acc[0]<<96 and omit acc[0]
|
||||
adcs $acc1,$acc2,$t1
|
||||
adcs $acc2,$acc3,$t2 // +=acc[0]*0xffff0001
|
||||
adc $acc3,$t3,xzr // can't overflow
|
||||
|
||||
adds $acc0,$acc0,$acc4 // accumulate upper half
|
||||
adcs $acc1,$acc1,$acc5
|
||||
adcs $acc2,$acc2,$acc6
|
||||
adcs $acc3,$acc3,$acc7
|
||||
adc $acc4,xzr,xzr
|
||||
|
||||
adds $t0,$acc0,#1 // subs $t0,$acc0,#-1 // tmp = ret-modulus
|
||||
sbcs $t1,$acc1,$poly1
|
||||
sbcs $t2,$acc2,xzr
|
||||
sbcs $t3,$acc3,$poly3
|
||||
sbcs xzr,$acc4,xzr // did it borrow?
|
||||
|
||||
csel $acc0,$acc0,$t0,lo // ret = borrow ? ret : ret-modulus
|
||||
csel $acc1,$acc1,$t1,lo
|
||||
csel $acc2,$acc2,$t2,lo
|
||||
stp $acc0,$acc1,[$rp]
|
||||
csel $acc3,$acc3,$t3,lo
|
||||
stp $acc2,$acc3,[$rp,#16]
|
||||
|
||||
ret
|
||||
.size __ecp_nistz256_sqr_mont,.-__ecp_nistz256_sqr_mont
|
||||
|
||||
// Note that __ecp_nistz256_add expects both input vectors pre-loaded to
|
||||
// $a0-$a3 and $t0-$t3. This is done because it's used in multiple
|
||||
// contexts, e.g. in multiplication by 2 and 3...
|
||||
.type __ecp_nistz256_add,%function
|
||||
.align 4
|
||||
__ecp_nistz256_add:
|
||||
adds $acc0,$acc0,$t0 // ret = a+b
|
||||
adcs $acc1,$acc1,$t1
|
||||
adcs $acc2,$acc2,$t2
|
||||
adcs $acc3,$acc3,$t3
|
||||
adc $ap,xzr,xzr // zap $ap
|
||||
|
||||
adds $t0,$acc0,#1 // subs $t0,$a0,#-1 // tmp = ret-modulus
|
||||
sbcs $t1,$acc1,$poly1
|
||||
sbcs $t2,$acc2,xzr
|
||||
sbcs $t3,$acc3,$poly3
|
||||
sbcs xzr,$ap,xzr // did subtraction borrow?
|
||||
|
||||
csel $acc0,$acc0,$t0,lo // ret = borrow ? ret : ret-modulus
|
||||
csel $acc1,$acc1,$t1,lo
|
||||
csel $acc2,$acc2,$t2,lo
|
||||
stp $acc0,$acc1,[$rp]
|
||||
csel $acc3,$acc3,$t3,lo
|
||||
stp $acc2,$acc3,[$rp,#16]
|
||||
|
||||
ret
|
||||
.size __ecp_nistz256_add,.-__ecp_nistz256_add
|
||||
|
||||
.type __ecp_nistz256_sub_from,%function
|
||||
.align 4
|
||||
__ecp_nistz256_sub_from:
|
||||
ldp $t0,$t1,[$bp]
|
||||
ldp $t2,$t3,[$bp,#16]
|
||||
subs $acc0,$acc0,$t0 // ret = a-b
|
||||
sbcs $acc1,$acc1,$t1
|
||||
sbcs $acc2,$acc2,$t2
|
||||
sbcs $acc3,$acc3,$t3
|
||||
sbc $ap,xzr,xzr // zap $ap
|
||||
|
||||
subs $t0,$acc0,#1 // adds $t0,$a0,#-1 // tmp = ret+modulus
|
||||
adcs $t1,$acc1,$poly1
|
||||
adcs $t2,$acc2,xzr
|
||||
adc $t3,$acc3,$poly3
|
||||
cmp $ap,xzr // did subtraction borrow?
|
||||
|
||||
csel $acc0,$acc0,$t0,eq // ret = borrow ? ret+modulus : ret
|
||||
csel $acc1,$acc1,$t1,eq
|
||||
csel $acc2,$acc2,$t2,eq
|
||||
stp $acc0,$acc1,[$rp]
|
||||
csel $acc3,$acc3,$t3,eq
|
||||
stp $acc2,$acc3,[$rp,#16]
|
||||
|
||||
ret
|
||||
.size __ecp_nistz256_sub_from,.-__ecp_nistz256_sub_from
|
||||
|
||||
.type __ecp_nistz256_sub_morf,%function
|
||||
.align 4
|
||||
__ecp_nistz256_sub_morf:
|
||||
ldp $t0,$t1,[$bp]
|
||||
ldp $t2,$t3,[$bp,#16]
|
||||
subs $acc0,$t0,$acc0 // ret = b-a
|
||||
sbcs $acc1,$t1,$acc1
|
||||
sbcs $acc2,$t2,$acc2
|
||||
sbcs $acc3,$t3,$acc3
|
||||
sbc $ap,xzr,xzr // zap $ap
|
||||
|
||||
subs $t0,$acc0,#1 // adds $t0,$a0,#-1 // tmp = ret+modulus
|
||||
adcs $t1,$acc1,$poly1
|
||||
adcs $t2,$acc2,xzr
|
||||
adc $t3,$acc3,$poly3
|
||||
cmp $ap,xzr // did subtraction borrow?
|
||||
|
||||
csel $acc0,$acc0,$t0,eq // ret = borrow ? ret+modulus : ret
|
||||
csel $acc1,$acc1,$t1,eq
|
||||
csel $acc2,$acc2,$t2,eq
|
||||
stp $acc0,$acc1,[$rp]
|
||||
csel $acc3,$acc3,$t3,eq
|
||||
stp $acc2,$acc3,[$rp,#16]
|
||||
|
||||
ret
|
||||
.size __ecp_nistz256_sub_morf,.-__ecp_nistz256_sub_morf
|
||||
|
||||
.type __ecp_nistz256_div_by_2,%function
|
||||
.align 4
|
||||
__ecp_nistz256_div_by_2:
|
||||
subs $t0,$acc0,#1 // adds $t0,$a0,#-1 // tmp = a+modulus
|
||||
adcs $t1,$acc1,$poly1
|
||||
adcs $t2,$acc2,xzr
|
||||
adcs $t3,$acc3,$poly3
|
||||
adc $ap,xzr,xzr // zap $ap
|
||||
tst $acc0,#1 // is a even?
|
||||
|
||||
csel $acc0,$acc0,$t0,eq // ret = even ? a : a+modulus
|
||||
csel $acc1,$acc1,$t1,eq
|
||||
csel $acc2,$acc2,$t2,eq
|
||||
csel $acc3,$acc3,$t3,eq
|
||||
csel $ap,xzr,$ap,eq
|
||||
|
||||
lsr $acc0,$acc0,#1 // ret >>= 1
|
||||
orr $acc0,$acc0,$acc1,lsl#63
|
||||
lsr $acc1,$acc1,#1
|
||||
orr $acc1,$acc1,$acc2,lsl#63
|
||||
lsr $acc2,$acc2,#1
|
||||
orr $acc2,$acc2,$acc3,lsl#63
|
||||
lsr $acc3,$acc3,#1
|
||||
stp $acc0,$acc1,[$rp]
|
||||
orr $acc3,$acc3,$ap,lsl#63
|
||||
stp $acc2,$acc3,[$rp,#16]
|
||||
|
||||
ret
|
||||
.size __ecp_nistz256_div_by_2,.-__ecp_nistz256_div_by_2
|
||||
___
|
||||
########################################################################
|
||||
# following subroutines are "literal" implementation of those found in
|
||||
# ecp_nistz256.c
|
||||
#
|
||||
########################################################################
|
||||
# void GFp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp);
|
||||
#
|
||||
{
|
||||
my ($S,$M,$Zsqr,$tmp0)=map(32*$_,(0..3));
|
||||
# above map() describes stack layout with 4 temporary
|
||||
# 256-bit vectors on top.
|
||||
my ($rp_real,$ap_real) = map("x$_",(21,22));
|
||||
|
||||
$code.=<<___;
|
||||
.globl GFp_nistz256_point_double
|
||||
.type GFp_nistz256_point_double,%function
|
||||
.align 5
|
||||
GFp_nistz256_point_double:
|
||||
stp x29,x30,[sp,#-80]!
|
||||
add x29,sp,#0
|
||||
stp x19,x20,[sp,#16]
|
||||
stp x21,x22,[sp,#32]
|
||||
sub sp,sp,#32*4
|
||||
|
||||
.Ldouble_shortcut:
|
||||
ldp $acc0,$acc1,[$ap,#32]
|
||||
mov $rp_real,$rp
|
||||
ldp $acc2,$acc3,[$ap,#48]
|
||||
mov $ap_real,$ap
|
||||
ldr $poly1,.Lpoly+8
|
||||
mov $t0,$acc0
|
||||
ldr $poly3,.Lpoly+24
|
||||
mov $t1,$acc1
|
||||
ldp $a0,$a1,[$ap_real,#64] // forward load for p256_sqr_mont
|
||||
mov $t2,$acc2
|
||||
mov $t3,$acc3
|
||||
ldp $a2,$a3,[$ap_real,#64+16]
|
||||
add $rp,sp,#$S
|
||||
bl __ecp_nistz256_add // p256_mul_by_2(S, in_y);
|
||||
|
||||
add $rp,sp,#$Zsqr
|
||||
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Zsqr, in_z);
|
||||
|
||||
ldp $t0,$t1,[$ap_real]
|
||||
ldp $t2,$t3,[$ap_real,#16]
|
||||
mov $a0,$acc0 // put Zsqr aside for p256_sub
|
||||
mov $a1,$acc1
|
||||
mov $a2,$acc2
|
||||
mov $a3,$acc3
|
||||
add $rp,sp,#$M
|
||||
bl __ecp_nistz256_add // p256_add(M, Zsqr, in_x);
|
||||
|
||||
add $bp,$ap_real,#0
|
||||
mov $acc0,$a0 // restore Zsqr
|
||||
mov $acc1,$a1
|
||||
ldp $a0,$a1,[sp,#$S] // forward load for p256_sqr_mont
|
||||
mov $acc2,$a2
|
||||
mov $acc3,$a3
|
||||
ldp $a2,$a3,[sp,#$S+16]
|
||||
add $rp,sp,#$Zsqr
|
||||
bl __ecp_nistz256_sub_morf // p256_sub(Zsqr, in_x, Zsqr);
|
||||
|
||||
add $rp,sp,#$S
|
||||
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(S, S);
|
||||
|
||||
ldr $bi,[$ap_real,#32]
|
||||
ldp $a0,$a1,[$ap_real,#64]
|
||||
ldp $a2,$a3,[$ap_real,#64+16]
|
||||
add $bp,$ap_real,#32
|
||||
add $rp,sp,#$tmp0
|
||||
bl __ecp_nistz256_mul_mont // p256_mul_mont(tmp0, in_z, in_y);
|
||||
|
||||
mov $t0,$acc0
|
||||
mov $t1,$acc1
|
||||
ldp $a0,$a1,[sp,#$S] // forward load for p256_sqr_mont
|
||||
mov $t2,$acc2
|
||||
mov $t3,$acc3
|
||||
ldp $a2,$a3,[sp,#$S+16]
|
||||
add $rp,$rp_real,#64
|
||||
bl __ecp_nistz256_add // p256_mul_by_2(res_z, tmp0);
|
||||
|
||||
add $rp,sp,#$tmp0
|
||||
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(tmp0, S);
|
||||
|
||||
ldr $bi,[sp,#$Zsqr] // forward load for p256_mul_mont
|
||||
ldp $a0,$a1,[sp,#$M]
|
||||
ldp $a2,$a3,[sp,#$M+16]
|
||||
add $rp,$rp_real,#32
|
||||
bl __ecp_nistz256_div_by_2 // p256_div_by_2(res_y, tmp0);
|
||||
|
||||
add $bp,sp,#$Zsqr
|
||||
add $rp,sp,#$M
|
||||
bl __ecp_nistz256_mul_mont // p256_mul_mont(M, M, Zsqr);
|
||||
|
||||
mov $t0,$acc0 // duplicate M
|
||||
mov $t1,$acc1
|
||||
mov $t2,$acc2
|
||||
mov $t3,$acc3
|
||||
mov $a0,$acc0 // put M aside
|
||||
mov $a1,$acc1
|
||||
mov $a2,$acc2
|
||||
mov $a3,$acc3
|
||||
add $rp,sp,#$M
|
||||
bl __ecp_nistz256_add
|
||||
mov $t0,$a0 // restore M
|
||||
mov $t1,$a1
|
||||
ldr $bi,[$ap_real] // forward load for p256_mul_mont
|
||||
mov $t2,$a2
|
||||
ldp $a0,$a1,[sp,#$S]
|
||||
mov $t3,$a3
|
||||
ldp $a2,$a3,[sp,#$S+16]
|
||||
bl __ecp_nistz256_add // p256_mul_by_3(M, M);
|
||||
|
||||
add $bp,$ap_real,#0
|
||||
add $rp,sp,#$S
|
||||
bl __ecp_nistz256_mul_mont // p256_mul_mont(S, S, in_x);
|
||||
|
||||
mov $t0,$acc0
|
||||
mov $t1,$acc1
|
||||
ldp $a0,$a1,[sp,#$M] // forward load for p256_sqr_mont
|
||||
mov $t2,$acc2
|
||||
mov $t3,$acc3
|
||||
ldp $a2,$a3,[sp,#$M+16]
|
||||
add $rp,sp,#$tmp0
|
||||
bl __ecp_nistz256_add // p256_mul_by_2(tmp0, S);
|
||||
|
||||
add $rp,$rp_real,#0
|
||||
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(res_x, M);
|
||||
|
||||
add $bp,sp,#$tmp0
|
||||
bl __ecp_nistz256_sub_from // p256_sub(res_x, res_x, tmp0);
|
||||
|
||||
add $bp,sp,#$S
|
||||
add $rp,sp,#$S
|
||||
bl __ecp_nistz256_sub_morf // p256_sub(S, S, res_x);
|
||||
|
||||
ldr $bi,[sp,#$M]
|
||||
mov $a0,$acc0 // copy S
|
||||
mov $a1,$acc1
|
||||
mov $a2,$acc2
|
||||
mov $a3,$acc3
|
||||
add $bp,sp,#$M
|
||||
bl __ecp_nistz256_mul_mont // p256_mul_mont(S, S, M);
|
||||
|
||||
add $bp,$rp_real,#32
|
||||
add $rp,$rp_real,#32
|
||||
bl __ecp_nistz256_sub_from // p256_sub(res_y, S, res_y);
|
||||
|
||||
add sp,x29,#0 // destroy frame
|
||||
ldp x19,x20,[x29,#16]
|
||||
ldp x21,x22,[x29,#32]
|
||||
ldp x29,x30,[sp],#80
|
||||
ret
|
||||
.size GFp_nistz256_point_double,.-GFp_nistz256_point_double
|
||||
___
|
||||
}
|
||||
|
||||
########################################################################
|
||||
# void GFp_nistz256_point_add_affine(P256_POINT *out,const P256_POINT *in1,
|
||||
# const P256_POINT_AFFINE *in2);
|
||||
{
|
||||
my ($res_x,$res_y,$res_z,
|
||||
$U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..9));
|
||||
my $Z1sqr = $S2;
|
||||
# above map() describes stack layout with 10 temporary
|
||||
# 256-bit vectors on top.
|
||||
my ($rp_real,$ap_real,$bp_real,$in1infty,$in2infty,$temp)=map("x$_",(21..26));
|
||||
|
||||
$code.=<<___;
|
||||
.globl GFp_nistz256_point_add_affine
|
||||
.type GFp_nistz256_point_add_affine,%function
|
||||
.align 5
|
||||
GFp_nistz256_point_add_affine:
|
||||
stp x29,x30,[sp,#-80]!
|
||||
add x29,sp,#0
|
||||
stp x19,x20,[sp,#16]
|
||||
stp x21,x22,[sp,#32]
|
||||
stp x23,x24,[sp,#48]
|
||||
stp x25,x26,[sp,#64]
|
||||
sub sp,sp,#32*10
|
||||
|
||||
mov $rp_real,$rp
|
||||
mov $ap_real,$ap
|
||||
mov $bp_real,$bp
|
||||
ldr $poly1,.Lpoly+8
|
||||
ldr $poly3,.Lpoly+24
|
||||
|
||||
ldp $a0,$a1,[$ap,#64] // in1_z
|
||||
ldp $a2,$a3,[$ap,#64+16]
|
||||
orr $t0,$a0,$a1
|
||||
orr $t2,$a2,$a3
|
||||
orr $in1infty,$t0,$t2
|
||||
cmp $in1infty,#0
|
||||
csetm $in1infty,ne // !in1infty
|
||||
|
||||
ldp $acc0,$acc1,[$bp] // in2_x
|
||||
ldp $acc2,$acc3,[$bp,#16]
|
||||
ldp $t0,$t1,[$bp,#32] // in2_y
|
||||
ldp $t2,$t3,[$bp,#48]
|
||||
orr $acc0,$acc0,$acc1
|
||||
orr $acc2,$acc2,$acc3
|
||||
orr $t0,$t0,$t1
|
||||
orr $t2,$t2,$t3
|
||||
orr $acc0,$acc0,$acc2
|
||||
orr $t0,$t0,$t2
|
||||
orr $in2infty,$acc0,$t0
|
||||
cmp $in2infty,#0
|
||||
csetm $in2infty,ne // !in2infty
|
||||
|
||||
add $rp,sp,#$Z1sqr
|
||||
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Z1sqr, in1_z);
|
||||
|
||||
mov $a0,$acc0
|
||||
mov $a1,$acc1
|
||||
mov $a2,$acc2
|
||||
mov $a3,$acc3
|
||||
ldr $bi,[$bp_real]
|
||||
add $bp,$bp_real,#0
|
||||
add $rp,sp,#$U2
|
||||
bl __ecp_nistz256_mul_mont // p256_mul_mont(U2, Z1sqr, in2_x);
|
||||
|
||||
add $bp,$ap_real,#0
|
||||
ldr $bi,[$ap_real,#64] // forward load for p256_mul_mont
|
||||
ldp $a0,$a1,[sp,#$Z1sqr]
|
||||
ldp $a2,$a3,[sp,#$Z1sqr+16]
|
||||
add $rp,sp,#$H
|
||||
bl __ecp_nistz256_sub_from // p256_sub(H, U2, in1_x);
|
||||
|
||||
add $bp,$ap_real,#64
|
||||
add $rp,sp,#$S2
|
||||
bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, Z1sqr, in1_z);
|
||||
|
||||
ldr $bi,[$ap_real,#64]
|
||||
ldp $a0,$a1,[sp,#$H]
|
||||
ldp $a2,$a3,[sp,#$H+16]
|
||||
add $bp,$ap_real,#64
|
||||
add $rp,sp,#$res_z
|
||||
bl __ecp_nistz256_mul_mont // p256_mul_mont(res_z, H, in1_z);
|
||||
|
||||
ldr $bi,[$bp_real,#32]
|
||||
ldp $a0,$a1,[sp,#$S2]
|
||||
ldp $a2,$a3,[sp,#$S2+16]
|
||||
add $bp,$bp_real,#32
|
||||
add $rp,sp,#$S2
|
||||
bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, S2, in2_y);
|
||||
|
||||
add $bp,$ap_real,#32
|
||||
ldp $a0,$a1,[sp,#$H] // forward load for p256_sqr_mont
|
||||
ldp $a2,$a3,[sp,#$H+16]
|
||||
add $rp,sp,#$R
|
||||
bl __ecp_nistz256_sub_from // p256_sub(R, S2, in1_y);
|
||||
|
||||
add $rp,sp,#$Hsqr
|
||||
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Hsqr, H);
|
||||
|
||||
ldp $a0,$a1,[sp,#$R]
|
||||
ldp $a2,$a3,[sp,#$R+16]
|
||||
add $rp,sp,#$Rsqr
|
||||
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Rsqr, R);
|
||||
|
||||
ldr $bi,[sp,#$H]
|
||||
ldp $a0,$a1,[sp,#$Hsqr]
|
||||
ldp $a2,$a3,[sp,#$Hsqr+16]
|
||||
add $bp,sp,#$H
|
||||
add $rp,sp,#$Hcub
|
||||
bl __ecp_nistz256_mul_mont // p256_mul_mont(Hcub, Hsqr, H);
|
||||
|
||||
ldr $bi,[$ap_real]
|
||||
ldp $a0,$a1,[sp,#$Hsqr]
|
||||
ldp $a2,$a3,[sp,#$Hsqr+16]
|
||||
add $bp,$ap_real,#0
|
||||
add $rp,sp,#$U2
|
||||
bl __ecp_nistz256_mul_mont // p256_mul_mont(U2, in1_x, Hsqr);
|
||||
|
||||
mov $t0,$acc0
|
||||
mov $t1,$acc1
|
||||
mov $t2,$acc2
|
||||
mov $t3,$acc3
|
||||
add $rp,sp,#$Hsqr
|
||||
bl __ecp_nistz256_add // p256_mul_by_2(Hsqr, U2);
|
||||
|
||||
add $bp,sp,#$Rsqr
|
||||
add $rp,sp,#$res_x
|
||||
bl __ecp_nistz256_sub_morf // p256_sub(res_x, Rsqr, Hsqr);
|
||||
|
||||
add $bp,sp,#$Hcub
|
||||
bl __ecp_nistz256_sub_from // p256_sub(res_x, res_x, Hcub);
|
||||
|
||||
add $bp,sp,#$U2
|
||||
ldr $bi,[$ap_real,#32] // forward load for p256_mul_mont
|
||||
ldp $a0,$a1,[sp,#$Hcub]
|
||||
ldp $a2,$a3,[sp,#$Hcub+16]
|
||||
add $rp,sp,#$res_y
|
||||
bl __ecp_nistz256_sub_morf // p256_sub(res_y, U2, res_x);
|
||||
|
||||
add $bp,$ap_real,#32
|
||||
add $rp,sp,#$S2
|
||||
bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, in1_y, Hcub);
|
||||
|
||||
ldr $bi,[sp,#$R]
|
||||
ldp $a0,$a1,[sp,#$res_y]
|
||||
ldp $a2,$a3,[sp,#$res_y+16]
|
||||
add $bp,sp,#$R
|
||||
add $rp,sp,#$res_y
|
||||
bl __ecp_nistz256_mul_mont // p256_mul_mont(res_y, res_y, R);
|
||||
|
||||
add $bp,sp,#$S2
|
||||
bl __ecp_nistz256_sub_from // p256_sub(res_y, res_y, S2);
|
||||
|
||||
ldp $a0,$a1,[sp,#$res_x] // res
|
||||
ldp $a2,$a3,[sp,#$res_x+16]
|
||||
ldp $t0,$t1,[$bp_real] // in2
|
||||
ldp $t2,$t3,[$bp_real,#16]
|
||||
___
|
||||
for($i=0;$i<64;$i+=32) { # conditional moves
|
||||
$code.=<<___;
|
||||
ldp $acc0,$acc1,[$ap_real,#$i] // in1
|
||||
cmp $in1infty,#0 // !$in1intfy, remember?
|
||||
ldp $acc2,$acc3,[$ap_real,#$i+16]
|
||||
csel $t0,$a0,$t0,ne
|
||||
csel $t1,$a1,$t1,ne
|
||||
ldp $a0,$a1,[sp,#$res_x+$i+32] // res
|
||||
csel $t2,$a2,$t2,ne
|
||||
csel $t3,$a3,$t3,ne
|
||||
cmp $in2infty,#0 // !$in2intfy, remember?
|
||||
ldp $a2,$a3,[sp,#$res_x+$i+48]
|
||||
csel $acc0,$t0,$acc0,ne
|
||||
csel $acc1,$t1,$acc1,ne
|
||||
ldp $t0,$t1,[$bp_real,#$i+32] // in2
|
||||
csel $acc2,$t2,$acc2,ne
|
||||
csel $acc3,$t3,$acc3,ne
|
||||
ldp $t2,$t3,[$bp_real,#$i+48]
|
||||
stp $acc0,$acc1,[$rp_real,#$i]
|
||||
stp $acc2,$acc3,[$rp_real,#$i+16]
|
||||
___
|
||||
$code.=<<___ if ($i == 0);
|
||||
adr $bp_real,.Lone_mont-64
|
||||
___
|
||||
}
|
||||
$code.=<<___;
|
||||
ldp $acc0,$acc1,[$ap_real,#$i] // in1
|
||||
cmp $in1infty,#0 // !$in1intfy, remember?
|
||||
ldp $acc2,$acc3,[$ap_real,#$i+16]
|
||||
csel $t0,$a0,$t0,ne
|
||||
csel $t1,$a1,$t1,ne
|
||||
csel $t2,$a2,$t2,ne
|
||||
csel $t3,$a3,$t3,ne
|
||||
cmp $in2infty,#0 // !$in2intfy, remember?
|
||||
csel $acc0,$t0,$acc0,ne
|
||||
csel $acc1,$t1,$acc1,ne
|
||||
csel $acc2,$t2,$acc2,ne
|
||||
csel $acc3,$t3,$acc3,ne
|
||||
stp $acc0,$acc1,[$rp_real,#$i]
|
||||
stp $acc2,$acc3,[$rp_real,#$i+16]
|
||||
|
||||
add sp,x29,#0 // destroy frame
|
||||
ldp x19,x20,[x29,#16]
|
||||
ldp x21,x22,[x29,#32]
|
||||
ldp x23,x24,[x29,#48]
|
||||
ldp x25,x26,[x29,#64]
|
||||
ldp x29,x30,[sp],#80
|
||||
ret
|
||||
.size GFp_nistz256_point_add_affine,.-GFp_nistz256_point_add_affine
|
||||
___
|
||||
} }
|
||||
|
||||
foreach (split("\n",$code)) {
|
||||
s/\`([^\`]*)\`/eval $1/ge;
|
||||
|
||||
print $_,"\n";
|
||||
}
|
||||
close STDOUT or die "error closing STDOUT";
|
||||
1122
zeroidc/vendor/ring/crypto/fipsmodule/ec/asm/ecp_nistz256-x86.pl
vendored
Normal file
1122
zeroidc/vendor/ring/crypto/fipsmodule/ec/asm/ecp_nistz256-x86.pl
vendored
Normal file
File diff suppressed because it is too large
Load Diff
4202
zeroidc/vendor/ring/crypto/fipsmodule/ec/asm/p256-x86_64-asm.pl
vendored
Normal file
4202
zeroidc/vendor/ring/crypto/fipsmodule/ec/asm/p256-x86_64-asm.pl
vendored
Normal file
File diff suppressed because it is too large
Load Diff
52
zeroidc/vendor/ring/crypto/fipsmodule/ec/ecp_nistz.c
vendored
Normal file
52
zeroidc/vendor/ring/crypto/fipsmodule/ec/ecp_nistz.c
vendored
Normal file
@@ -0,0 +1,52 @@
|
||||
/* Copyright (c) 2014, Intel Corporation.
|
||||
*
|
||||
* Permission to use, copy, modify, and/or distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
||||
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
||||
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
||||
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
||||
|
||||
#include "ecp_nistz.h"
|
||||
|
||||
#if defined(__GNUC__)
|
||||
#pragma GCC diagnostic ignored "-Wconversion"
|
||||
#endif
|
||||
|
||||
/* Fills |str| with the bytewise little-endian encoding of |scalar|, where
|
||||
* |scalar| has |num_limbs| limbs. |str| is padded with zeros at the end up
|
||||
* to |str_len| bytes. Actually, |str_len| must be exactly one byte more than
|
||||
* needed to encode |num_limbs| losslessly, so that there is an extra byte at
|
||||
* the end. The extra byte is useful because the caller will be breaking |str|
|
||||
* up into windows of a number of bits (5 or 7) that isn't divisible by 8, and
|
||||
* so it is useful for it to be able to read an extra zero byte. */
|
||||
void gfp_little_endian_bytes_from_scalar(uint8_t str[], size_t str_len,
|
||||
const Limb scalar[],
|
||||
size_t num_limbs) {
|
||||
debug_assert_nonsecret(str_len == (num_limbs * sizeof(Limb)) + 1);
|
||||
|
||||
size_t i;
|
||||
for (i = 0; i < num_limbs * sizeof(Limb); i += sizeof(Limb)) {
|
||||
Limb d = scalar[i / sizeof(Limb)];
|
||||
|
||||
str[i + 0] = d & 0xff;
|
||||
str[i + 1] = (d >> 8) & 0xff;
|
||||
str[i + 2] = (d >> 16) & 0xff;
|
||||
str[i + 3] = (d >>= 24) & 0xff;
|
||||
if (sizeof(Limb) == 8) {
|
||||
d >>= 8;
|
||||
str[i + 4] = d & 0xff;
|
||||
str[i + 5] = (d >> 8) & 0xff;
|
||||
str[i + 6] = (d >> 16) & 0xff;
|
||||
str[i + 7] = (d >> 24) & 0xff;
|
||||
}
|
||||
}
|
||||
for (; i < str_len; i++) {
|
||||
str[i] = 0;
|
||||
}
|
||||
}
|
||||
274
zeroidc/vendor/ring/crypto/fipsmodule/ec/ecp_nistz.h
vendored
Normal file
274
zeroidc/vendor/ring/crypto/fipsmodule/ec/ecp_nistz.h
vendored
Normal file
@@ -0,0 +1,274 @@
|
||||
/* Copyright (c) 2015, Google Inc.
|
||||
*
|
||||
* Permission to use, copy, modify, and/or distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
||||
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
||||
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
||||
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
||||
|
||||
#ifndef OPENSSL_HEADER_EC_ECP_NISTZ_H
|
||||
#define OPENSSL_HEADER_EC_ECP_NISTZ_H
|
||||
|
||||
#include <GFp/base.h>
|
||||
|
||||
#include "../../limbs/limbs.h"
|
||||
|
||||
#if defined(__GNUC__)
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wconversion"
|
||||
#pragma GCC diagnostic ignored "-Wsign-conversion"
|
||||
#endif
|
||||
|
||||
// This function looks at `w + 1` scalar bits (`w` current, 1 adjacent less
|
||||
// significant bit), and recodes them into a signed digit for use in fast point
|
||||
// multiplication: the use of signed rather than unsigned digits means that
|
||||
// fewer points need to be precomputed, given that point inversion is easy (a
|
||||
// precomputed point dP makes -dP available as well).
|
||||
//
|
||||
// BACKGROUND:
|
||||
//
|
||||
// Signed digits for multiplication were introduced by Booth ("A signed binary
|
||||
// multiplication technique", Quart. Journ. Mech. and Applied Math., vol. IV,
|
||||
// pt. 2 (1951), pp. 236-240), in that case for multiplication of integers.
|
||||
// Booth's original encoding did not generally improve the density of nonzero
|
||||
// digits over the binary representation, and was merely meant to simplify the
|
||||
// handling of signed factors given in two's complement; but it has since been
|
||||
// shown to be the basis of various signed-digit representations that do have
|
||||
// further advantages, including the wNAF, using the following general
|
||||
// approach:
|
||||
//
|
||||
// (1) Given a binary representation
|
||||
//
|
||||
// b_k ... b_2 b_1 b_0,
|
||||
//
|
||||
// of a nonnegative integer (b_k in {0, 1}), rewrite it in digits 0, 1, -1
|
||||
// by using bit-wise subtraction as follows:
|
||||
//
|
||||
// b_k b_(k-1) ... b_2 b_1 b_0
|
||||
// - b_k ... b_3 b_2 b_1 b_0
|
||||
// -----------------------------------------
|
||||
// s_(k+1) s_k ... s_3 s_2 s_1 s_0
|
||||
//
|
||||
// A left-shift followed by subtraction of the original value yields a new
|
||||
// representation of the same value, using signed bits s_i = b_(i-1) - b_i.
|
||||
// This representation from Booth's paper has since appeared in the
|
||||
// literature under a variety of different names including "reversed binary
|
||||
// form", "alternating greedy expansion", "mutual opposite form", and
|
||||
// "sign-alternating {+-1}-representation".
|
||||
//
|
||||
// An interesting property is that among the nonzero bits, values 1 and -1
|
||||
// strictly alternate.
|
||||
//
|
||||
// (2) Various window schemes can be applied to the Booth representation of
|
||||
// integers: for example, right-to-left sliding windows yield the wNAF
|
||||
// (a signed-digit encoding independently discovered by various researchers
|
||||
// in the 1990s), and left-to-right sliding windows yield a left-to-right
|
||||
// equivalent of the wNAF (independently discovered by various researchers
|
||||
// around 2004).
|
||||
//
|
||||
// To prevent leaking information through side channels in point multiplication,
|
||||
// we need to recode the given integer into a regular pattern: sliding windows
|
||||
// as in wNAFs won't do, we need their fixed-window equivalent -- which is a few
|
||||
// decades older: we'll be using the so-called "modified Booth encoding" due to
|
||||
// MacSorley ("High-speed arithmetic in binary computers", Proc. IRE, vol. 49
|
||||
// (1961), pp. 67-91), in a radix-2**w setting. That is, we always combine `w`
|
||||
// signed bits into a signed digit, e.g. (for `w == 5`):
|
||||
//
|
||||
// s_(5j + 4) s_(5j + 3) s_(5j + 2) s_(5j + 1) s_(5j)
|
||||
//
|
||||
// The sign-alternating property implies that the resulting digit values are
|
||||
// integers from `-2**(w-1)` to `2**(w-1)`, e.g. -16 to 16 for `w == 5`.
|
||||
//
|
||||
// Of course, we don't actually need to compute the signed digits s_i as an
|
||||
// intermediate step (that's just a nice way to see how this scheme relates
|
||||
// to the wNAF): a direct computation obtains the recoded digit from the
|
||||
// six bits b_(5j + 4) ... b_(5j - 1).
|
||||
//
|
||||
// This function takes those `w` bits as an integer (e.g. 0 .. 63), writing the
|
||||
// recoded digit to *sign (0 for positive, 1 for negative) and *digit (absolute
|
||||
// value, in the range 0 .. 2**(w-1). Note that this integer essentially provides
|
||||
// the input bits "shifted to the left" by one position: for example, the input
|
||||
// to compute the least significant recoded digit, given that there's no bit
|
||||
// b_-1, has to be b_4 b_3 b_2 b_1 b_0 0.
|
||||
//
|
||||
// DOUBLING CASE:
|
||||
//
|
||||
// Point addition formulas for short Weierstrass curves are often incomplete.
|
||||
// Edge cases such as P + P or P + ∞ must be handled separately. This
|
||||
// complicates constant-time requirements. P + ∞ cannot be avoided (any window
|
||||
// may be zero) and is handled with constant-time selects. P + P (where P is not
|
||||
// ∞) usually is not. Instead, windowing strategies are chosen to avoid this
|
||||
// case. Whether this happens depends on the group order.
|
||||
//
|
||||
// Let w be the window width (in this function, w = 5). The non-trivial doubling
|
||||
// case in single-point scalar multiplication may occur if and only if the
|
||||
// 2^(w-1) bit of the group order is zero.
|
||||
//
|
||||
// Note the above only holds if the scalar is fully reduced and the group order
|
||||
// is a prime that is much larger than 2^w. It also only holds when windows
|
||||
// are applied from most significant to least significant, doubling between each
|
||||
// window. It does not apply to more complex table strategies such as
|
||||
// |EC_GFp_nistz256_method|.
|
||||
//
|
||||
// PROOF:
|
||||
//
|
||||
// Let n be the group order. Let l be the number of bits needed to represent n.
|
||||
// Assume there exists some 0 <= k < n such that signed w-bit windowed
|
||||
// multiplication hits the doubling case.
|
||||
//
|
||||
// Windowed multiplication consists of iterating over groups of s_i (defined
|
||||
// above based on k's binary representation) from most to least significant. At
|
||||
// iteration i (for i = ..., 3w, 2w, w, 0, starting from the most significant
|
||||
// window), we:
|
||||
//
|
||||
// 1. Double the accumulator A, w times. Let A_i be the value of A at this
|
||||
// point.
|
||||
//
|
||||
// 2. Set A to T_i + A_i, where T_i is a precomputed multiple of P
|
||||
// corresponding to the window s_(i+w-1) ... s_i.
|
||||
//
|
||||
// Let j be the index such that A_j = T_j ≠ ∞. Looking at A_i and T_i as
|
||||
// multiples of P, define a_i and t_i to be scalar coefficients of A_i and T_i.
|
||||
// Thus a_j = t_j ≠ 0 (mod n). Note a_i and t_i may not be reduced mod n. t_i is
|
||||
// the value of the w signed bits s_(i+w-1) ... s_i. a_i is computed as a_i =
|
||||
// 2^w * (a_(i+w) + t_(i+w)).
|
||||
//
|
||||
// t_i is bounded by -2^(w-1) <= t_i <= 2^(w-1). Additionally, we may write it
|
||||
// in terms of unsigned bits b_i. t_i consists of signed bits s_(i+w-1) ... s_i.
|
||||
// This is computed as:
|
||||
//
|
||||
// b_(i+w-2) b_(i+w-3) ... b_i b_(i-1)
|
||||
// - b_(i+w-1) b_(i+w-2) ... b_(i+1) b_i
|
||||
// --------------------------------------------
|
||||
// t_i = s_(i+w-1) s_(i+w-2) ... s_(i+1) s_i
|
||||
//
|
||||
// Observe that b_(i+w-2) through b_i occur in both terms. Let x be the integer
|
||||
// represented by that bit string, i.e. 2^(w-2)*b_(i+w-2) + ... + b_i.
|
||||
//
|
||||
// t_i = (2*x + b_(i-1)) - (2^(w-1)*b_(i+w-1) + x)
|
||||
// = x - 2^(w-1)*b_(i+w-1) + b_(i-1)
|
||||
//
|
||||
// Or, using C notation for bit operations:
|
||||
//
|
||||
// t_i = (k>>i) & ((1<<(w-1)) - 1) - (k>>i) & (1<<(w-1)) + (k>>(i-1)) & 1
|
||||
//
|
||||
// Note b_(i-1) is added in left-shifted by one (or doubled) from its place.
|
||||
// This is compensated by t_(i-w)'s subtraction term. Thus, a_i may be computed
|
||||
// by adding b_l b_(l-1) ... b_(i+1) b_i and an extra copy of b_(i-1). In C
|
||||
// notation, this is:
|
||||
//
|
||||
// a_i = (k>>(i+w)) << w + ((k>>(i+w-1)) & 1) << w
|
||||
//
|
||||
// Observe that, while t_i may be positive or negative, a_i is bounded by
|
||||
// 0 <= a_i < n + 2^w. Additionally, a_i can only be zero if b_(i+w-1) and up
|
||||
// are all zero. (Note this implies a non-trivial P + (-P) is unreachable for
|
||||
// all groups. That would imply the subsequent a_i is zero, which means all
|
||||
// terms thus far were zero.)
|
||||
//
|
||||
// Returning to our doubling position, we have a_j = t_j (mod n). We now
|
||||
// determine the value of a_j - t_j, which must be divisible by n. Our bounds on
|
||||
// a_j and t_j imply a_j - t_j is 0 or n. If it is 0, a_j = t_j. However, 2^w
|
||||
// divides a_j and -2^(w-1) <= t_j <= 2^(w-1), so this can only happen if
|
||||
// a_j = t_j = 0, which is a trivial doubling. Therefore, a_j - t_j = n.
|
||||
//
|
||||
// Now we determine j. Suppose j > 0. w divides j, so j >= w. Then,
|
||||
//
|
||||
// n = a_j - t_j = (k>>(j+w)) << w + ((k>>(j+w-1)) & 1) << w - t_j
|
||||
// <= k/2^j + 2^w - t_j
|
||||
// < n/2^w + 2^w + 2^(w-1)
|
||||
//
|
||||
// n is much larger than 2^w, so this is impossible. Thus, j = 0: only the final
|
||||
// addition may hit the doubling case.
|
||||
//
|
||||
// Finally, we consider bit patterns for n and k. Divide k into k_H + k_M + k_L
|
||||
// such that k_H is the contribution from b_(l-1) .. b_w, k_M is the
|
||||
// contribution from b_(w-1), and k_L is the contribution from b_(w-2) ... b_0.
|
||||
// That is:
|
||||
//
|
||||
// - 2^w divides k_H
|
||||
// - k_M is 0 or 2^(w-1)
|
||||
// - 0 <= k_L < 2^(w-1)
|
||||
//
|
||||
// Divide n into n_H + n_M + n_L similarly. We thus have:
|
||||
//
|
||||
// t_0 = (k>>0) & ((1<<(w-1)) - 1) - (k>>0) & (1<<(w-1)) + (k>>(0-1)) & 1
|
||||
// = k & ((1<<(w-1)) - 1) - k & (1<<(w-1))
|
||||
// = k_L - k_M
|
||||
//
|
||||
// a_0 = (k>>(0+w)) << w + ((k>>(0+w-1)) & 1) << w
|
||||
// = (k>>w) << w + ((k>>(w-1)) & 1) << w
|
||||
// = k_H + 2*k_M
|
||||
//
|
||||
// n = a_0 - t_0
|
||||
// n_H + n_M + n_L = (k_H + 2*k_M) - (k_L - k_M)
|
||||
// = k_H + 3*k_M - k_L
|
||||
//
|
||||
// k_H - k_L < k and k < n, so k_H - k_L ≠ n. Therefore k_M is not 0 and must be
|
||||
// 2^(w-1). Now we consider k_H and n_H. We know k_H <= n_H. Suppose k_H = n_H.
|
||||
// Then,
|
||||
//
|
||||
// n_M + n_L = 3*(2^(w-1)) - k_L
|
||||
// > 3*(2^(w-1)) - 2^(w-1)
|
||||
// = 2^w
|
||||
//
|
||||
// Contradiction (n_M + n_L is the bottom w bits of n). Thus k_H < n_H. Suppose
|
||||
// k_H < n_H - 2*2^w. Then,
|
||||
//
|
||||
// n_H + n_M + n_L = k_H + 3*(2^(w-1)) - k_L
|
||||
// < n_H - 2*2^w + 3*(2^(w-1)) - k_L
|
||||
// n_M + n_L < -2^(w-1) - k_L
|
||||
//
|
||||
// Contradiction. Thus, k_H = n_H - 2^w. (Note 2^w divides n_H and k_H.) Thus,
|
||||
//
|
||||
// n_H + n_M + n_L = k_H + 3*(2^(w-1)) - k_L
|
||||
// = n_H - 2^w + 3*(2^(w-1)) - k_L
|
||||
// n_M + n_L = 2^(w-1) - k_L
|
||||
// <= 2^(w-1)
|
||||
//
|
||||
// Equality would mean 2^(w-1) divides n, which is impossible if n is prime.
|
||||
// Thus n_M + n_L < 2^(w-1), so n_M is zero, proving our condition.
|
||||
//
|
||||
// This proof constructs k, so, to show the converse, let k_H = n_H - 2^w,
|
||||
// k_M = 2^(w-1), k_L = 2^(w-1) - n_L. This will result in a non-trivial point
|
||||
// doubling in the final addition and is the only such scalar.
|
||||
//
|
||||
// COMMON CURVES:
|
||||
//
|
||||
// The group orders for common curves end in the following bit patterns:
|
||||
//
|
||||
// P-521: ...00001001; w = 4 is okay
|
||||
// P-384: ...01110011; w = 2, 5, 6, 7 are okay
|
||||
// P-256: ...01010001; w = 5, 7 are okay
|
||||
// P-224: ...00111101; w = 3, 4, 5, 6 are okay
|
||||
static inline void booth_recode(crypto_word *is_negative, crypto_word *digit,
|
||||
crypto_word in, crypto_word w) {
|
||||
debug_assert_nonsecret(w >= 2);
|
||||
debug_assert_nonsecret(w <= 7);
|
||||
|
||||
// Set all bits of `s` to MSB(in), similar to |constant_time_msb_s|,
|
||||
// but 'in' seen as (`w+1`)-bit value.
|
||||
crypto_word s = ~((in >> w) - 1);
|
||||
crypto_word d;
|
||||
d = ((crypto_word)1u << (w + 1)) - in - 1;
|
||||
d = (d & s) | (in & ~s);
|
||||
d = (d >> 1) + (d & 1);
|
||||
|
||||
*is_negative = constant_time_is_nonzero_w(s & 1);
|
||||
*digit = d;
|
||||
}
|
||||
|
||||
#if defined(__GNUC__)
|
||||
#pragma GCC diagnostic pop
|
||||
#endif
|
||||
|
||||
void gfp_little_endian_bytes_from_scalar(uint8_t str[], size_t str_len,
|
||||
const Limb scalar[],
|
||||
size_t num_limbs);
|
||||
|
||||
#endif // OPENSSL_HEADER_EC_ECP_NISTZ_H
|
||||
349
zeroidc/vendor/ring/crypto/fipsmodule/ec/ecp_nistz256.c
vendored
Normal file
349
zeroidc/vendor/ring/crypto/fipsmodule/ec/ecp_nistz256.c
vendored
Normal file
@@ -0,0 +1,349 @@
|
||||
/* Copyright (c) 2014, Intel Corporation.
|
||||
*
|
||||
* Permission to use, copy, modify, and/or distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
||||
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
||||
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
||||
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
||||
|
||||
/* Developers and authors:
|
||||
* Shay Gueron (1, 2), and Vlad Krasnov (1)
|
||||
* (1) Intel Corporation, Israel Development Center
|
||||
* (2) University of Haifa
|
||||
* Reference:
|
||||
* Shay Gueron and Vlad Krasnov
|
||||
* "Fast Prime Field Elliptic Curve Cryptography with 256 Bit Primes"
|
||||
* http://eprint.iacr.org/2013/816 */
|
||||
|
||||
#include "ecp_nistz256.h"
|
||||
|
||||
#include "ecp_nistz.h"
|
||||
#include "../bn/internal.h"
|
||||
#include "../../limbs/limbs.inl"
|
||||
|
||||
#if defined(__GNUC__)
|
||||
#pragma GCC diagnostic ignored "-Wsign-conversion"
|
||||
#endif
|
||||
|
||||
/* Functions implemented in assembly */
|
||||
/* Modular neg: res = -a mod P */
|
||||
void GFp_nistz256_neg(Limb res[P256_LIMBS], const Limb a[P256_LIMBS]);
|
||||
|
||||
|
||||
/* One converted into the Montgomery domain */
|
||||
static const Limb ONE[P256_LIMBS] = {
|
||||
TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
|
||||
TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe),
|
||||
};
|
||||
|
||||
static void copy_conditional(Limb dst[P256_LIMBS],
|
||||
const Limb src[P256_LIMBS], Limb move) {
|
||||
Limb mask1 = move;
|
||||
Limb mask2 = ~mask1;
|
||||
|
||||
dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
|
||||
dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
|
||||
dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
|
||||
dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
|
||||
if (P256_LIMBS == 8) {
|
||||
dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
|
||||
dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
|
||||
dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
|
||||
dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
|
||||
}
|
||||
}
|
||||
|
||||
void GFp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
|
||||
|
||||
#if defined(GFp_USE_LARGE_TABLE)
|
||||
void GFp_nistz256_point_add_affine(P256_POINT *r, const P256_POINT *a,
|
||||
const P256_POINT_AFFINE *b);
|
||||
#endif
|
||||
|
||||
void GFp_nistz256_point_add(P256_POINT *r, const P256_POINT *a,
|
||||
const P256_POINT *b);
|
||||
|
||||
// |GFp_nistz256_point_add| is defined in assembly language in X86-64 only.
|
||||
#if !defined(OPENSSL_X86_64)
|
||||
|
||||
static const BN_ULONG Q[P256_LIMBS] = {
|
||||
TOBN(0xffffffff, 0xffffffff),
|
||||
TOBN(0x00000000, 0xffffffff),
|
||||
TOBN(0x00000000, 0x00000000),
|
||||
TOBN(0xffffffff, 0x00000001),
|
||||
};
|
||||
|
||||
static inline Limb is_equal(const Limb a[P256_LIMBS], const Limb b[P256_LIMBS]) {
|
||||
return LIMBS_equal(a, b, P256_LIMBS);
|
||||
}
|
||||
|
||||
static inline Limb is_zero(const BN_ULONG a[P256_LIMBS]) {
|
||||
return LIMBS_are_zero(a, P256_LIMBS);
|
||||
}
|
||||
|
||||
static inline void elem_mul_by_2(Limb r[P256_LIMBS], const Limb a[P256_LIMBS]) {
|
||||
LIMBS_shl_mod(r, a, Q, P256_LIMBS);
|
||||
}
|
||||
|
||||
static inline void elem_mul_mont(Limb r[P256_LIMBS], const Limb a[P256_LIMBS],
|
||||
const Limb b[P256_LIMBS]) {
|
||||
GFp_nistz256_mul_mont(r, a, b);
|
||||
}
|
||||
|
||||
static inline void elem_sqr_mont(Limb r[P256_LIMBS], const Limb a[P256_LIMBS]) {
|
||||
GFp_nistz256_sqr_mont(r, a);
|
||||
}
|
||||
|
||||
static inline void elem_sub(Limb r[P256_LIMBS], const Limb a[P256_LIMBS],
|
||||
const Limb b[P256_LIMBS]) {
|
||||
LIMBS_sub_mod(r, a, b, Q, P256_LIMBS);
|
||||
}
|
||||
|
||||
/* Point addition: r = a+b */
|
||||
void GFp_nistz256_point_add(P256_POINT *r, const P256_POINT *a, const P256_POINT *b) {
|
||||
BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
|
||||
BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
|
||||
BN_ULONG Z1sqr[P256_LIMBS];
|
||||
BN_ULONG Z2sqr[P256_LIMBS];
|
||||
BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
|
||||
BN_ULONG Hsqr[P256_LIMBS];
|
||||
BN_ULONG Rsqr[P256_LIMBS];
|
||||
BN_ULONG Hcub[P256_LIMBS];
|
||||
|
||||
BN_ULONG res_x[P256_LIMBS];
|
||||
BN_ULONG res_y[P256_LIMBS];
|
||||
BN_ULONG res_z[P256_LIMBS];
|
||||
|
||||
const BN_ULONG *in1_x = a->X;
|
||||
const BN_ULONG *in1_y = a->Y;
|
||||
const BN_ULONG *in1_z = a->Z;
|
||||
|
||||
const BN_ULONG *in2_x = b->X;
|
||||
const BN_ULONG *in2_y = b->Y;
|
||||
const BN_ULONG *in2_z = b->Z;
|
||||
|
||||
BN_ULONG in1infty = is_zero(a->Z);
|
||||
BN_ULONG in2infty = is_zero(b->Z);
|
||||
|
||||
elem_sqr_mont(Z2sqr, in2_z); /* Z2^2 */
|
||||
elem_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
|
||||
|
||||
elem_mul_mont(S1, Z2sqr, in2_z); /* S1 = Z2^3 */
|
||||
elem_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
|
||||
|
||||
elem_mul_mont(S1, S1, in1_y); /* S1 = Y1*Z2^3 */
|
||||
elem_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
|
||||
elem_sub(R, S2, S1); /* R = S2 - S1 */
|
||||
|
||||
elem_mul_mont(U1, in1_x, Z2sqr); /* U1 = X1*Z2^2 */
|
||||
elem_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
|
||||
elem_sub(H, U2, U1); /* H = U2 - U1 */
|
||||
|
||||
BN_ULONG is_exceptional = is_equal(U1, U2) & ~in1infty & ~in2infty;
|
||||
if (is_exceptional) {
|
||||
if (is_equal(S1, S2)) {
|
||||
GFp_nistz256_point_double(r, a);
|
||||
} else {
|
||||
limbs_zero(r->X, P256_LIMBS);
|
||||
limbs_zero(r->Y, P256_LIMBS);
|
||||
limbs_zero(r->Z, P256_LIMBS);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
elem_sqr_mont(Rsqr, R); /* R^2 */
|
||||
elem_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
|
||||
elem_sqr_mont(Hsqr, H); /* H^2 */
|
||||
elem_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
|
||||
elem_mul_mont(Hcub, Hsqr, H); /* H^3 */
|
||||
|
||||
elem_mul_mont(U2, U1, Hsqr); /* U1*H^2 */
|
||||
elem_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
|
||||
|
||||
elem_sub(res_x, Rsqr, Hsqr);
|
||||
elem_sub(res_x, res_x, Hcub);
|
||||
|
||||
elem_sub(res_y, U2, res_x);
|
||||
|
||||
elem_mul_mont(S2, S1, Hcub);
|
||||
elem_mul_mont(res_y, R, res_y);
|
||||
elem_sub(res_y, res_y, S2);
|
||||
|
||||
copy_conditional(res_x, in2_x, in1infty);
|
||||
copy_conditional(res_y, in2_y, in1infty);
|
||||
copy_conditional(res_z, in2_z, in1infty);
|
||||
|
||||
copy_conditional(res_x, in1_x, in2infty);
|
||||
copy_conditional(res_y, in1_y, in2infty);
|
||||
copy_conditional(res_z, in1_z, in2infty);
|
||||
|
||||
limbs_copy(r->X, res_x, P256_LIMBS);
|
||||
limbs_copy(r->Y, res_y, P256_LIMBS);
|
||||
limbs_copy(r->Z, res_z, P256_LIMBS);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* r = p * p_scalar */
|
||||
void GFp_nistz256_point_mul(P256_POINT *r, const Limb p_scalar[P256_LIMBS],
|
||||
const Limb p_x[P256_LIMBS],
|
||||
const Limb p_y[P256_LIMBS]) {
|
||||
static const size_t kWindowSize = 5;
|
||||
static const crypto_word kMask = (1 << (5 /* kWindowSize */ + 1)) - 1;
|
||||
|
||||
uint8_t p_str[(P256_LIMBS * sizeof(Limb)) + 1];
|
||||
gfp_little_endian_bytes_from_scalar(p_str, sizeof(p_str) / sizeof(p_str[0]),
|
||||
p_scalar, P256_LIMBS);
|
||||
|
||||
/* A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should
|
||||
* add no more than 63 bytes of overhead. Thus, |table| should require
|
||||
* ~1599 ((96 * 16) + 63) bytes of stack space. */
|
||||
alignas(64) P256_POINT table[16];
|
||||
|
||||
/* table[0] is implicitly (0,0,0) (the point at infinity), therefore it is
|
||||
* not stored. All other values are actually stored with an offset of -1 in
|
||||
* table. */
|
||||
P256_POINT *row = table;
|
||||
|
||||
limbs_copy(row[1 - 1].X, p_x, P256_LIMBS);
|
||||
limbs_copy(row[1 - 1].Y, p_y, P256_LIMBS);
|
||||
limbs_copy(row[1 - 1].Z, ONE, P256_LIMBS);
|
||||
|
||||
GFp_nistz256_point_double(&row[2 - 1], &row[1 - 1]);
|
||||
GFp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]);
|
||||
GFp_nistz256_point_double(&row[4 - 1], &row[2 - 1]);
|
||||
GFp_nistz256_point_double(&row[6 - 1], &row[3 - 1]);
|
||||
GFp_nistz256_point_double(&row[8 - 1], &row[4 - 1]);
|
||||
GFp_nistz256_point_double(&row[12 - 1], &row[6 - 1]);
|
||||
GFp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]);
|
||||
GFp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]);
|
||||
GFp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]);
|
||||
GFp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
|
||||
GFp_nistz256_point_double(&row[14 - 1], &row[7 - 1]);
|
||||
GFp_nistz256_point_double(&row[10 - 1], &row[5 - 1]);
|
||||
GFp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
|
||||
GFp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
|
||||
GFp_nistz256_point_double(&row[16 - 1], &row[8 - 1]);
|
||||
|
||||
Limb tmp[P256_LIMBS];
|
||||
alignas(32) P256_POINT h;
|
||||
static const size_t START_INDEX = 256 - 1;
|
||||
size_t index = START_INDEX;
|
||||
|
||||
crypto_word raw_wvalue;
|
||||
crypto_word recoded_is_negative;
|
||||
crypto_word recoded;
|
||||
|
||||
raw_wvalue = p_str[(index - 1) / 8];
|
||||
raw_wvalue = (raw_wvalue >> ((index - 1) % 8)) & kMask;
|
||||
booth_recode(&recoded_is_negative, &recoded, raw_wvalue, kWindowSize);
|
||||
dev_assert_secret(!recoded_is_negative);
|
||||
GFp_nistz256_select_w5(r, table, recoded);
|
||||
|
||||
while (index >= kWindowSize) {
|
||||
if (index != START_INDEX) {
|
||||
size_t off = (index - 1) / 8;
|
||||
|
||||
raw_wvalue = p_str[off] | p_str[off + 1] << 8;
|
||||
raw_wvalue = (raw_wvalue >> ((index - 1) % 8)) & kMask;
|
||||
booth_recode(&recoded_is_negative, &recoded, raw_wvalue, kWindowSize);
|
||||
|
||||
GFp_nistz256_select_w5(&h, table, recoded);
|
||||
GFp_nistz256_neg(tmp, h.Y);
|
||||
copy_conditional(h.Y, tmp, recoded_is_negative);
|
||||
|
||||
GFp_nistz256_point_add(r, r, &h);
|
||||
}
|
||||
|
||||
index -= kWindowSize;
|
||||
|
||||
GFp_nistz256_point_double(r, r);
|
||||
GFp_nistz256_point_double(r, r);
|
||||
GFp_nistz256_point_double(r, r);
|
||||
GFp_nistz256_point_double(r, r);
|
||||
GFp_nistz256_point_double(r, r);
|
||||
}
|
||||
|
||||
/* Final window */
|
||||
raw_wvalue = p_str[0];
|
||||
raw_wvalue = (raw_wvalue << 1) & kMask;
|
||||
|
||||
booth_recode(&recoded_is_negative, &recoded, raw_wvalue, kWindowSize);
|
||||
GFp_nistz256_select_w5(&h, table, recoded);
|
||||
GFp_nistz256_neg(tmp, h.Y);
|
||||
copy_conditional(h.Y, tmp, recoded_is_negative);
|
||||
GFp_nistz256_point_add(r, r, &h);
|
||||
}
|
||||
|
||||
#if defined(GFp_USE_LARGE_TABLE)
|
||||
|
||||
/* Precomputed tables for the default generator */
|
||||
#include "ecp_nistz256_table.inl"
|
||||
|
||||
static const size_t kWindowSize = 7;
|
||||
|
||||
static inline void select_precomputed(P256_POINT_AFFINE *p, size_t i,
|
||||
crypto_word raw_wvalue) {
|
||||
crypto_word recoded_is_negative;
|
||||
crypto_word recoded;
|
||||
booth_recode(&recoded_is_negative, &recoded, raw_wvalue, kWindowSize);
|
||||
GFp_nistz256_select_w7(p, GFp_nistz256_precomputed[i], recoded);
|
||||
Limb neg_y[P256_LIMBS];
|
||||
GFp_nistz256_neg(neg_y, p->Y);
|
||||
copy_conditional(p->Y, neg_y, recoded_is_negative);
|
||||
}
|
||||
|
||||
/* This assumes that |x| and |y| have been each been reduced to their minimal
|
||||
* unique representations. */
|
||||
static Limb is_infinity(const Limb x[P256_LIMBS],
|
||||
const Limb y[P256_LIMBS]) {
|
||||
Limb acc = 0;
|
||||
for (size_t i = 0; i < P256_LIMBS; ++i) {
|
||||
acc |= x[i] | y[i];
|
||||
}
|
||||
return constant_time_is_zero_w(acc);
|
||||
}
|
||||
|
||||
void GFp_nistz256_point_mul_base(P256_POINT *r,
|
||||
const Limb g_scalar[P256_LIMBS]) {
|
||||
static const crypto_word kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
|
||||
|
||||
uint8_t p_str[(P256_LIMBS * sizeof(Limb)) + 1];
|
||||
gfp_little_endian_bytes_from_scalar(p_str, sizeof(p_str) / sizeof(p_str[0]),
|
||||
g_scalar, P256_LIMBS);
|
||||
|
||||
/* First window */
|
||||
size_t index = kWindowSize;
|
||||
|
||||
alignas(32) P256_POINT_AFFINE t;
|
||||
|
||||
crypto_word raw_wvalue = (p_str[0] << 1) & kMask;
|
||||
select_precomputed(&t, 0, raw_wvalue);
|
||||
|
||||
alignas(32) P256_POINT p;
|
||||
limbs_copy(p.X, t.X, P256_LIMBS);
|
||||
limbs_copy(p.Y, t.Y, P256_LIMBS);
|
||||
limbs_copy(p.Z, ONE, P256_LIMBS);
|
||||
/* If it is at the point at infinity then p.p.X will be zero. */
|
||||
copy_conditional(p.Z, p.X, is_infinity(p.X, p.Y));
|
||||
|
||||
for (size_t i = 1; i < 37; i++) {
|
||||
size_t off = (index - 1) / 8;
|
||||
raw_wvalue = p_str[off] | p_str[off + 1] << 8;
|
||||
raw_wvalue = (raw_wvalue >> ((index - 1) % 8)) & kMask;
|
||||
index += kWindowSize;
|
||||
select_precomputed(&t, i, raw_wvalue);
|
||||
GFp_nistz256_point_add_affine(&p, &p, &t);
|
||||
}
|
||||
|
||||
limbs_copy(r->X, p.X, P256_LIMBS);
|
||||
limbs_copy(r->Y, p.Y, P256_LIMBS);
|
||||
limbs_copy(r->Z, p.Z, P256_LIMBS);
|
||||
}
|
||||
|
||||
#endif
|
||||
54
zeroidc/vendor/ring/crypto/fipsmodule/ec/ecp_nistz256.h
vendored
Normal file
54
zeroidc/vendor/ring/crypto/fipsmodule/ec/ecp_nistz256.h
vendored
Normal file
@@ -0,0 +1,54 @@
|
||||
/* Copyright (c) 2014, Intel Corporation.
|
||||
*
|
||||
* Permission to use, copy, modify, and/or distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
||||
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
||||
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
||||
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
||||
|
||||
#ifndef OPENSSL_HEADER_EC_ECP_NISTZ256_H
|
||||
#define OPENSSL_HEADER_EC_ECP_NISTZ256_H
|
||||
|
||||
#include "../../limbs/limbs.h"
|
||||
|
||||
// Keep this in sync with p256.rs.
|
||||
#if defined(OPENSSL_AARCH64) || defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
|
||||
#define GFp_USE_LARGE_TABLE
|
||||
#endif
|
||||
|
||||
#define P256_LIMBS (256u / LIMB_BITS)
|
||||
|
||||
typedef struct {
|
||||
Limb X[P256_LIMBS];
|
||||
Limb Y[P256_LIMBS];
|
||||
Limb Z[P256_LIMBS];
|
||||
} P256_POINT;
|
||||
|
||||
#if defined(GFp_USE_LARGE_TABLE)
|
||||
typedef struct {
|
||||
Limb X[P256_LIMBS];
|
||||
Limb Y[P256_LIMBS];
|
||||
} P256_POINT_AFFINE;
|
||||
#endif
|
||||
|
||||
typedef Limb PRECOMP256_ROW[64 * 2 * P256_LIMBS]; // 64 (x, y) entries.
|
||||
|
||||
void GFp_nistz256_mul_mont(Limb res[P256_LIMBS], const Limb a[P256_LIMBS],
|
||||
const Limb b[P256_LIMBS]);
|
||||
void GFp_nistz256_sqr_mont(Limb res[P256_LIMBS], const Limb a[P256_LIMBS]);
|
||||
|
||||
/* Functions that perform constant time access to the precomputed tables */
|
||||
void GFp_nistz256_select_w5(P256_POINT *out, const P256_POINT table[16],
|
||||
crypto_word index);
|
||||
|
||||
#if defined(GFp_USE_LARGE_TABLE)
|
||||
void GFp_nistz256_select_w7(P256_POINT_AFFINE *out, const PRECOMP256_ROW table, crypto_word index);
|
||||
#endif
|
||||
|
||||
#endif /* OPENSSL_HEADER_EC_ECP_NISTZ256_H */
|
||||
9501
zeroidc/vendor/ring/crypto/fipsmodule/ec/ecp_nistz256_table.inl
vendored
Normal file
9501
zeroidc/vendor/ring/crypto/fipsmodule/ec/ecp_nistz256_table.inl
vendored
Normal file
File diff suppressed because it is too large
Load Diff
34
zeroidc/vendor/ring/crypto/fipsmodule/ec/ecp_nistz384.h
vendored
Normal file
34
zeroidc/vendor/ring/crypto/fipsmodule/ec/ecp_nistz384.h
vendored
Normal file
@@ -0,0 +1,34 @@
|
||||
/* Copyright (c) 2014, Intel Corporation.
|
||||
*
|
||||
* Permission to use, copy, modify, and/or distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
||||
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
||||
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
||||
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
||||
|
||||
#ifndef OPENSSL_HEADER_EC_ECP_NISTZ384_H
|
||||
#define OPENSSL_HEADER_EC_ECP_NISTZ384_H
|
||||
|
||||
#include "../../limbs/limbs.h"
|
||||
|
||||
#define P384_LIMBS (384u / LIMB_BITS)
|
||||
|
||||
typedef struct {
|
||||
Limb X[P384_LIMBS];
|
||||
Limb Y[P384_LIMBS];
|
||||
Limb Z[P384_LIMBS];
|
||||
} P384_POINT;
|
||||
|
||||
typedef struct {
|
||||
Limb X[P384_LIMBS];
|
||||
Limb Y[P384_LIMBS];
|
||||
} P384_POINT_AFFINE;
|
||||
|
||||
|
||||
#endif // OPENSSL_HEADER_EC_ECP_NISTZ384_H
|
||||
257
zeroidc/vendor/ring/crypto/fipsmodule/ec/ecp_nistz384.inl
vendored
Normal file
257
zeroidc/vendor/ring/crypto/fipsmodule/ec/ecp_nistz384.inl
vendored
Normal file
@@ -0,0 +1,257 @@
|
||||
/* Copyright (c) 2014, Intel Corporation.
|
||||
*
|
||||
* Permission to use, copy, modify, and/or distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
||||
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
||||
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
||||
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
||||
|
||||
/* Developers and authors:
|
||||
* Shay Gueron (1, 2), and Vlad Krasnov (1)
|
||||
* (1) Intel Corporation, Israel Development Center
|
||||
* (2) University of Haifa
|
||||
* Reference:
|
||||
* Shay Gueron and Vlad Krasnov
|
||||
* "Fast Prime Field Elliptic Curve Cryptography with 256 Bit Primes"
|
||||
* http://eprint.iacr.org/2013/816 */
|
||||
|
||||
#include "ecp_nistz.h"
|
||||
|
||||
#if defined(__GNUC__)
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wsign-conversion"
|
||||
#endif
|
||||
|
||||
/* Point double: r = 2*a */
|
||||
void GFp_nistz384_point_double(P384_POINT *r, const P384_POINT *a) {
|
||||
BN_ULONG S[P384_LIMBS];
|
||||
BN_ULONG M[P384_LIMBS];
|
||||
BN_ULONG Zsqr[P384_LIMBS];
|
||||
BN_ULONG tmp0[P384_LIMBS];
|
||||
|
||||
const BN_ULONG *in_x = a->X;
|
||||
const BN_ULONG *in_y = a->Y;
|
||||
const BN_ULONG *in_z = a->Z;
|
||||
|
||||
BN_ULONG *res_x = r->X;
|
||||
BN_ULONG *res_y = r->Y;
|
||||
BN_ULONG *res_z = r->Z;
|
||||
|
||||
elem_mul_by_2(S, in_y);
|
||||
|
||||
elem_sqr_mont(Zsqr, in_z);
|
||||
|
||||
elem_sqr_mont(S, S);
|
||||
|
||||
elem_mul_mont(res_z, in_z, in_y);
|
||||
elem_mul_by_2(res_z, res_z);
|
||||
|
||||
elem_add(M, in_x, Zsqr);
|
||||
elem_sub(Zsqr, in_x, Zsqr);
|
||||
|
||||
elem_sqr_mont(res_y, S);
|
||||
elem_div_by_2(res_y, res_y);
|
||||
|
||||
elem_mul_mont(M, M, Zsqr);
|
||||
elem_mul_by_3(M, M);
|
||||
|
||||
elem_mul_mont(S, S, in_x);
|
||||
elem_mul_by_2(tmp0, S);
|
||||
|
||||
elem_sqr_mont(res_x, M);
|
||||
|
||||
elem_sub(res_x, res_x, tmp0);
|
||||
elem_sub(S, S, res_x);
|
||||
|
||||
elem_mul_mont(S, S, M);
|
||||
elem_sub(res_y, S, res_y);
|
||||
}
|
||||
|
||||
/* Point addition: r = a+b */
|
||||
void GFp_nistz384_point_add(P384_POINT *r, const P384_POINT *a,
|
||||
const P384_POINT *b) {
|
||||
BN_ULONG U2[P384_LIMBS], S2[P384_LIMBS];
|
||||
BN_ULONG U1[P384_LIMBS], S1[P384_LIMBS];
|
||||
BN_ULONG Z1sqr[P384_LIMBS];
|
||||
BN_ULONG Z2sqr[P384_LIMBS];
|
||||
BN_ULONG H[P384_LIMBS], R[P384_LIMBS];
|
||||
BN_ULONG Hsqr[P384_LIMBS];
|
||||
BN_ULONG Rsqr[P384_LIMBS];
|
||||
BN_ULONG Hcub[P384_LIMBS];
|
||||
|
||||
BN_ULONG res_x[P384_LIMBS];
|
||||
BN_ULONG res_y[P384_LIMBS];
|
||||
BN_ULONG res_z[P384_LIMBS];
|
||||
|
||||
const BN_ULONG *in1_x = a->X;
|
||||
const BN_ULONG *in1_y = a->Y;
|
||||
const BN_ULONG *in1_z = a->Z;
|
||||
|
||||
const BN_ULONG *in2_x = b->X;
|
||||
const BN_ULONG *in2_y = b->Y;
|
||||
const BN_ULONG *in2_z = b->Z;
|
||||
|
||||
BN_ULONG in1infty = is_zero(a->Z);
|
||||
BN_ULONG in2infty = is_zero(b->Z);
|
||||
|
||||
elem_sqr_mont(Z2sqr, in2_z); /* Z2^2 */
|
||||
elem_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
|
||||
|
||||
elem_mul_mont(S1, Z2sqr, in2_z); /* S1 = Z2^3 */
|
||||
elem_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
|
||||
|
||||
elem_mul_mont(S1, S1, in1_y); /* S1 = Y1*Z2^3 */
|
||||
elem_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
|
||||
elem_sub(R, S2, S1); /* R = S2 - S1 */
|
||||
|
||||
elem_mul_mont(U1, in1_x, Z2sqr); /* U1 = X1*Z2^2 */
|
||||
elem_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
|
||||
elem_sub(H, U2, U1); /* H = U2 - U1 */
|
||||
|
||||
BN_ULONG is_exceptional = is_equal(U1, U2) & ~in1infty & ~in2infty;
|
||||
if (is_exceptional) {
|
||||
if (is_equal(S1, S2)) {
|
||||
GFp_nistz384_point_double(r, a);
|
||||
} else {
|
||||
limbs_zero(r->X, P384_LIMBS);
|
||||
limbs_zero(r->Y, P384_LIMBS);
|
||||
limbs_zero(r->Z, P384_LIMBS);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
elem_sqr_mont(Rsqr, R); /* R^2 */
|
||||
elem_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
|
||||
elem_sqr_mont(Hsqr, H); /* H^2 */
|
||||
elem_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
|
||||
elem_mul_mont(Hcub, Hsqr, H); /* H^3 */
|
||||
|
||||
elem_mul_mont(U2, U1, Hsqr); /* U1*H^2 */
|
||||
elem_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
|
||||
|
||||
elem_sub(res_x, Rsqr, Hsqr);
|
||||
elem_sub(res_x, res_x, Hcub);
|
||||
|
||||
elem_sub(res_y, U2, res_x);
|
||||
|
||||
elem_mul_mont(S2, S1, Hcub);
|
||||
elem_mul_mont(res_y, R, res_y);
|
||||
elem_sub(res_y, res_y, S2);
|
||||
|
||||
copy_conditional(res_x, in2_x, in1infty);
|
||||
copy_conditional(res_y, in2_y, in1infty);
|
||||
copy_conditional(res_z, in2_z, in1infty);
|
||||
|
||||
copy_conditional(res_x, in1_x, in2infty);
|
||||
copy_conditional(res_y, in1_y, in2infty);
|
||||
copy_conditional(res_z, in1_z, in2infty);
|
||||
|
||||
limbs_copy(r->X, res_x, P384_LIMBS);
|
||||
limbs_copy(r->Y, res_y, P384_LIMBS);
|
||||
limbs_copy(r->Z, res_z, P384_LIMBS);
|
||||
}
|
||||
|
||||
static void add_precomputed_w5(P384_POINT *r, crypto_word wvalue,
|
||||
const P384_POINT table[16]) {
|
||||
crypto_word recoded_is_negative;
|
||||
crypto_word recoded;
|
||||
booth_recode(&recoded_is_negative, &recoded, wvalue, 5);
|
||||
|
||||
alignas(64) P384_POINT h;
|
||||
gfp_p384_point_select_w5(&h, table, recoded);
|
||||
|
||||
alignas(64) BN_ULONG tmp[P384_LIMBS];
|
||||
GFp_p384_elem_neg(tmp, h.Y);
|
||||
copy_conditional(h.Y, tmp, recoded_is_negative);
|
||||
|
||||
GFp_nistz384_point_add(r, r, &h);
|
||||
}
|
||||
|
||||
/* r = p * p_scalar */
|
||||
void GFp_nistz384_point_mul(P384_POINT *r, const BN_ULONG p_scalar[P384_LIMBS],
|
||||
const BN_ULONG p_x[P384_LIMBS],
|
||||
const BN_ULONG p_y[P384_LIMBS]) {
|
||||
static const size_t kWindowSize = 5;
|
||||
static const crypto_word kMask = (1 << (5 /* kWindowSize */ + 1)) - 1;
|
||||
|
||||
uint8_t p_str[(P384_LIMBS * sizeof(Limb)) + 1];
|
||||
gfp_little_endian_bytes_from_scalar(p_str, sizeof(p_str) / sizeof(p_str[0]),
|
||||
p_scalar, P384_LIMBS);
|
||||
|
||||
/* A |P384_POINT| is (3 * 48) = 144 bytes, and the 64-byte alignment should
|
||||
* add no more than 63 bytes of overhead. Thus, |table| should require
|
||||
* ~2367 ((144 * 16) + 63) bytes of stack space. */
|
||||
alignas(64) P384_POINT table[16];
|
||||
|
||||
/* table[0] is implicitly (0,0,0) (the point at infinity), therefore it is
|
||||
* not stored. All other values are actually stored with an offset of -1 in
|
||||
* table. */
|
||||
P384_POINT *row = table;
|
||||
|
||||
limbs_copy(row[1 - 1].X, p_x, P384_LIMBS);
|
||||
limbs_copy(row[1 - 1].Y, p_y, P384_LIMBS);
|
||||
limbs_copy(row[1 - 1].Z, ONE, P384_LIMBS);
|
||||
|
||||
GFp_nistz384_point_double(&row[2 - 1], &row[1 - 1]);
|
||||
GFp_nistz384_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]);
|
||||
GFp_nistz384_point_double(&row[4 - 1], &row[2 - 1]);
|
||||
GFp_nistz384_point_double(&row[6 - 1], &row[3 - 1]);
|
||||
GFp_nistz384_point_double(&row[8 - 1], &row[4 - 1]);
|
||||
GFp_nistz384_point_double(&row[12 - 1], &row[6 - 1]);
|
||||
GFp_nistz384_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]);
|
||||
GFp_nistz384_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]);
|
||||
GFp_nistz384_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]);
|
||||
GFp_nistz384_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
|
||||
GFp_nistz384_point_double(&row[14 - 1], &row[7 - 1]);
|
||||
GFp_nistz384_point_double(&row[10 - 1], &row[5 - 1]);
|
||||
GFp_nistz384_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
|
||||
GFp_nistz384_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
|
||||
GFp_nistz384_point_double(&row[16 - 1], &row[8 - 1]);
|
||||
|
||||
static const size_t START_INDEX = 384 - 4;
|
||||
size_t index = START_INDEX;
|
||||
|
||||
BN_ULONG recoded_is_negative;
|
||||
crypto_word recoded;
|
||||
|
||||
crypto_word wvalue = p_str[(index - 1) / 8];
|
||||
wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
|
||||
|
||||
booth_recode(&recoded_is_negative, &recoded, wvalue, 5);
|
||||
dev_assert_secret(!recoded_is_negative);
|
||||
|
||||
gfp_p384_point_select_w5(r, table, recoded);
|
||||
|
||||
while (index >= kWindowSize) {
|
||||
if (index != START_INDEX) {
|
||||
size_t off = (index - 1) / 8;
|
||||
|
||||
wvalue = p_str[off] | p_str[off + 1] << 8;
|
||||
wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
|
||||
add_precomputed_w5(r, wvalue, table);
|
||||
}
|
||||
|
||||
index -= kWindowSize;
|
||||
|
||||
GFp_nistz384_point_double(r, r);
|
||||
GFp_nistz384_point_double(r, r);
|
||||
GFp_nistz384_point_double(r, r);
|
||||
GFp_nistz384_point_double(r, r);
|
||||
GFp_nistz384_point_double(r, r);
|
||||
}
|
||||
|
||||
/* Final window */
|
||||
wvalue = p_str[0];
|
||||
wvalue = (wvalue << 1) & kMask;
|
||||
add_precomputed_w5(r, wvalue, table);
|
||||
}
|
||||
|
||||
#if defined(__GNUC__)
|
||||
#pragma GCC diagnostic pop
|
||||
#endif
|
||||
108
zeroidc/vendor/ring/crypto/fipsmodule/ec/gfp_p256.c
vendored
Normal file
108
zeroidc/vendor/ring/crypto/fipsmodule/ec/gfp_p256.c
vendored
Normal file
@@ -0,0 +1,108 @@
|
||||
/* Copyright 2016 Brian Smith.
|
||||
*
|
||||
* Permission to use, copy, modify, and/or distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
|
||||
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
||||
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
||||
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
||||
|
||||
#include "ecp_nistz256.h"
|
||||
#include "../../limbs/limbs.h"
|
||||
|
||||
#include "../../internal.h"
|
||||
#include "../bn/internal.h"
|
||||
#include "../../limbs/limbs.inl"
|
||||
|
||||
typedef Limb Elem[P256_LIMBS];
|
||||
typedef Limb ScalarMont[P256_LIMBS];
|
||||
typedef Limb Scalar[P256_LIMBS];
|
||||
|
||||
void GFp_p256_scalar_sqr_rep_mont(ScalarMont r, const ScalarMont a, Limb rep);
|
||||
|
||||
#if defined(OPENSSL_ARM) || defined(OPENSSL_X86)
|
||||
void GFp_nistz256_sqr_mont(Elem r, const Elem a) {
|
||||
/* XXX: Inefficient. TODO: optimize with dedicated squaring routine. */
|
||||
GFp_nistz256_mul_mont(r, a, a);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(OPENSSL_X86_64)
|
||||
void GFp_p256_scalar_mul_mont(ScalarMont r, const ScalarMont a,
|
||||
const ScalarMont b) {
|
||||
static const BN_ULONG N[] = {
|
||||
TOBN(0xf3b9cac2, 0xfc632551),
|
||||
TOBN(0xbce6faad, 0xa7179e84),
|
||||
TOBN(0xffffffff, 0xffffffff),
|
||||
TOBN(0xffffffff, 0x00000000),
|
||||
};
|
||||
static const BN_ULONG N_N0[] = {
|
||||
BN_MONT_CTX_N0(0xccd1c8aa, 0xee00bc4f)
|
||||
};
|
||||
/* XXX: Inefficient. TODO: optimize with dedicated multiplication routine. */
|
||||
GFp_bn_mul_mont(r, a, b, N, N_N0, P256_LIMBS);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(OPENSSL_X86_64)
|
||||
void GFp_p256_scalar_sqr_mont(ScalarMont r, const ScalarMont a) {
|
||||
GFp_p256_scalar_sqr_rep_mont(r, a, 1);
|
||||
}
|
||||
#else
|
||||
void GFp_p256_scalar_sqr_mont(ScalarMont r, const ScalarMont a) {
|
||||
GFp_p256_scalar_mul_mont(r, a, a);
|
||||
}
|
||||
|
||||
void GFp_p256_scalar_sqr_rep_mont(ScalarMont r, const ScalarMont a, Limb rep) {
|
||||
dev_assert_secret(rep >= 1);
|
||||
GFp_p256_scalar_sqr_mont(r, a);
|
||||
for (Limb i = 1; i < rep; ++i) {
|
||||
GFp_p256_scalar_sqr_mont(r, r);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#if !defined(OPENSSL_X86_64)
|
||||
|
||||
/* TODO(perf): Optimize these. */
|
||||
|
||||
void GFp_nistz256_select_w5(P256_POINT *out, const P256_POINT table[16],
|
||||
crypto_word index) {
|
||||
dev_assert_secret(index >= 0);
|
||||
|
||||
alignas(32) Elem x; limbs_zero(x, P256_LIMBS);
|
||||
alignas(32) Elem y; limbs_zero(y, P256_LIMBS);
|
||||
alignas(32) Elem z; limbs_zero(z, P256_LIMBS);
|
||||
|
||||
// TODO: Rewrite in terms of |limbs_select|.
|
||||
for (size_t i = 0; i < 16; ++i) {
|
||||
crypto_word equal = constant_time_eq_w(index, (crypto_word)i + 1);
|
||||
for (size_t j = 0; j < P256_LIMBS; ++j) {
|
||||
x[j] = constant_time_select_w(equal, table[i].X[j], x[j]);
|
||||
y[j] = constant_time_select_w(equal, table[i].Y[j], y[j]);
|
||||
z[j] = constant_time_select_w(equal, table[i].Z[j], z[j]);
|
||||
}
|
||||
}
|
||||
|
||||
limbs_copy(out->X, x, P256_LIMBS);
|
||||
limbs_copy(out->Y, y, P256_LIMBS);
|
||||
limbs_copy(out->Z, z, P256_LIMBS);
|
||||
}
|
||||
|
||||
#if defined GFp_USE_LARGE_TABLE
|
||||
void GFp_nistz256_select_w7(P256_POINT_AFFINE *out,
|
||||
const PRECOMP256_ROW table, crypto_word index) {
|
||||
alignas(32) Limb xy[P256_LIMBS * 2];
|
||||
limbs_select(xy, table, P256_LIMBS * 2, 64, index - 1);
|
||||
limbs_copy(out->X, &xy[0], P256_LIMBS);
|
||||
limbs_copy(out->Y, &xy[P256_LIMBS], P256_LIMBS);
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
242
zeroidc/vendor/ring/crypto/fipsmodule/ec/gfp_p384.c
vendored
Normal file
242
zeroidc/vendor/ring/crypto/fipsmodule/ec/gfp_p384.c
vendored
Normal file
@@ -0,0 +1,242 @@
|
||||
/* Copyright 2016 Brian Smith.
|
||||
*
|
||||
* Permission to use, copy, modify, and/or distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
|
||||
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
||||
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
||||
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
||||
|
||||
#include "../../limbs/limbs.h"
|
||||
|
||||
#include "ecp_nistz384.h"
|
||||
#include "../bn/internal.h"
|
||||
#include "../../internal.h"
|
||||
|
||||
#include "../../limbs/limbs.inl"
|
||||
|
||||
/* XXX: Here we assume that the conversion from |Carry| to |Limb| is
|
||||
* constant-time, but we haven't verified that assumption. TODO: Fix it so
|
||||
* we don't need to make that assumption. */
|
||||
|
||||
|
||||
typedef Limb Elem[P384_LIMBS];
|
||||
typedef Limb ScalarMont[P384_LIMBS];
|
||||
typedef Limb Scalar[P384_LIMBS];
|
||||
|
||||
|
||||
static const BN_ULONG Q[P384_LIMBS] = {
|
||||
TOBN(0x00000000, 0xffffffff),
|
||||
TOBN(0xffffffff, 0x00000000),
|
||||
TOBN(0xffffffff, 0xfffffffe),
|
||||
TOBN(0xffffffff, 0xffffffff),
|
||||
TOBN(0xffffffff, 0xffffffff),
|
||||
TOBN(0xffffffff, 0xffffffff),
|
||||
};
|
||||
|
||||
static const BN_ULONG N[P384_LIMBS] = {
|
||||
TOBN(0xecec196a, 0xccc52973),
|
||||
TOBN(0x581a0db2, 0x48b0a77a),
|
||||
TOBN(0xc7634d81, 0xf4372ddf),
|
||||
TOBN(0xffffffff, 0xffffffff),
|
||||
TOBN(0xffffffff, 0xffffffff),
|
||||
TOBN(0xffffffff, 0xffffffff),
|
||||
};
|
||||
|
||||
|
||||
static const BN_ULONG ONE[P384_LIMBS] = {
|
||||
TOBN(0xffffffff, 1), TOBN(0, 0xffffffff), TOBN(0, 1), TOBN(0, 0), TOBN(0, 0),
|
||||
TOBN(0, 0),
|
||||
};
|
||||
|
||||
|
||||
/* XXX: MSVC for x86 warns when it fails to inline these functions it should
|
||||
* probably inline. */
|
||||
#if defined(_MSC_VER) && !defined(__clang__) && defined(OPENSSL_X86)
|
||||
#define INLINE_IF_POSSIBLE __forceinline
|
||||
#else
|
||||
#define INLINE_IF_POSSIBLE inline
|
||||
#endif
|
||||
|
||||
static inline Limb is_equal(const Elem a, const Elem b) {
|
||||
return LIMBS_equal(a, b, P384_LIMBS);
|
||||
}
|
||||
|
||||
static inline Limb is_zero(const BN_ULONG a[P384_LIMBS]) {
|
||||
return LIMBS_are_zero(a, P384_LIMBS);
|
||||
}
|
||||
|
||||
static inline void copy_conditional(Elem r, const Elem a,
|
||||
const Limb condition) {
|
||||
for (size_t i = 0; i < P384_LIMBS; ++i) {
|
||||
r[i] = constant_time_select_w(condition, a[i], r[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static inline void elem_add(Elem r, const Elem a, const Elem b) {
|
||||
LIMBS_add_mod(r, a, b, Q, P384_LIMBS);
|
||||
}
|
||||
|
||||
static inline void elem_sub(Elem r, const Elem a, const Elem b) {
|
||||
LIMBS_sub_mod(r, a, b, Q, P384_LIMBS);
|
||||
}
|
||||
|
||||
static void elem_div_by_2(Elem r, const Elem a) {
|
||||
/* Consider the case where `a` is even. Then we can shift `a` right one bit
|
||||
* and the result will still be valid because we didn't lose any bits and so
|
||||
* `(a >> 1) * 2 == a (mod q)`, which is the invariant we must satisfy.
|
||||
*
|
||||
* The remainder of this comment is considering the case where `a` is odd.
|
||||
*
|
||||
* Since `a` is odd, it isn't the case that `(a >> 1) * 2 == a (mod q)`
|
||||
* because the lowest bit is lost during the shift. For example, consider:
|
||||
*
|
||||
* ```python
|
||||
* q = 2**384 - 2**128 - 2**96 + 2**32 - 1
|
||||
* a = 2**383
|
||||
* two_a = a * 2 % q
|
||||
* assert two_a == 0x100000000ffffffffffffffff00000001
|
||||
* ```
|
||||
*
|
||||
* Notice there how `(2 * a) % q` wrapped around to a smaller odd value. When
|
||||
* we divide `two_a` by two (mod q), we need to get the value `2**383`, which
|
||||
* we obviously can't get with just a right shift.
|
||||
*
|
||||
* `q` is odd, and `a` is odd, so `a + q` is even. We could calculate
|
||||
* `(a + q) >> 1` and then reduce it mod `q`. However, then we would have to
|
||||
* keep track of an extra most significant bit. We can avoid that by instead
|
||||
* calculating `(a >> 1) + ((q + 1) >> 1)`. The `1` in `q + 1` is the least
|
||||
* significant bit of `a`. `q + 1` is even, which means it can be shifted
|
||||
* without losing any bits. Since `q` is odd, `q - 1` is even, so the largest
|
||||
* odd field element is `q - 2`. Thus we know that `a <= q - 2`. We know
|
||||
* `(q + 1) >> 1` is `(q + 1) / 2` since (`q + 1`) is even. The value of
|
||||
* `a >> 1` is `(a - 1)/2` since the shift will drop the least significant
|
||||
* bit of `a`, which is 1. Thus:
|
||||
*
|
||||
* sum = ((q + 1) >> 1) + (a >> 1)
|
||||
* sum = (q + 1)/2 + (a >> 1) (substituting (q + 1)/2)
|
||||
* <= (q + 1)/2 + (q - 2 - 1)/2 (substituting a <= q - 2)
|
||||
* <= (q + 1)/2 + (q - 3)/2 (simplifying)
|
||||
* <= (q + 1 + q - 3)/2 (factoring out the common divisor)
|
||||
* <= (2q - 2)/2 (simplifying)
|
||||
* <= q - 1 (simplifying)
|
||||
*
|
||||
* Thus, no reduction of the sum mod `q` is necessary. */
|
||||
|
||||
Limb is_odd = constant_time_is_nonzero_w(a[0] & 1);
|
||||
|
||||
/* r = a >> 1. */
|
||||
Limb carry = a[P384_LIMBS - 1] & 1;
|
||||
r[P384_LIMBS - 1] = a[P384_LIMBS - 1] >> 1;
|
||||
for (size_t i = 1; i < P384_LIMBS; ++i) {
|
||||
Limb new_carry = a[P384_LIMBS - i - 1];
|
||||
r[P384_LIMBS - i - 1] =
|
||||
(a[P384_LIMBS - i - 1] >> 1) | (carry << (LIMB_BITS - 1));
|
||||
carry = new_carry;
|
||||
}
|
||||
|
||||
static const Elem Q_PLUS_1_SHR_1 = {
|
||||
TOBN(0x00000000, 0x80000000), TOBN(0x7fffffff, 0x80000000),
|
||||
TOBN(0xffffffff, 0xffffffff), TOBN(0xffffffff, 0xffffffff),
|
||||
TOBN(0xffffffff, 0xffffffff), TOBN(0x7fffffff, 0xffffffff),
|
||||
};
|
||||
|
||||
Elem adjusted;
|
||||
BN_ULONG carry2 = limbs_add(adjusted, r, Q_PLUS_1_SHR_1, P384_LIMBS);
|
||||
dev_assert_secret(carry2 == 0);
|
||||
(void)carry2;
|
||||
copy_conditional(r, adjusted, is_odd);
|
||||
}
|
||||
|
||||
static inline void elem_mul_mont(Elem r, const Elem a, const Elem b) {
|
||||
static const BN_ULONG Q_N0[] = {
|
||||
BN_MONT_CTX_N0(0x1, 0x1)
|
||||
};
|
||||
/* XXX: Not (clearly) constant-time; inefficient.*/
|
||||
GFp_bn_mul_mont(r, a, b, Q, Q_N0, P384_LIMBS);
|
||||
}
|
||||
|
||||
static inline void elem_mul_by_2(Elem r, const Elem a) {
|
||||
LIMBS_shl_mod(r, a, Q, P384_LIMBS);
|
||||
}
|
||||
|
||||
static INLINE_IF_POSSIBLE void elem_mul_by_3(Elem r, const Elem a) {
|
||||
/* XXX: inefficient. TODO: Replace with an integrated shift + add. */
|
||||
Elem doubled;
|
||||
elem_add(doubled, a, a);
|
||||
elem_add(r, doubled, a);
|
||||
}
|
||||
|
||||
static inline void elem_sqr_mont(Elem r, const Elem a) {
|
||||
/* XXX: Inefficient. TODO: Add a dedicated squaring routine. */
|
||||
elem_mul_mont(r, a, a);
|
||||
}
|
||||
|
||||
void GFp_p384_elem_add(Elem r, const Elem a, const Elem b) {
|
||||
elem_add(r, a, b);
|
||||
}
|
||||
|
||||
void GFp_p384_elem_sub(Elem r, const Elem a, const Elem b) {
|
||||
elem_sub(r, a, b);
|
||||
}
|
||||
|
||||
void GFp_p384_elem_div_by_2(Elem r, const Elem a) {
|
||||
elem_div_by_2(r, a);
|
||||
}
|
||||
|
||||
void GFp_p384_elem_mul_mont(Elem r, const Elem a, const Elem b) {
|
||||
elem_mul_mont(r, a, b);
|
||||
}
|
||||
|
||||
void GFp_p384_elem_neg(Elem r, const Elem a) {
|
||||
Limb is_zero = LIMBS_are_zero(a, P384_LIMBS);
|
||||
Carry borrow = limbs_sub(r, Q, a, P384_LIMBS);
|
||||
dev_assert_secret(borrow == 0);
|
||||
(void)borrow;
|
||||
for (size_t i = 0; i < P384_LIMBS; ++i) {
|
||||
r[i] = constant_time_select_w(is_zero, 0, r[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GFp_p384_scalar_mul_mont(ScalarMont r, const ScalarMont a,
|
||||
const ScalarMont b) {
|
||||
static const BN_ULONG N_N0[] = {
|
||||
BN_MONT_CTX_N0(0x6ed46089, 0xe88fdc45)
|
||||
};
|
||||
/* XXX: Inefficient. TODO: Add dedicated multiplication routine. */
|
||||
GFp_bn_mul_mont(r, a, b, N, N_N0, P384_LIMBS);
|
||||
}
|
||||
|
||||
|
||||
/* TODO(perf): Optimize this. */
|
||||
|
||||
static void gfp_p384_point_select_w5(P384_POINT *out,
|
||||
const P384_POINT table[16], size_t index) {
|
||||
Elem x; limbs_zero(x, P384_LIMBS);
|
||||
Elem y; limbs_zero(y, P384_LIMBS);
|
||||
Elem z; limbs_zero(z, P384_LIMBS);
|
||||
|
||||
// TODO: Rewrite in terms of |limbs_select|.
|
||||
for (size_t i = 0; i < 16; ++i) {
|
||||
crypto_word equal = constant_time_eq_w(index, (crypto_word)i + 1);
|
||||
for (size_t j = 0; j < P384_LIMBS; ++j) {
|
||||
x[j] = constant_time_select_w(equal, table[i].X[j], x[j]);
|
||||
y[j] = constant_time_select_w(equal, table[i].Y[j], y[j]);
|
||||
z[j] = constant_time_select_w(equal, table[i].Z[j], z[j]);
|
||||
}
|
||||
}
|
||||
|
||||
limbs_copy(out->X, x, P384_LIMBS);
|
||||
limbs_copy(out->Y, y, P384_LIMBS);
|
||||
limbs_copy(out->Z, z, P384_LIMBS);
|
||||
}
|
||||
|
||||
|
||||
#include "ecp_nistz384.inl"
|
||||
Reference in New Issue
Block a user