RPM build fix (reverted CI changes which will need to be un-reverted or made conditional) and vendor Rust dependencies to make builds much faster in any CI system.
This commit is contained in:
437
zeroidc/vendor/rand_core/src/block.rs
vendored
Normal file
437
zeroidc/vendor/rand_core/src/block.rs
vendored
Normal file
@@ -0,0 +1,437 @@
|
||||
// Copyright 2018 Developers of the Rand project.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||||
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||||
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
|
||||
// option. This file may not be copied, modified, or distributed
|
||||
// except according to those terms.
|
||||
|
||||
//! The `BlockRngCore` trait and implementation helpers
|
||||
//!
|
||||
//! The [`BlockRngCore`] trait exists to assist in the implementation of RNGs
|
||||
//! which generate a block of data in a cache instead of returning generated
|
||||
//! values directly.
|
||||
//!
|
||||
//! Usage of this trait is optional, but provides two advantages:
|
||||
//! implementations only need to concern themselves with generation of the
|
||||
//! block, not the various [`RngCore`] methods (especially [`fill_bytes`], where
|
||||
//! the optimal implementations are not trivial), and this allows
|
||||
//! `ReseedingRng` (see [`rand`](https://docs.rs/rand) crate) perform periodic
|
||||
//! reseeding with very low overhead.
|
||||
//!
|
||||
//! # Example
|
||||
//!
|
||||
//! ```no_run
|
||||
//! use rand_core::{RngCore, SeedableRng};
|
||||
//! use rand_core::block::{BlockRngCore, BlockRng};
|
||||
//!
|
||||
//! struct MyRngCore;
|
||||
//!
|
||||
//! impl BlockRngCore for MyRngCore {
|
||||
//! type Item = u32;
|
||||
//! type Results = [u32; 16];
|
||||
//!
|
||||
//! fn generate(&mut self, results: &mut Self::Results) {
|
||||
//! unimplemented!()
|
||||
//! }
|
||||
//! }
|
||||
//!
|
||||
//! impl SeedableRng for MyRngCore {
|
||||
//! type Seed = [u8; 32];
|
||||
//! fn from_seed(seed: Self::Seed) -> Self {
|
||||
//! unimplemented!()
|
||||
//! }
|
||||
//! }
|
||||
//!
|
||||
//! // optionally, also implement CryptoRng for MyRngCore
|
||||
//!
|
||||
//! // Final RNG.
|
||||
//! let mut rng = BlockRng::<MyRngCore>::seed_from_u64(0);
|
||||
//! println!("First value: {}", rng.next_u32());
|
||||
//! ```
|
||||
//!
|
||||
//! [`BlockRngCore`]: crate::block::BlockRngCore
|
||||
//! [`fill_bytes`]: RngCore::fill_bytes
|
||||
|
||||
use crate::impls::{fill_via_u32_chunks, fill_via_u64_chunks};
|
||||
use crate::{CryptoRng, Error, RngCore, SeedableRng};
|
||||
use core::convert::AsRef;
|
||||
use core::fmt;
|
||||
#[cfg(feature = "serde1")]
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
/// A trait for RNGs which do not generate random numbers individually, but in
|
||||
/// blocks (typically `[u32; N]`). This technique is commonly used by
|
||||
/// cryptographic RNGs to improve performance.
|
||||
///
|
||||
/// See the [module][crate::block] documentation for details.
|
||||
pub trait BlockRngCore {
|
||||
/// Results element type, e.g. `u32`.
|
||||
type Item;
|
||||
|
||||
/// Results type. This is the 'block' an RNG implementing `BlockRngCore`
|
||||
/// generates, which will usually be an array like `[u32; 16]`.
|
||||
type Results: AsRef<[Self::Item]> + AsMut<[Self::Item]> + Default;
|
||||
|
||||
/// Generate a new block of results.
|
||||
fn generate(&mut self, results: &mut Self::Results);
|
||||
}
|
||||
|
||||
/// A wrapper type implementing [`RngCore`] for some type implementing
|
||||
/// [`BlockRngCore`] with `u32` array buffer; i.e. this can be used to implement
|
||||
/// a full RNG from just a `generate` function.
|
||||
///
|
||||
/// The `core` field may be accessed directly but the results buffer may not.
|
||||
/// PRNG implementations can simply use a type alias
|
||||
/// (`pub type MyRng = BlockRng<MyRngCore>;`) but might prefer to use a
|
||||
/// wrapper type (`pub struct MyRng(BlockRng<MyRngCore>);`); the latter must
|
||||
/// re-implement `RngCore` but hides the implementation details and allows
|
||||
/// extra functionality to be defined on the RNG
|
||||
/// (e.g. `impl MyRng { fn set_stream(...){...} }`).
|
||||
///
|
||||
/// `BlockRng` has heavily optimized implementations of the [`RngCore`] methods
|
||||
/// reading values from the results buffer, as well as
|
||||
/// calling [`BlockRngCore::generate`] directly on the output array when
|
||||
/// [`fill_bytes`] / [`try_fill_bytes`] is called on a large array. These methods
|
||||
/// also handle the bookkeeping of when to generate a new batch of values.
|
||||
///
|
||||
/// No whole generated `u32` values are thown away and all values are consumed
|
||||
/// in-order. [`next_u32`] simply takes the next available `u32` value.
|
||||
/// [`next_u64`] is implemented by combining two `u32` values, least
|
||||
/// significant first. [`fill_bytes`] and [`try_fill_bytes`] consume a whole
|
||||
/// number of `u32` values, converting each `u32` to a byte slice in
|
||||
/// little-endian order. If the requested byte length is not a multiple of 4,
|
||||
/// some bytes will be discarded.
|
||||
///
|
||||
/// See also [`BlockRng64`] which uses `u64` array buffers. Currently there is
|
||||
/// no direct support for other buffer types.
|
||||
///
|
||||
/// For easy initialization `BlockRng` also implements [`SeedableRng`].
|
||||
///
|
||||
/// [`next_u32`]: RngCore::next_u32
|
||||
/// [`next_u64`]: RngCore::next_u64
|
||||
/// [`fill_bytes`]: RngCore::fill_bytes
|
||||
/// [`try_fill_bytes`]: RngCore::try_fill_bytes
|
||||
#[derive(Clone)]
|
||||
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
|
||||
#[cfg_attr(
|
||||
feature = "serde1",
|
||||
serde(
|
||||
bound = "for<'x> R: Serialize + Deserialize<'x> + Sized, for<'x> R::Results: Serialize + Deserialize<'x>"
|
||||
)
|
||||
)]
|
||||
pub struct BlockRng<R: BlockRngCore + ?Sized> {
|
||||
results: R::Results,
|
||||
index: usize,
|
||||
/// The *core* part of the RNG, implementing the `generate` function.
|
||||
pub core: R,
|
||||
}
|
||||
|
||||
// Custom Debug implementation that does not expose the contents of `results`.
|
||||
impl<R: BlockRngCore + fmt::Debug> fmt::Debug for BlockRng<R> {
|
||||
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
||||
fmt.debug_struct("BlockRng")
|
||||
.field("core", &self.core)
|
||||
.field("result_len", &self.results.as_ref().len())
|
||||
.field("index", &self.index)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl<R: BlockRngCore> BlockRng<R> {
|
||||
/// Create a new `BlockRng` from an existing RNG implementing
|
||||
/// `BlockRngCore`. Results will be generated on first use.
|
||||
#[inline]
|
||||
pub fn new(core: R) -> BlockRng<R> {
|
||||
let results_empty = R::Results::default();
|
||||
BlockRng {
|
||||
core,
|
||||
index: results_empty.as_ref().len(),
|
||||
results: results_empty,
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the index into the result buffer.
|
||||
///
|
||||
/// If this is equal to or larger than the size of the result buffer then
|
||||
/// the buffer is "empty" and `generate()` must be called to produce new
|
||||
/// results.
|
||||
#[inline(always)]
|
||||
pub fn index(&self) -> usize {
|
||||
self.index
|
||||
}
|
||||
|
||||
/// Reset the number of available results.
|
||||
/// This will force a new set of results to be generated on next use.
|
||||
#[inline]
|
||||
pub fn reset(&mut self) {
|
||||
self.index = self.results.as_ref().len();
|
||||
}
|
||||
|
||||
/// Generate a new set of results immediately, setting the index to the
|
||||
/// given value.
|
||||
#[inline]
|
||||
pub fn generate_and_set(&mut self, index: usize) {
|
||||
assert!(index < self.results.as_ref().len());
|
||||
self.core.generate(&mut self.results);
|
||||
self.index = index;
|
||||
}
|
||||
}
|
||||
|
||||
impl<R: BlockRngCore<Item = u32>> RngCore for BlockRng<R>
|
||||
where
|
||||
<R as BlockRngCore>::Results: AsRef<[u32]> + AsMut<[u32]>,
|
||||
{
|
||||
#[inline]
|
||||
fn next_u32(&mut self) -> u32 {
|
||||
if self.index >= self.results.as_ref().len() {
|
||||
self.generate_and_set(0);
|
||||
}
|
||||
|
||||
let value = self.results.as_ref()[self.index];
|
||||
self.index += 1;
|
||||
value
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn next_u64(&mut self) -> u64 {
|
||||
let read_u64 = |results: &[u32], index| {
|
||||
let data = &results[index..=index + 1];
|
||||
u64::from(data[1]) << 32 | u64::from(data[0])
|
||||
};
|
||||
|
||||
let len = self.results.as_ref().len();
|
||||
|
||||
let index = self.index;
|
||||
if index < len - 1 {
|
||||
self.index += 2;
|
||||
// Read an u64 from the current index
|
||||
read_u64(self.results.as_ref(), index)
|
||||
} else if index >= len {
|
||||
self.generate_and_set(2);
|
||||
read_u64(self.results.as_ref(), 0)
|
||||
} else {
|
||||
let x = u64::from(self.results.as_ref()[len - 1]);
|
||||
self.generate_and_set(1);
|
||||
let y = u64::from(self.results.as_ref()[0]);
|
||||
(y << 32) | x
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn fill_bytes(&mut self, dest: &mut [u8]) {
|
||||
let mut read_len = 0;
|
||||
while read_len < dest.len() {
|
||||
if self.index >= self.results.as_ref().len() {
|
||||
self.generate_and_set(0);
|
||||
}
|
||||
let (consumed_u32, filled_u8) =
|
||||
fill_via_u32_chunks(&self.results.as_ref()[self.index..], &mut dest[read_len..]);
|
||||
|
||||
self.index += consumed_u32;
|
||||
read_len += filled_u8;
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
|
||||
self.fill_bytes(dest);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<R: BlockRngCore + SeedableRng> SeedableRng for BlockRng<R> {
|
||||
type Seed = R::Seed;
|
||||
|
||||
#[inline(always)]
|
||||
fn from_seed(seed: Self::Seed) -> Self {
|
||||
Self::new(R::from_seed(seed))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn seed_from_u64(seed: u64) -> Self {
|
||||
Self::new(R::seed_from_u64(seed))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> {
|
||||
Ok(Self::new(R::from_rng(rng)?))
|
||||
}
|
||||
}
|
||||
|
||||
/// A wrapper type implementing [`RngCore`] for some type implementing
|
||||
/// [`BlockRngCore`] with `u64` array buffer; i.e. this can be used to implement
|
||||
/// a full RNG from just a `generate` function.
|
||||
///
|
||||
/// This is similar to [`BlockRng`], but specialized for algorithms that operate
|
||||
/// on `u64` values.
|
||||
///
|
||||
/// No whole generated `u64` values are thrown away and all values are consumed
|
||||
/// in-order. [`next_u64`] simply takes the next available `u64` value.
|
||||
/// [`next_u32`] is however a bit special: half of a `u64` is consumed, leaving
|
||||
/// the other half in the buffer. If the next function called is [`next_u32`]
|
||||
/// then the other half is then consumed, however both [`next_u64`] and
|
||||
/// [`fill_bytes`] discard the rest of any half-consumed `u64`s when called.
|
||||
///
|
||||
/// [`fill_bytes`] and [`try_fill_bytes`] consume a whole number of `u64`
|
||||
/// values. If the requested length is not a multiple of 8, some bytes will be
|
||||
/// discarded.
|
||||
///
|
||||
/// [`next_u32`]: RngCore::next_u32
|
||||
/// [`next_u64`]: RngCore::next_u64
|
||||
/// [`fill_bytes`]: RngCore::fill_bytes
|
||||
/// [`try_fill_bytes`]: RngCore::try_fill_bytes
|
||||
#[derive(Clone)]
|
||||
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
|
||||
pub struct BlockRng64<R: BlockRngCore + ?Sized> {
|
||||
results: R::Results,
|
||||
index: usize,
|
||||
half_used: bool, // true if only half of the previous result is used
|
||||
/// The *core* part of the RNG, implementing the `generate` function.
|
||||
pub core: R,
|
||||
}
|
||||
|
||||
// Custom Debug implementation that does not expose the contents of `results`.
|
||||
impl<R: BlockRngCore + fmt::Debug> fmt::Debug for BlockRng64<R> {
|
||||
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
||||
fmt.debug_struct("BlockRng64")
|
||||
.field("core", &self.core)
|
||||
.field("result_len", &self.results.as_ref().len())
|
||||
.field("index", &self.index)
|
||||
.field("half_used", &self.half_used)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl<R: BlockRngCore> BlockRng64<R> {
|
||||
/// Create a new `BlockRng` from an existing RNG implementing
|
||||
/// `BlockRngCore`. Results will be generated on first use.
|
||||
#[inline]
|
||||
pub fn new(core: R) -> BlockRng64<R> {
|
||||
let results_empty = R::Results::default();
|
||||
BlockRng64 {
|
||||
core,
|
||||
index: results_empty.as_ref().len(),
|
||||
half_used: false,
|
||||
results: results_empty,
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the index into the result buffer.
|
||||
///
|
||||
/// If this is equal to or larger than the size of the result buffer then
|
||||
/// the buffer is "empty" and `generate()` must be called to produce new
|
||||
/// results.
|
||||
#[inline(always)]
|
||||
pub fn index(&self) -> usize {
|
||||
self.index
|
||||
}
|
||||
|
||||
/// Reset the number of available results.
|
||||
/// This will force a new set of results to be generated on next use.
|
||||
#[inline]
|
||||
pub fn reset(&mut self) {
|
||||
self.index = self.results.as_ref().len();
|
||||
self.half_used = false;
|
||||
}
|
||||
|
||||
/// Generate a new set of results immediately, setting the index to the
|
||||
/// given value.
|
||||
#[inline]
|
||||
pub fn generate_and_set(&mut self, index: usize) {
|
||||
assert!(index < self.results.as_ref().len());
|
||||
self.core.generate(&mut self.results);
|
||||
self.index = index;
|
||||
self.half_used = false;
|
||||
}
|
||||
}
|
||||
|
||||
impl<R: BlockRngCore<Item = u64>> RngCore for BlockRng64<R>
|
||||
where
|
||||
<R as BlockRngCore>::Results: AsRef<[u64]> + AsMut<[u64]>,
|
||||
{
|
||||
#[inline]
|
||||
fn next_u32(&mut self) -> u32 {
|
||||
let mut index = self.index * 2 - self.half_used as usize;
|
||||
if index >= self.results.as_ref().len() * 2 {
|
||||
self.core.generate(&mut self.results);
|
||||
self.index = 0;
|
||||
// `self.half_used` is by definition `false`
|
||||
self.half_used = false;
|
||||
index = 0;
|
||||
}
|
||||
|
||||
self.half_used = !self.half_used;
|
||||
self.index += self.half_used as usize;
|
||||
|
||||
// Index as if this is a u32 slice.
|
||||
unsafe {
|
||||
let results = &*(self.results.as_ref() as *const [u64] as *const [u32]);
|
||||
if cfg!(target_endian = "little") {
|
||||
*results.get_unchecked(index)
|
||||
} else {
|
||||
*results.get_unchecked(index ^ 1)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn next_u64(&mut self) -> u64 {
|
||||
if self.index >= self.results.as_ref().len() {
|
||||
self.core.generate(&mut self.results);
|
||||
self.index = 0;
|
||||
}
|
||||
|
||||
let value = self.results.as_ref()[self.index];
|
||||
self.index += 1;
|
||||
self.half_used = false;
|
||||
value
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn fill_bytes(&mut self, dest: &mut [u8]) {
|
||||
let mut read_len = 0;
|
||||
self.half_used = false;
|
||||
while read_len < dest.len() {
|
||||
if self.index as usize >= self.results.as_ref().len() {
|
||||
self.core.generate(&mut self.results);
|
||||
self.index = 0;
|
||||
}
|
||||
|
||||
let (consumed_u64, filled_u8) = fill_via_u64_chunks(
|
||||
&self.results.as_ref()[self.index as usize..],
|
||||
&mut dest[read_len..],
|
||||
);
|
||||
|
||||
self.index += consumed_u64;
|
||||
read_len += filled_u8;
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
|
||||
self.fill_bytes(dest);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<R: BlockRngCore + SeedableRng> SeedableRng for BlockRng64<R> {
|
||||
type Seed = R::Seed;
|
||||
|
||||
#[inline(always)]
|
||||
fn from_seed(seed: Self::Seed) -> Self {
|
||||
Self::new(R::from_seed(seed))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn seed_from_u64(seed: u64) -> Self {
|
||||
Self::new(R::seed_from_u64(seed))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> {
|
||||
Ok(Self::new(R::from_rng(rng)?))
|
||||
}
|
||||
}
|
||||
|
||||
impl<R: BlockRngCore + CryptoRng> CryptoRng for BlockRng<R> {}
|
||||
228
zeroidc/vendor/rand_core/src/error.rs
vendored
Normal file
228
zeroidc/vendor/rand_core/src/error.rs
vendored
Normal file
@@ -0,0 +1,228 @@
|
||||
// Copyright 2018 Developers of the Rand project.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||||
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||||
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
|
||||
// option. This file may not be copied, modified, or distributed
|
||||
// except according to those terms.
|
||||
|
||||
//! Error types
|
||||
|
||||
use core::fmt;
|
||||
use core::num::NonZeroU32;
|
||||
|
||||
#[cfg(feature = "std")] use std::boxed::Box;
|
||||
|
||||
/// Error type of random number generators
|
||||
///
|
||||
/// In order to be compatible with `std` and `no_std`, this type has two
|
||||
/// possible implementations: with `std` a boxed `Error` trait object is stored,
|
||||
/// while with `no_std` we merely store an error code.
|
||||
pub struct Error {
|
||||
#[cfg(feature = "std")]
|
||||
inner: Box<dyn std::error::Error + Send + Sync + 'static>,
|
||||
#[cfg(not(feature = "std"))]
|
||||
code: NonZeroU32,
|
||||
}
|
||||
|
||||
impl Error {
|
||||
/// Codes at or above this point can be used by users to define their own
|
||||
/// custom errors.
|
||||
///
|
||||
/// This has a fixed value of `(1 << 31) + (1 << 30) = 0xC000_0000`,
|
||||
/// therefore the number of values available for custom codes is `1 << 30`.
|
||||
///
|
||||
/// This is identical to [`getrandom::Error::CUSTOM_START`](https://docs.rs/getrandom/latest/getrandom/struct.Error.html#associatedconstant.CUSTOM_START).
|
||||
pub const CUSTOM_START: u32 = (1 << 31) + (1 << 30);
|
||||
/// Codes below this point represent OS Errors (i.e. positive i32 values).
|
||||
/// Codes at or above this point, but below [`Error::CUSTOM_START`] are
|
||||
/// reserved for use by the `rand` and `getrandom` crates.
|
||||
///
|
||||
/// This is identical to [`getrandom::Error::INTERNAL_START`](https://docs.rs/getrandom/latest/getrandom/struct.Error.html#associatedconstant.INTERNAL_START).
|
||||
pub const INTERNAL_START: u32 = 1 << 31;
|
||||
|
||||
/// Construct from any type supporting `std::error::Error`
|
||||
///
|
||||
/// Available only when configured with `std`.
|
||||
///
|
||||
/// See also `From<NonZeroU32>`, which is available with and without `std`.
|
||||
#[cfg(feature = "std")]
|
||||
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
|
||||
#[inline]
|
||||
pub fn new<E>(err: E) -> Self
|
||||
where
|
||||
E: Into<Box<dyn std::error::Error + Send + Sync + 'static>>,
|
||||
{
|
||||
Error { inner: err.into() }
|
||||
}
|
||||
|
||||
/// Reference the inner error (`std` only)
|
||||
///
|
||||
/// When configured with `std`, this is a trivial operation and never
|
||||
/// panics. Without `std`, this method is simply unavailable.
|
||||
#[cfg(feature = "std")]
|
||||
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
|
||||
#[inline]
|
||||
pub fn inner(&self) -> &(dyn std::error::Error + Send + Sync + 'static) {
|
||||
&*self.inner
|
||||
}
|
||||
|
||||
/// Unwrap the inner error (`std` only)
|
||||
///
|
||||
/// When configured with `std`, this is a trivial operation and never
|
||||
/// panics. Without `std`, this method is simply unavailable.
|
||||
#[cfg(feature = "std")]
|
||||
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
|
||||
#[inline]
|
||||
pub fn take_inner(self) -> Box<dyn std::error::Error + Send + Sync + 'static> {
|
||||
self.inner
|
||||
}
|
||||
|
||||
/// Extract the raw OS error code (if this error came from the OS)
|
||||
///
|
||||
/// This method is identical to `std::io::Error::raw_os_error()`, except
|
||||
/// that it works in `no_std` contexts. If this method returns `None`, the
|
||||
/// error value can still be formatted via the `Diplay` implementation.
|
||||
#[inline]
|
||||
pub fn raw_os_error(&self) -> Option<i32> {
|
||||
#[cfg(feature = "std")]
|
||||
{
|
||||
if let Some(e) = self.inner.downcast_ref::<std::io::Error>() {
|
||||
return e.raw_os_error();
|
||||
}
|
||||
}
|
||||
match self.code() {
|
||||
Some(code) if u32::from(code) < Self::INTERNAL_START => Some(u32::from(code) as i32),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
/// Retrieve the error code, if any.
|
||||
///
|
||||
/// If this `Error` was constructed via `From<NonZeroU32>`, then this method
|
||||
/// will return this `NonZeroU32` code (for `no_std` this is always the
|
||||
/// case). Otherwise, this method will return `None`.
|
||||
#[inline]
|
||||
pub fn code(&self) -> Option<NonZeroU32> {
|
||||
#[cfg(feature = "std")]
|
||||
{
|
||||
self.inner.downcast_ref::<ErrorCode>().map(|c| c.0)
|
||||
}
|
||||
#[cfg(not(feature = "std"))]
|
||||
{
|
||||
Some(self.code)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Debug for Error {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
#[cfg(feature = "std")]
|
||||
{
|
||||
write!(f, "Error {{ inner: {:?} }}", self.inner)
|
||||
}
|
||||
#[cfg(all(feature = "getrandom", not(feature = "std")))]
|
||||
{
|
||||
getrandom::Error::from(self.code).fmt(f)
|
||||
}
|
||||
#[cfg(not(feature = "getrandom"))]
|
||||
{
|
||||
write!(f, "Error {{ code: {} }}", self.code)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for Error {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
#[cfg(feature = "std")]
|
||||
{
|
||||
write!(f, "{}", self.inner)
|
||||
}
|
||||
#[cfg(all(feature = "getrandom", not(feature = "std")))]
|
||||
{
|
||||
getrandom::Error::from(self.code).fmt(f)
|
||||
}
|
||||
#[cfg(not(feature = "getrandom"))]
|
||||
{
|
||||
write!(f, "error code {}", self.code)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<NonZeroU32> for Error {
|
||||
#[inline]
|
||||
fn from(code: NonZeroU32) -> Self {
|
||||
#[cfg(feature = "std")]
|
||||
{
|
||||
Error {
|
||||
inner: Box::new(ErrorCode(code)),
|
||||
}
|
||||
}
|
||||
#[cfg(not(feature = "std"))]
|
||||
{
|
||||
Error { code }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "getrandom")]
|
||||
impl From<getrandom::Error> for Error {
|
||||
#[inline]
|
||||
fn from(error: getrandom::Error) -> Self {
|
||||
#[cfg(feature = "std")]
|
||||
{
|
||||
Error {
|
||||
inner: Box::new(error),
|
||||
}
|
||||
}
|
||||
#[cfg(not(feature = "std"))]
|
||||
{
|
||||
Error { code: error.code() }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
impl std::error::Error for Error {
|
||||
#[inline]
|
||||
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
|
||||
self.inner.source()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
impl From<Error> for std::io::Error {
|
||||
#[inline]
|
||||
fn from(error: Error) -> Self {
|
||||
if let Some(code) = error.raw_os_error() {
|
||||
std::io::Error::from_raw_os_error(code)
|
||||
} else {
|
||||
std::io::Error::new(std::io::ErrorKind::Other, error)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
struct ErrorCode(NonZeroU32);
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
impl fmt::Display for ErrorCode {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "error code {}", self.0)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
impl std::error::Error for ErrorCode {}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
#[cfg(feature = "getrandom")]
|
||||
#[test]
|
||||
fn test_error_codes() {
|
||||
// Make sure the values are the same as in `getrandom`.
|
||||
assert_eq!(super::Error::CUSTOM_START, getrandom::Error::CUSTOM_START);
|
||||
assert_eq!(super::Error::INTERNAL_START, getrandom::Error::INTERNAL_START);
|
||||
}
|
||||
}
|
||||
184
zeroidc/vendor/rand_core/src/impls.rs
vendored
Normal file
184
zeroidc/vendor/rand_core/src/impls.rs
vendored
Normal file
@@ -0,0 +1,184 @@
|
||||
// Copyright 2018 Developers of the Rand project.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||||
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||||
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
|
||||
// option. This file may not be copied, modified, or distributed
|
||||
// except according to those terms.
|
||||
|
||||
//! Helper functions for implementing `RngCore` functions.
|
||||
//!
|
||||
//! For cross-platform reproducibility, these functions all use Little Endian:
|
||||
//! least-significant part first. For example, `next_u64_via_u32` takes `u32`
|
||||
//! values `x, y`, then outputs `(y << 32) | x`. To implement `next_u32`
|
||||
//! from `next_u64` in little-endian order, one should use `next_u64() as u32`.
|
||||
//!
|
||||
//! Byte-swapping (like the std `to_le` functions) is only needed to convert
|
||||
//! to/from byte sequences, and since its purpose is reproducibility,
|
||||
//! non-reproducible sources (e.g. `OsRng`) need not bother with it.
|
||||
|
||||
use crate::RngCore;
|
||||
use core::cmp::min;
|
||||
|
||||
/// Implement `next_u64` via `next_u32`, little-endian order.
|
||||
pub fn next_u64_via_u32<R: RngCore + ?Sized>(rng: &mut R) -> u64 {
|
||||
// Use LE; we explicitly generate one value before the next.
|
||||
let x = u64::from(rng.next_u32());
|
||||
let y = u64::from(rng.next_u32());
|
||||
(y << 32) | x
|
||||
}
|
||||
|
||||
/// Implement `fill_bytes` via `next_u64` and `next_u32`, little-endian order.
|
||||
///
|
||||
/// The fastest way to fill a slice is usually to work as long as possible with
|
||||
/// integers. That is why this method mostly uses `next_u64`, and only when
|
||||
/// there are 4 or less bytes remaining at the end of the slice it uses
|
||||
/// `next_u32` once.
|
||||
pub fn fill_bytes_via_next<R: RngCore + ?Sized>(rng: &mut R, dest: &mut [u8]) {
|
||||
let mut left = dest;
|
||||
while left.len() >= 8 {
|
||||
let (l, r) = { left }.split_at_mut(8);
|
||||
left = r;
|
||||
let chunk: [u8; 8] = rng.next_u64().to_le_bytes();
|
||||
l.copy_from_slice(&chunk);
|
||||
}
|
||||
let n = left.len();
|
||||
if n > 4 {
|
||||
let chunk: [u8; 8] = rng.next_u64().to_le_bytes();
|
||||
left.copy_from_slice(&chunk[..n]);
|
||||
} else if n > 0 {
|
||||
let chunk: [u8; 4] = rng.next_u32().to_le_bytes();
|
||||
left.copy_from_slice(&chunk[..n]);
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! fill_via_chunks {
|
||||
($src:expr, $dst:expr, $ty:ty) => {{
|
||||
const SIZE: usize = core::mem::size_of::<$ty>();
|
||||
let chunk_size_u8 = min($src.len() * SIZE, $dst.len());
|
||||
let chunk_size = (chunk_size_u8 + SIZE - 1) / SIZE;
|
||||
|
||||
// The following can be replaced with safe code, but unfortunately it's
|
||||
// ca. 8% slower.
|
||||
if cfg!(target_endian = "little") {
|
||||
unsafe {
|
||||
core::ptr::copy_nonoverlapping(
|
||||
$src.as_ptr() as *const u8,
|
||||
$dst.as_mut_ptr(),
|
||||
chunk_size_u8);
|
||||
}
|
||||
} else {
|
||||
for (&n, chunk) in $src.iter().zip($dst.chunks_mut(SIZE)) {
|
||||
let tmp = n.to_le();
|
||||
let src_ptr = &tmp as *const $ty as *const u8;
|
||||
unsafe {
|
||||
core::ptr::copy_nonoverlapping(
|
||||
src_ptr,
|
||||
chunk.as_mut_ptr(),
|
||||
chunk.len());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
(chunk_size, chunk_size_u8)
|
||||
}};
|
||||
}
|
||||
|
||||
/// Implement `fill_bytes` by reading chunks from the output buffer of a block
|
||||
/// based RNG.
|
||||
///
|
||||
/// The return values are `(consumed_u32, filled_u8)`.
|
||||
///
|
||||
/// `filled_u8` is the number of filled bytes in `dest`, which may be less than
|
||||
/// the length of `dest`.
|
||||
/// `consumed_u32` is the number of words consumed from `src`, which is the same
|
||||
/// as `filled_u8 / 4` rounded up.
|
||||
///
|
||||
/// # Example
|
||||
/// (from `IsaacRng`)
|
||||
///
|
||||
/// ```ignore
|
||||
/// fn fill_bytes(&mut self, dest: &mut [u8]) {
|
||||
/// let mut read_len = 0;
|
||||
/// while read_len < dest.len() {
|
||||
/// if self.index >= self.rsl.len() {
|
||||
/// self.isaac();
|
||||
/// }
|
||||
///
|
||||
/// let (consumed_u32, filled_u8) =
|
||||
/// impls::fill_via_u32_chunks(&mut self.rsl[self.index..],
|
||||
/// &mut dest[read_len..]);
|
||||
///
|
||||
/// self.index += consumed_u32;
|
||||
/// read_len += filled_u8;
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
pub fn fill_via_u32_chunks(src: &[u32], dest: &mut [u8]) -> (usize, usize) {
|
||||
fill_via_chunks!(src, dest, u32)
|
||||
}
|
||||
|
||||
/// Implement `fill_bytes` by reading chunks from the output buffer of a block
|
||||
/// based RNG.
|
||||
///
|
||||
/// The return values are `(consumed_u64, filled_u8)`.
|
||||
/// `filled_u8` is the number of filled bytes in `dest`, which may be less than
|
||||
/// the length of `dest`.
|
||||
/// `consumed_u64` is the number of words consumed from `src`, which is the same
|
||||
/// as `filled_u8 / 8` rounded up.
|
||||
///
|
||||
/// See `fill_via_u32_chunks` for an example.
|
||||
pub fn fill_via_u64_chunks(src: &[u64], dest: &mut [u8]) -> (usize, usize) {
|
||||
fill_via_chunks!(src, dest, u64)
|
||||
}
|
||||
|
||||
/// Implement `next_u32` via `fill_bytes`, little-endian order.
|
||||
pub fn next_u32_via_fill<R: RngCore + ?Sized>(rng: &mut R) -> u32 {
|
||||
let mut buf = [0; 4];
|
||||
rng.fill_bytes(&mut buf);
|
||||
u32::from_le_bytes(buf)
|
||||
}
|
||||
|
||||
/// Implement `next_u64` via `fill_bytes`, little-endian order.
|
||||
pub fn next_u64_via_fill<R: RngCore + ?Sized>(rng: &mut R) -> u64 {
|
||||
let mut buf = [0; 8];
|
||||
rng.fill_bytes(&mut buf);
|
||||
u64::from_le_bytes(buf)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_fill_via_u32_chunks() {
|
||||
let src = [1, 2, 3];
|
||||
let mut dst = [0u8; 11];
|
||||
assert_eq!(fill_via_u32_chunks(&src, &mut dst), (3, 11));
|
||||
assert_eq!(dst, [1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0]);
|
||||
|
||||
let mut dst = [0u8; 13];
|
||||
assert_eq!(fill_via_u32_chunks(&src, &mut dst), (3, 12));
|
||||
assert_eq!(dst, [1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0]);
|
||||
|
||||
let mut dst = [0u8; 5];
|
||||
assert_eq!(fill_via_u32_chunks(&src, &mut dst), (2, 5));
|
||||
assert_eq!(dst, [1, 0, 0, 0, 2]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fill_via_u64_chunks() {
|
||||
let src = [1, 2];
|
||||
let mut dst = [0u8; 11];
|
||||
assert_eq!(fill_via_u64_chunks(&src, &mut dst), (2, 11));
|
||||
assert_eq!(dst, [1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0]);
|
||||
|
||||
let mut dst = [0u8; 17];
|
||||
assert_eq!(fill_via_u64_chunks(&src, &mut dst), (2, 16));
|
||||
assert_eq!(dst, [1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0]);
|
||||
|
||||
let mut dst = [0u8; 5];
|
||||
assert_eq!(fill_via_u64_chunks(&src, &mut dst), (1, 5));
|
||||
assert_eq!(dst, [1, 0, 0, 0, 0]);
|
||||
}
|
||||
}
|
||||
56
zeroidc/vendor/rand_core/src/le.rs
vendored
Normal file
56
zeroidc/vendor/rand_core/src/le.rs
vendored
Normal file
@@ -0,0 +1,56 @@
|
||||
// Copyright 2018 Developers of the Rand project.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||||
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||||
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
|
||||
// option. This file may not be copied, modified, or distributed
|
||||
// except according to those terms.
|
||||
|
||||
//! Little-Endian utilities
|
||||
//!
|
||||
//! Little-Endian order has been chosen for internal usage; this makes some
|
||||
//! useful functions available.
|
||||
|
||||
use core::convert::TryInto;
|
||||
|
||||
/// Reads unsigned 32 bit integers from `src` into `dst`.
|
||||
#[inline]
|
||||
pub fn read_u32_into(src: &[u8], dst: &mut [u32]) {
|
||||
assert!(src.len() >= 4 * dst.len());
|
||||
for (out, chunk) in dst.iter_mut().zip(src.chunks_exact(4)) {
|
||||
*out = u32::from_le_bytes(chunk.try_into().unwrap());
|
||||
}
|
||||
}
|
||||
|
||||
/// Reads unsigned 64 bit integers from `src` into `dst`.
|
||||
#[inline]
|
||||
pub fn read_u64_into(src: &[u8], dst: &mut [u64]) {
|
||||
assert!(src.len() >= 8 * dst.len());
|
||||
for (out, chunk) in dst.iter_mut().zip(src.chunks_exact(8)) {
|
||||
*out = u64::from_le_bytes(chunk.try_into().unwrap());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_read() {
|
||||
let bytes = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16];
|
||||
|
||||
let mut buf = [0u32; 4];
|
||||
read_u32_into(&bytes, &mut buf);
|
||||
assert_eq!(buf[0], 0x04030201);
|
||||
assert_eq!(buf[3], 0x100F0E0D);
|
||||
|
||||
let mut buf = [0u32; 3];
|
||||
read_u32_into(&bytes[1..13], &mut buf); // unaligned
|
||||
assert_eq!(buf[0], 0x05040302);
|
||||
assert_eq!(buf[2], 0x0D0C0B0A);
|
||||
|
||||
let mut buf = [0u64; 2];
|
||||
read_u64_into(&bytes, &mut buf);
|
||||
assert_eq!(buf[0], 0x0807060504030201);
|
||||
assert_eq!(buf[1], 0x100F0E0D0C0B0A09);
|
||||
|
||||
let mut buf = [0u64; 1];
|
||||
read_u64_into(&bytes[7..15], &mut buf); // unaligned
|
||||
assert_eq!(buf[0], 0x0F0E0D0C0B0A0908);
|
||||
}
|
||||
502
zeroidc/vendor/rand_core/src/lib.rs
vendored
Normal file
502
zeroidc/vendor/rand_core/src/lib.rs
vendored
Normal file
@@ -0,0 +1,502 @@
|
||||
// Copyright 2018 Developers of the Rand project.
|
||||
// Copyright 2017-2018 The Rust Project Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||||
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||||
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
|
||||
// option. This file may not be copied, modified, or distributed
|
||||
// except according to those terms.
|
||||
|
||||
//! Random number generation traits
|
||||
//!
|
||||
//! This crate is mainly of interest to crates publishing implementations of
|
||||
//! [`RngCore`]. Other users are encouraged to use the [`rand`] crate instead
|
||||
//! which re-exports the main traits and error types.
|
||||
//!
|
||||
//! [`RngCore`] is the core trait implemented by algorithmic pseudo-random number
|
||||
//! generators and external random-number sources.
|
||||
//!
|
||||
//! [`SeedableRng`] is an extension trait for construction from fixed seeds and
|
||||
//! other random number generators.
|
||||
//!
|
||||
//! [`Error`] is provided for error-handling. It is safe to use in `no_std`
|
||||
//! environments.
|
||||
//!
|
||||
//! The [`impls`] and [`le`] sub-modules include a few small functions to assist
|
||||
//! implementation of [`RngCore`].
|
||||
//!
|
||||
//! [`rand`]: https://docs.rs/rand
|
||||
|
||||
#![doc(
|
||||
html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
|
||||
html_favicon_url = "https://www.rust-lang.org/favicon.ico",
|
||||
html_root_url = "https://rust-random.github.io/rand/"
|
||||
)]
|
||||
#![deny(missing_docs)]
|
||||
#![deny(missing_debug_implementations)]
|
||||
#![doc(test(attr(allow(unused_variables), deny(warnings))))]
|
||||
#![cfg_attr(doc_cfg, feature(doc_cfg))]
|
||||
#![no_std]
|
||||
|
||||
use core::convert::AsMut;
|
||||
use core::default::Default;
|
||||
|
||||
#[cfg(feature = "std")] extern crate std;
|
||||
#[cfg(feature = "alloc")] extern crate alloc;
|
||||
#[cfg(feature = "alloc")] use alloc::boxed::Box;
|
||||
|
||||
pub use error::Error;
|
||||
#[cfg(feature = "getrandom")] pub use os::OsRng;
|
||||
|
||||
|
||||
pub mod block;
|
||||
mod error;
|
||||
pub mod impls;
|
||||
pub mod le;
|
||||
#[cfg(feature = "getrandom")] mod os;
|
||||
|
||||
|
||||
/// The core of a random number generator.
|
||||
///
|
||||
/// This trait encapsulates the low-level functionality common to all
|
||||
/// generators, and is the "back end", to be implemented by generators.
|
||||
/// End users should normally use the `Rng` trait from the [`rand`] crate,
|
||||
/// which is automatically implemented for every type implementing `RngCore`.
|
||||
///
|
||||
/// Three different methods for generating random data are provided since the
|
||||
/// optimal implementation of each is dependent on the type of generator. There
|
||||
/// is no required relationship between the output of each; e.g. many
|
||||
/// implementations of [`fill_bytes`] consume a whole number of `u32` or `u64`
|
||||
/// values and drop any remaining unused bytes. The same can happen with the
|
||||
/// [`next_u32`] and [`next_u64`] methods, implementations may discard some
|
||||
/// random bits for efficiency.
|
||||
///
|
||||
/// The [`try_fill_bytes`] method is a variant of [`fill_bytes`] allowing error
|
||||
/// handling; it is not deemed sufficiently useful to add equivalents for
|
||||
/// [`next_u32`] or [`next_u64`] since the latter methods are almost always used
|
||||
/// with algorithmic generators (PRNGs), which are normally infallible.
|
||||
///
|
||||
/// Implementers should produce bits uniformly. Pathological RNGs (e.g. always
|
||||
/// returning the same value, or never setting certain bits) can break rejection
|
||||
/// sampling used by random distributions, and also break other RNGs when
|
||||
/// seeding them via [`SeedableRng::from_rng`].
|
||||
///
|
||||
/// Algorithmic generators implementing [`SeedableRng`] should normally have
|
||||
/// *portable, reproducible* output, i.e. fix Endianness when converting values
|
||||
/// to avoid platform differences, and avoid making any changes which affect
|
||||
/// output (except by communicating that the release has breaking changes).
|
||||
///
|
||||
/// Typically an RNG will implement only one of the methods available
|
||||
/// in this trait directly, then use the helper functions from the
|
||||
/// [`impls`] module to implement the other methods.
|
||||
///
|
||||
/// It is recommended that implementations also implement:
|
||||
///
|
||||
/// - `Debug` with a custom implementation which *does not* print any internal
|
||||
/// state (at least, [`CryptoRng`]s should not risk leaking state through
|
||||
/// `Debug`).
|
||||
/// - `Serialize` and `Deserialize` (from Serde), preferably making Serde
|
||||
/// support optional at the crate level in PRNG libs.
|
||||
/// - `Clone`, if possible.
|
||||
/// - *never* implement `Copy` (accidental copies may cause repeated values).
|
||||
/// - *do not* implement `Default` for pseudorandom generators, but instead
|
||||
/// implement [`SeedableRng`], to guide users towards proper seeding.
|
||||
/// External / hardware RNGs can choose to implement `Default`.
|
||||
/// - `Eq` and `PartialEq` could be implemented, but are probably not useful.
|
||||
///
|
||||
/// # Example
|
||||
///
|
||||
/// A simple example, obviously not generating very *random* output:
|
||||
///
|
||||
/// ```
|
||||
/// #![allow(dead_code)]
|
||||
/// use rand_core::{RngCore, Error, impls};
|
||||
///
|
||||
/// struct CountingRng(u64);
|
||||
///
|
||||
/// impl RngCore for CountingRng {
|
||||
/// fn next_u32(&mut self) -> u32 {
|
||||
/// self.next_u64() as u32
|
||||
/// }
|
||||
///
|
||||
/// fn next_u64(&mut self) -> u64 {
|
||||
/// self.0 += 1;
|
||||
/// self.0
|
||||
/// }
|
||||
///
|
||||
/// fn fill_bytes(&mut self, dest: &mut [u8]) {
|
||||
/// impls::fill_bytes_via_next(self, dest)
|
||||
/// }
|
||||
///
|
||||
/// fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
|
||||
/// Ok(self.fill_bytes(dest))
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
///
|
||||
/// [`rand`]: https://docs.rs/rand
|
||||
/// [`try_fill_bytes`]: RngCore::try_fill_bytes
|
||||
/// [`fill_bytes`]: RngCore::fill_bytes
|
||||
/// [`next_u32`]: RngCore::next_u32
|
||||
/// [`next_u64`]: RngCore::next_u64
|
||||
pub trait RngCore {
|
||||
/// Return the next random `u32`.
|
||||
///
|
||||
/// RNGs must implement at least one method from this trait directly. In
|
||||
/// the case this method is not implemented directly, it can be implemented
|
||||
/// using `self.next_u64() as u32` or via [`impls::next_u32_via_fill`].
|
||||
fn next_u32(&mut self) -> u32;
|
||||
|
||||
/// Return the next random `u64`.
|
||||
///
|
||||
/// RNGs must implement at least one method from this trait directly. In
|
||||
/// the case this method is not implemented directly, it can be implemented
|
||||
/// via [`impls::next_u64_via_u32`] or via [`impls::next_u64_via_fill`].
|
||||
fn next_u64(&mut self) -> u64;
|
||||
|
||||
/// Fill `dest` with random data.
|
||||
///
|
||||
/// RNGs must implement at least one method from this trait directly. In
|
||||
/// the case this method is not implemented directly, it can be implemented
|
||||
/// via [`impls::fill_bytes_via_next`] or
|
||||
/// via [`RngCore::try_fill_bytes`]; if this generator can
|
||||
/// fail the implementation must choose how best to handle errors here
|
||||
/// (e.g. panic with a descriptive message or log a warning and retry a few
|
||||
/// times).
|
||||
///
|
||||
/// This method should guarantee that `dest` is entirely filled
|
||||
/// with new data, and may panic if this is impossible
|
||||
/// (e.g. reading past the end of a file that is being used as the
|
||||
/// source of randomness).
|
||||
fn fill_bytes(&mut self, dest: &mut [u8]);
|
||||
|
||||
/// Fill `dest` entirely with random data.
|
||||
///
|
||||
/// This is the only method which allows an RNG to report errors while
|
||||
/// generating random data thus making this the primary method implemented
|
||||
/// by external (true) RNGs (e.g. `OsRng`) which can fail. It may be used
|
||||
/// directly to generate keys and to seed (infallible) PRNGs.
|
||||
///
|
||||
/// Other than error handling, this method is identical to [`RngCore::fill_bytes`];
|
||||
/// thus this may be implemented using `Ok(self.fill_bytes(dest))` or
|
||||
/// `fill_bytes` may be implemented with
|
||||
/// `self.try_fill_bytes(dest).unwrap()` or more specific error handling.
|
||||
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>;
|
||||
}
|
||||
|
||||
/// A marker trait used to indicate that an [`RngCore`] or [`BlockRngCore`]
|
||||
/// implementation is supposed to be cryptographically secure.
|
||||
///
|
||||
/// *Cryptographically secure generators*, also known as *CSPRNGs*, should
|
||||
/// satisfy an additional properties over other generators: given the first
|
||||
/// *k* bits of an algorithm's output
|
||||
/// sequence, it should not be possible using polynomial-time algorithms to
|
||||
/// predict the next bit with probability significantly greater than 50%.
|
||||
///
|
||||
/// Some generators may satisfy an additional property, however this is not
|
||||
/// required by this trait: if the CSPRNG's state is revealed, it should not be
|
||||
/// computationally-feasible to reconstruct output prior to this. Some other
|
||||
/// generators allow backwards-computation and are consided *reversible*.
|
||||
///
|
||||
/// Note that this trait is provided for guidance only and cannot guarantee
|
||||
/// suitability for cryptographic applications. In general it should only be
|
||||
/// implemented for well-reviewed code implementing well-regarded algorithms.
|
||||
///
|
||||
/// Note also that use of a `CryptoRng` does not protect against other
|
||||
/// weaknesses such as seeding from a weak entropy source or leaking state.
|
||||
///
|
||||
/// [`BlockRngCore`]: block::BlockRngCore
|
||||
pub trait CryptoRng {}
|
||||
|
||||
/// A random number generator that can be explicitly seeded.
|
||||
///
|
||||
/// This trait encapsulates the low-level functionality common to all
|
||||
/// pseudo-random number generators (PRNGs, or algorithmic generators).
|
||||
///
|
||||
/// [`rand`]: https://docs.rs/rand
|
||||
pub trait SeedableRng: Sized {
|
||||
/// Seed type, which is restricted to types mutably-dereferencable as `u8`
|
||||
/// arrays (we recommend `[u8; N]` for some `N`).
|
||||
///
|
||||
/// It is recommended to seed PRNGs with a seed of at least circa 100 bits,
|
||||
/// which means an array of `[u8; 12]` or greater to avoid picking RNGs with
|
||||
/// partially overlapping periods.
|
||||
///
|
||||
/// For cryptographic RNG's a seed of 256 bits is recommended, `[u8; 32]`.
|
||||
///
|
||||
///
|
||||
/// # Implementing `SeedableRng` for RNGs with large seeds
|
||||
///
|
||||
/// Note that the required traits `core::default::Default` and
|
||||
/// `core::convert::AsMut<u8>` are not implemented for large arrays
|
||||
/// `[u8; N]` with `N` > 32. To be able to implement the traits required by
|
||||
/// `SeedableRng` for RNGs with such large seeds, the newtype pattern can be
|
||||
/// used:
|
||||
///
|
||||
/// ```
|
||||
/// use rand_core::SeedableRng;
|
||||
///
|
||||
/// const N: usize = 64;
|
||||
/// pub struct MyRngSeed(pub [u8; N]);
|
||||
/// pub struct MyRng(MyRngSeed);
|
||||
///
|
||||
/// impl Default for MyRngSeed {
|
||||
/// fn default() -> MyRngSeed {
|
||||
/// MyRngSeed([0; N])
|
||||
/// }
|
||||
/// }
|
||||
///
|
||||
/// impl AsMut<[u8]> for MyRngSeed {
|
||||
/// fn as_mut(&mut self) -> &mut [u8] {
|
||||
/// &mut self.0
|
||||
/// }
|
||||
/// }
|
||||
///
|
||||
/// impl SeedableRng for MyRng {
|
||||
/// type Seed = MyRngSeed;
|
||||
///
|
||||
/// fn from_seed(seed: MyRngSeed) -> MyRng {
|
||||
/// MyRng(seed)
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
type Seed: Sized + Default + AsMut<[u8]>;
|
||||
|
||||
/// Create a new PRNG using the given seed.
|
||||
///
|
||||
/// PRNG implementations are allowed to assume that bits in the seed are
|
||||
/// well distributed. That means usually that the number of one and zero
|
||||
/// bits are roughly equal, and values like 0, 1 and (size - 1) are unlikely.
|
||||
/// Note that many non-cryptographic PRNGs will show poor quality output
|
||||
/// if this is not adhered to. If you wish to seed from simple numbers, use
|
||||
/// `seed_from_u64` instead.
|
||||
///
|
||||
/// All PRNG implementations should be reproducible unless otherwise noted:
|
||||
/// given a fixed `seed`, the same sequence of output should be produced
|
||||
/// on all runs, library versions and architectures (e.g. check endianness).
|
||||
/// Any "value-breaking" changes to the generator should require bumping at
|
||||
/// least the minor version and documentation of the change.
|
||||
///
|
||||
/// It is not required that this function yield the same state as a
|
||||
/// reference implementation of the PRNG given equivalent seed; if necessary
|
||||
/// another constructor replicating behaviour from a reference
|
||||
/// implementation can be added.
|
||||
///
|
||||
/// PRNG implementations should make sure `from_seed` never panics. In the
|
||||
/// case that some special values (like an all zero seed) are not viable
|
||||
/// seeds it is preferable to map these to alternative constant value(s),
|
||||
/// for example `0xBAD5EEDu32` or `0x0DDB1A5E5BAD5EEDu64` ("odd biases? bad
|
||||
/// seed"). This is assuming only a small number of values must be rejected.
|
||||
fn from_seed(seed: Self::Seed) -> Self;
|
||||
|
||||
/// Create a new PRNG using a `u64` seed.
|
||||
///
|
||||
/// This is a convenience-wrapper around `from_seed` to allow construction
|
||||
/// of any `SeedableRng` from a simple `u64` value. It is designed such that
|
||||
/// low Hamming Weight numbers like 0 and 1 can be used and should still
|
||||
/// result in good, independent seeds to the PRNG which is returned.
|
||||
///
|
||||
/// This **is not suitable for cryptography**, as should be clear given that
|
||||
/// the input size is only 64 bits.
|
||||
///
|
||||
/// Implementations for PRNGs *may* provide their own implementations of
|
||||
/// this function, but the default implementation should be good enough for
|
||||
/// all purposes. *Changing* the implementation of this function should be
|
||||
/// considered a value-breaking change.
|
||||
fn seed_from_u64(mut state: u64) -> Self {
|
||||
// We use PCG32 to generate a u32 sequence, and copy to the seed
|
||||
fn pcg32(state: &mut u64) -> [u8; 4] {
|
||||
const MUL: u64 = 6364136223846793005;
|
||||
const INC: u64 = 11634580027462260723;
|
||||
|
||||
// We advance the state first (to get away from the input value,
|
||||
// in case it has low Hamming Weight).
|
||||
*state = state.wrapping_mul(MUL).wrapping_add(INC);
|
||||
let state = *state;
|
||||
|
||||
// Use PCG output function with to_le to generate x:
|
||||
let xorshifted = (((state >> 18) ^ state) >> 27) as u32;
|
||||
let rot = (state >> 59) as u32;
|
||||
let x = xorshifted.rotate_right(rot);
|
||||
x.to_le_bytes()
|
||||
}
|
||||
|
||||
let mut seed = Self::Seed::default();
|
||||
let mut iter = seed.as_mut().chunks_exact_mut(4);
|
||||
for chunk in &mut iter {
|
||||
chunk.copy_from_slice(&pcg32(&mut state));
|
||||
}
|
||||
let rem = iter.into_remainder();
|
||||
if !rem.is_empty() {
|
||||
rem.copy_from_slice(&pcg32(&mut state)[..rem.len()]);
|
||||
}
|
||||
|
||||
Self::from_seed(seed)
|
||||
}
|
||||
|
||||
/// Create a new PRNG seeded from another `Rng`.
|
||||
///
|
||||
/// This may be useful when needing to rapidly seed many PRNGs from a master
|
||||
/// PRNG, and to allow forking of PRNGs. It may be considered deterministic.
|
||||
///
|
||||
/// The master PRNG should be at least as high quality as the child PRNGs.
|
||||
/// When seeding non-cryptographic child PRNGs, we recommend using a
|
||||
/// different algorithm for the master PRNG (ideally a CSPRNG) to avoid
|
||||
/// correlations between the child PRNGs. If this is not possible (e.g.
|
||||
/// forking using small non-crypto PRNGs) ensure that your PRNG has a good
|
||||
/// mixing function on the output or consider use of a hash function with
|
||||
/// `from_seed`.
|
||||
///
|
||||
/// Note that seeding `XorShiftRng` from another `XorShiftRng` provides an
|
||||
/// extreme example of what can go wrong: the new PRNG will be a clone
|
||||
/// of the parent.
|
||||
///
|
||||
/// PRNG implementations are allowed to assume that a good RNG is provided
|
||||
/// for seeding, and that it is cryptographically secure when appropriate.
|
||||
/// As of `rand` 0.7 / `rand_core` 0.5, implementations overriding this
|
||||
/// method should ensure the implementation satisfies reproducibility
|
||||
/// (in prior versions this was not required).
|
||||
///
|
||||
/// [`rand`]: https://docs.rs/rand
|
||||
fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> {
|
||||
let mut seed = Self::Seed::default();
|
||||
rng.try_fill_bytes(seed.as_mut())?;
|
||||
Ok(Self::from_seed(seed))
|
||||
}
|
||||
|
||||
/// Creates a new instance of the RNG seeded via [`getrandom`].
|
||||
///
|
||||
/// This method is the recommended way to construct non-deterministic PRNGs
|
||||
/// since it is convenient and secure.
|
||||
///
|
||||
/// In case the overhead of using [`getrandom`] to seed *many* PRNGs is an
|
||||
/// issue, one may prefer to seed from a local PRNG, e.g.
|
||||
/// `from_rng(thread_rng()).unwrap()`.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// If [`getrandom`] is unable to provide secure entropy this method will panic.
|
||||
///
|
||||
/// [`getrandom`]: https://docs.rs/getrandom
|
||||
#[cfg(feature = "getrandom")]
|
||||
#[cfg_attr(doc_cfg, doc(cfg(feature = "getrandom")))]
|
||||
fn from_entropy() -> Self {
|
||||
let mut seed = Self::Seed::default();
|
||||
if let Err(err) = getrandom::getrandom(seed.as_mut()) {
|
||||
panic!("from_entropy failed: {}", err);
|
||||
}
|
||||
Self::from_seed(seed)
|
||||
}
|
||||
}
|
||||
|
||||
// Implement `RngCore` for references to an `RngCore`.
|
||||
// Force inlining all functions, so that it is up to the `RngCore`
|
||||
// implementation and the optimizer to decide on inlining.
|
||||
impl<'a, R: RngCore + ?Sized> RngCore for &'a mut R {
|
||||
#[inline(always)]
|
||||
fn next_u32(&mut self) -> u32 {
|
||||
(**self).next_u32()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn next_u64(&mut self) -> u64 {
|
||||
(**self).next_u64()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn fill_bytes(&mut self, dest: &mut [u8]) {
|
||||
(**self).fill_bytes(dest)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
|
||||
(**self).try_fill_bytes(dest)
|
||||
}
|
||||
}
|
||||
|
||||
// Implement `RngCore` for boxed references to an `RngCore`.
|
||||
// Force inlining all functions, so that it is up to the `RngCore`
|
||||
// implementation and the optimizer to decide on inlining.
|
||||
#[cfg(feature = "alloc")]
|
||||
impl<R: RngCore + ?Sized> RngCore for Box<R> {
|
||||
#[inline(always)]
|
||||
fn next_u32(&mut self) -> u32 {
|
||||
(**self).next_u32()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn next_u64(&mut self) -> u64 {
|
||||
(**self).next_u64()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn fill_bytes(&mut self, dest: &mut [u8]) {
|
||||
(**self).fill_bytes(dest)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
|
||||
(**self).try_fill_bytes(dest)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
impl std::io::Read for dyn RngCore {
|
||||
fn read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error> {
|
||||
self.try_fill_bytes(buf)?;
|
||||
Ok(buf.len())
|
||||
}
|
||||
}
|
||||
|
||||
// Implement `CryptoRng` for references to an `CryptoRng`.
|
||||
impl<'a, R: CryptoRng + ?Sized> CryptoRng for &'a mut R {}
|
||||
|
||||
// Implement `CryptoRng` for boxed references to an `CryptoRng`.
|
||||
#[cfg(feature = "alloc")]
|
||||
impl<R: CryptoRng + ?Sized> CryptoRng for Box<R> {}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_seed_from_u64() {
|
||||
struct SeedableNum(u64);
|
||||
impl SeedableRng for SeedableNum {
|
||||
type Seed = [u8; 8];
|
||||
|
||||
fn from_seed(seed: Self::Seed) -> Self {
|
||||
let mut x = [0u64; 1];
|
||||
le::read_u64_into(&seed, &mut x);
|
||||
SeedableNum(x[0])
|
||||
}
|
||||
}
|
||||
|
||||
const N: usize = 8;
|
||||
const SEEDS: [u64; N] = [0u64, 1, 2, 3, 4, 8, 16, -1i64 as u64];
|
||||
let mut results = [0u64; N];
|
||||
for (i, seed) in SEEDS.iter().enumerate() {
|
||||
let SeedableNum(x) = SeedableNum::seed_from_u64(*seed);
|
||||
results[i] = x;
|
||||
}
|
||||
|
||||
for (i1, r1) in results.iter().enumerate() {
|
||||
let weight = r1.count_ones();
|
||||
// This is the binomial distribution B(64, 0.5), so chance of
|
||||
// weight < 20 is binocdf(19, 64, 0.5) = 7.8e-4, and same for
|
||||
// weight > 44.
|
||||
assert!((20..=44).contains(&weight));
|
||||
|
||||
for (i2, r2) in results.iter().enumerate() {
|
||||
if i1 == i2 {
|
||||
continue;
|
||||
}
|
||||
let diff_weight = (r1 ^ r2).count_ones();
|
||||
assert!(diff_weight >= 20);
|
||||
}
|
||||
}
|
||||
|
||||
// value-breakage test:
|
||||
assert_eq!(results[0], 5029875928683246316);
|
||||
}
|
||||
}
|
||||
85
zeroidc/vendor/rand_core/src/os.rs
vendored
Normal file
85
zeroidc/vendor/rand_core/src/os.rs
vendored
Normal file
@@ -0,0 +1,85 @@
|
||||
// Copyright 2019 Developers of the Rand project.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||||
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||||
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
|
||||
// option. This file may not be copied, modified, or distributed
|
||||
// except according to those terms.
|
||||
|
||||
//! Interface to the random number generator of the operating system.
|
||||
|
||||
use crate::{impls, CryptoRng, Error, RngCore};
|
||||
use getrandom::getrandom;
|
||||
|
||||
/// A random number generator that retrieves randomness from the
|
||||
/// operating system.
|
||||
///
|
||||
/// This is a zero-sized struct. It can be freely constructed with `OsRng`.
|
||||
///
|
||||
/// The implementation is provided by the [getrandom] crate. Refer to
|
||||
/// [getrandom] documentation for details.
|
||||
///
|
||||
/// This struct is only available when specifying the crate feature `getrandom`
|
||||
/// or `std`. When using the `rand` lib, it is also available as `rand::rngs::OsRng`.
|
||||
///
|
||||
/// # Blocking and error handling
|
||||
///
|
||||
/// It is possible that when used during early boot the first call to `OsRng`
|
||||
/// will block until the system's RNG is initialised. It is also possible
|
||||
/// (though highly unlikely) for `OsRng` to fail on some platforms, most
|
||||
/// likely due to system mis-configuration.
|
||||
///
|
||||
/// After the first successful call, it is highly unlikely that failures or
|
||||
/// significant delays will occur (although performance should be expected to
|
||||
/// be much slower than a user-space PRNG).
|
||||
///
|
||||
/// # Usage example
|
||||
/// ```
|
||||
/// use rand_core::{RngCore, OsRng};
|
||||
///
|
||||
/// let mut key = [0u8; 16];
|
||||
/// OsRng.fill_bytes(&mut key);
|
||||
/// let random_u64 = OsRng.next_u64();
|
||||
/// ```
|
||||
///
|
||||
/// [getrandom]: https://crates.io/crates/getrandom
|
||||
#[cfg_attr(doc_cfg, doc(cfg(feature = "getrandom")))]
|
||||
#[derive(Clone, Copy, Debug, Default)]
|
||||
pub struct OsRng;
|
||||
|
||||
impl CryptoRng for OsRng {}
|
||||
|
||||
impl RngCore for OsRng {
|
||||
fn next_u32(&mut self) -> u32 {
|
||||
impls::next_u32_via_fill(self)
|
||||
}
|
||||
|
||||
fn next_u64(&mut self) -> u64 {
|
||||
impls::next_u64_via_fill(self)
|
||||
}
|
||||
|
||||
fn fill_bytes(&mut self, dest: &mut [u8]) {
|
||||
if let Err(e) = self.try_fill_bytes(dest) {
|
||||
panic!("Error: {}", e);
|
||||
}
|
||||
}
|
||||
|
||||
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
|
||||
getrandom(dest)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_os_rng() {
|
||||
let x = OsRng.next_u64();
|
||||
let y = OsRng.next_u64();
|
||||
assert!(x != 0);
|
||||
assert!(x != y);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_construction() {
|
||||
let mut rng = OsRng::default();
|
||||
assert!(rng.next_u64() != 0);
|
||||
}
|
||||
Reference in New Issue
Block a user