RPM build fix (reverted CI changes which will need to be un-reverted or made conditional) and vendor Rust dependencies to make builds much faster in any CI system.

This commit is contained in:
Adam Ierymenko
2022-06-08 07:32:16 -04:00
parent 373ca30269
commit d5ca4e5f52
12611 changed files with 2898014 additions and 284 deletions

View File

@@ -0,0 +1,219 @@
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Bernoulli distribution.
use crate::distributions::Distribution;
use crate::Rng;
use core::{fmt, u64};
#[cfg(feature = "serde1")]
use serde::{Serialize, Deserialize};
/// The Bernoulli distribution.
///
/// This is a special case of the Binomial distribution where `n = 1`.
///
/// # Example
///
/// ```rust
/// use rand::distributions::{Bernoulli, Distribution};
///
/// let d = Bernoulli::new(0.3).unwrap();
/// let v = d.sample(&mut rand::thread_rng());
/// println!("{} is from a Bernoulli distribution", v);
/// ```
///
/// # Precision
///
/// This `Bernoulli` distribution uses 64 bits from the RNG (a `u64`),
/// so only probabilities that are multiples of 2<sup>-64</sup> can be
/// represented.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Bernoulli {
/// Probability of success, relative to the maximal integer.
p_int: u64,
}
// To sample from the Bernoulli distribution we use a method that compares a
// random `u64` value `v < (p * 2^64)`.
//
// If `p == 1.0`, the integer `v` to compare against can not represented as a
// `u64`. We manually set it to `u64::MAX` instead (2^64 - 1 instead of 2^64).
// Note that value of `p < 1.0` can never result in `u64::MAX`, because an
// `f64` only has 53 bits of precision, and the next largest value of `p` will
// result in `2^64 - 2048`.
//
// Also there is a 100% theoretical concern: if someone consistently wants to
// generate `true` using the Bernoulli distribution (i.e. by using a probability
// of `1.0`), just using `u64::MAX` is not enough. On average it would return
// false once every 2^64 iterations. Some people apparently care about this
// case.
//
// That is why we special-case `u64::MAX` to always return `true`, without using
// the RNG, and pay the performance price for all uses that *are* reasonable.
// Luckily, if `new()` and `sample` are close, the compiler can optimize out the
// extra check.
const ALWAYS_TRUE: u64 = u64::MAX;
// This is just `2.0.powi(64)`, but written this way because it is not available
// in `no_std` mode.
const SCALE: f64 = 2.0 * (1u64 << 63) as f64;
/// Error type returned from `Bernoulli::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum BernoulliError {
/// `p < 0` or `p > 1`.
InvalidProbability,
}
impl fmt::Display for BernoulliError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
BernoulliError::InvalidProbability => "p is outside [0, 1] in Bernoulli distribution",
})
}
}
#[cfg(feature = "std")]
impl ::std::error::Error for BernoulliError {}
impl Bernoulli {
/// Construct a new `Bernoulli` with the given probability of success `p`.
///
/// # Precision
///
/// For `p = 1.0`, the resulting distribution will always generate true.
/// For `p = 0.0`, the resulting distribution will always generate false.
///
/// This method is accurate for any input `p` in the range `[0, 1]` which is
/// a multiple of 2<sup>-64</sup>. (Note that not all multiples of
/// 2<sup>-64</sup> in `[0, 1]` can be represented as a `f64`.)
#[inline]
pub fn new(p: f64) -> Result<Bernoulli, BernoulliError> {
if !(0.0..1.0).contains(&p) {
if p == 1.0 {
return Ok(Bernoulli { p_int: ALWAYS_TRUE });
}
return Err(BernoulliError::InvalidProbability);
}
Ok(Bernoulli {
p_int: (p * SCALE) as u64,
})
}
/// Construct a new `Bernoulli` with the probability of success of
/// `numerator`-in-`denominator`. I.e. `new_ratio(2, 3)` will return
/// a `Bernoulli` with a 2-in-3 chance, or about 67%, of returning `true`.
///
/// return `true`. If `numerator == 0` it will always return `false`.
/// For `numerator > denominator` and `denominator == 0`, this returns an
/// error. Otherwise, for `numerator == denominator`, samples are always
/// true; for `numerator == 0` samples are always false.
#[inline]
pub fn from_ratio(numerator: u32, denominator: u32) -> Result<Bernoulli, BernoulliError> {
if numerator > denominator || denominator == 0 {
return Err(BernoulliError::InvalidProbability);
}
if numerator == denominator {
return Ok(Bernoulli { p_int: ALWAYS_TRUE });
}
let p_int = ((f64::from(numerator) / f64::from(denominator)) * SCALE) as u64;
Ok(Bernoulli { p_int })
}
}
impl Distribution<bool> for Bernoulli {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool {
// Make sure to always return true for p = 1.0.
if self.p_int == ALWAYS_TRUE {
return true;
}
let v: u64 = rng.gen();
v < self.p_int
}
}
#[cfg(test)]
mod test {
use super::Bernoulli;
use crate::distributions::Distribution;
use crate::Rng;
#[test]
#[cfg(feature="serde1")]
fn test_serializing_deserializing_bernoulli() {
let coin_flip = Bernoulli::new(0.5).unwrap();
let de_coin_flip : Bernoulli = bincode::deserialize(&bincode::serialize(&coin_flip).unwrap()).unwrap();
assert_eq!(coin_flip.p_int, de_coin_flip.p_int);
}
#[test]
fn test_trivial() {
// We prefer to be explicit here.
#![allow(clippy::bool_assert_comparison)]
let mut r = crate::test::rng(1);
let always_false = Bernoulli::new(0.0).unwrap();
let always_true = Bernoulli::new(1.0).unwrap();
for _ in 0..5 {
assert_eq!(r.sample::<bool, _>(&always_false), false);
assert_eq!(r.sample::<bool, _>(&always_true), true);
assert_eq!(Distribution::<bool>::sample(&always_false, &mut r), false);
assert_eq!(Distribution::<bool>::sample(&always_true, &mut r), true);
}
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_average() {
const P: f64 = 0.3;
const NUM: u32 = 3;
const DENOM: u32 = 10;
let d1 = Bernoulli::new(P).unwrap();
let d2 = Bernoulli::from_ratio(NUM, DENOM).unwrap();
const N: u32 = 100_000;
let mut sum1: u32 = 0;
let mut sum2: u32 = 0;
let mut rng = crate::test::rng(2);
for _ in 0..N {
if d1.sample(&mut rng) {
sum1 += 1;
}
if d2.sample(&mut rng) {
sum2 += 1;
}
}
let avg1 = (sum1 as f64) / (N as f64);
assert!((avg1 - P).abs() < 5e-3);
let avg2 = (sum2 as f64) / (N as f64);
assert!((avg2 - (NUM as f64) / (DENOM as f64)).abs() < 5e-3);
}
#[test]
fn value_stability() {
let mut rng = crate::test::rng(3);
let distr = Bernoulli::new(0.4532).unwrap();
let mut buf = [false; 10];
for x in &mut buf {
*x = rng.sample(&distr);
}
assert_eq!(buf, [
true, false, false, true, false, false, true, true, true, true
]);
}
#[test]
fn bernoulli_distributions_can_be_compared() {
assert_eq!(Bernoulli::new(1.0), Bernoulli::new(1.0));
}
}

View File

@@ -0,0 +1,272 @@
// Copyright 2018 Developers of the Rand project.
// Copyright 2013-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Distribution trait and associates
use crate::Rng;
use core::iter;
#[cfg(feature = "alloc")]
use alloc::string::String;
/// Types (distributions) that can be used to create a random instance of `T`.
///
/// It is possible to sample from a distribution through both the
/// `Distribution` and [`Rng`] traits, via `distr.sample(&mut rng)` and
/// `rng.sample(distr)`. They also both offer the [`sample_iter`] method, which
/// produces an iterator that samples from the distribution.
///
/// All implementations are expected to be immutable; this has the significant
/// advantage of not needing to consider thread safety, and for most
/// distributions efficient state-less sampling algorithms are available.
///
/// Implementations are typically expected to be portable with reproducible
/// results when used with a PRNG with fixed seed; see the
/// [portability chapter](https://rust-random.github.io/book/portability.html)
/// of The Rust Rand Book. In some cases this does not apply, e.g. the `usize`
/// type requires different sampling on 32-bit and 64-bit machines.
///
/// [`sample_iter`]: Distribution::sample_iter
pub trait Distribution<T> {
/// Generate a random value of `T`, using `rng` as the source of randomness.
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T;
/// Create an iterator that generates random values of `T`, using `rng` as
/// the source of randomness.
///
/// Note that this function takes `self` by value. This works since
/// `Distribution<T>` is impl'd for `&D` where `D: Distribution<T>`,
/// however borrowing is not automatic hence `distr.sample_iter(...)` may
/// need to be replaced with `(&distr).sample_iter(...)` to borrow or
/// `(&*distr).sample_iter(...)` to reborrow an existing reference.
///
/// # Example
///
/// ```
/// use rand::thread_rng;
/// use rand::distributions::{Distribution, Alphanumeric, Uniform, Standard};
///
/// let mut rng = thread_rng();
///
/// // Vec of 16 x f32:
/// let v: Vec<f32> = Standard.sample_iter(&mut rng).take(16).collect();
///
/// // String:
/// let s: String = Alphanumeric
/// .sample_iter(&mut rng)
/// .take(7)
/// .map(char::from)
/// .collect();
///
/// // Dice-rolling:
/// let die_range = Uniform::new_inclusive(1, 6);
/// let mut roll_die = die_range.sample_iter(&mut rng);
/// while roll_die.next().unwrap() != 6 {
/// println!("Not a 6; rolling again!");
/// }
/// ```
fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>
where
R: Rng,
Self: Sized,
{
DistIter {
distr: self,
rng,
phantom: ::core::marker::PhantomData,
}
}
/// Create a distribution of values of 'S' by mapping the output of `Self`
/// through the closure `F`
///
/// # Example
///
/// ```
/// use rand::thread_rng;
/// use rand::distributions::{Distribution, Uniform};
///
/// let mut rng = thread_rng();
///
/// let die = Uniform::new_inclusive(1, 6);
/// let even_number = die.map(|num| num % 2 == 0);
/// while !even_number.sample(&mut rng) {
/// println!("Still odd; rolling again!");
/// }
/// ```
fn map<F, S>(self, func: F) -> DistMap<Self, F, T, S>
where
F: Fn(T) -> S,
Self: Sized,
{
DistMap {
distr: self,
func,
phantom: ::core::marker::PhantomData,
}
}
}
impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T {
(*self).sample(rng)
}
}
/// An iterator that generates random values of `T` with distribution `D`,
/// using `R` as the source of randomness.
///
/// This `struct` is created by the [`sample_iter`] method on [`Distribution`].
/// See its documentation for more.
///
/// [`sample_iter`]: Distribution::sample_iter
#[derive(Debug)]
pub struct DistIter<D, R, T> {
distr: D,
rng: R,
phantom: ::core::marker::PhantomData<T>,
}
impl<D, R, T> Iterator for DistIter<D, R, T>
where
D: Distribution<T>,
R: Rng,
{
type Item = T;
#[inline(always)]
fn next(&mut self) -> Option<T> {
// Here, self.rng may be a reference, but we must take &mut anyway.
// Even if sample could take an R: Rng by value, we would need to do this
// since Rng is not copyable and we cannot enforce that this is "reborrowable".
Some(self.distr.sample(&mut self.rng))
}
fn size_hint(&self) -> (usize, Option<usize>) {
(usize::max_value(), None)
}
}
impl<D, R, T> iter::FusedIterator for DistIter<D, R, T>
where
D: Distribution<T>,
R: Rng,
{
}
#[cfg(features = "nightly")]
impl<D, R, T> iter::TrustedLen for DistIter<D, R, T>
where
D: Distribution<T>,
R: Rng,
{
}
/// A distribution of values of type `S` derived from the distribution `D`
/// by mapping its output of type `T` through the closure `F`.
///
/// This `struct` is created by the [`Distribution::map`] method.
/// See its documentation for more.
#[derive(Debug)]
pub struct DistMap<D, F, T, S> {
distr: D,
func: F,
phantom: ::core::marker::PhantomData<fn(T) -> S>,
}
impl<D, F, T, S> Distribution<S> for DistMap<D, F, T, S>
where
D: Distribution<T>,
F: Fn(T) -> S,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> S {
(self.func)(self.distr.sample(rng))
}
}
/// `String` sampler
///
/// Sampling a `String` of random characters is not quite the same as collecting
/// a sequence of chars. This trait contains some helpers.
#[cfg(feature = "alloc")]
pub trait DistString {
/// Append `len` random chars to `string`
fn append_string<R: Rng + ?Sized>(&self, rng: &mut R, string: &mut String, len: usize);
/// Generate a `String` of `len` random chars
#[inline]
fn sample_string<R: Rng + ?Sized>(&self, rng: &mut R, len: usize) -> String {
let mut s = String::new();
self.append_string(rng, &mut s, len);
s
}
}
#[cfg(test)]
mod tests {
use crate::distributions::{Distribution, Uniform};
use crate::Rng;
#[test]
fn test_distributions_iter() {
use crate::distributions::Open01;
let mut rng = crate::test::rng(210);
let distr = Open01;
let mut iter = Distribution::<f32>::sample_iter(distr, &mut rng);
let mut sum: f32 = 0.;
for _ in 0..100 {
sum += iter.next().unwrap();
}
assert!(0. < sum && sum < 100.);
}
#[test]
fn test_distributions_map() {
let dist = Uniform::new_inclusive(0, 5).map(|val| val + 15);
let mut rng = crate::test::rng(212);
let val = dist.sample(&mut rng);
assert!((15..=20).contains(&val));
}
#[test]
fn test_make_an_iter() {
fn ten_dice_rolls_other_than_five<R: Rng>(
rng: &mut R,
) -> impl Iterator<Item = i32> + '_ {
Uniform::new_inclusive(1, 6)
.sample_iter(rng)
.filter(|x| *x != 5)
.take(10)
}
let mut rng = crate::test::rng(211);
let mut count = 0;
for val in ten_dice_rolls_other_than_five(&mut rng) {
assert!((1..=6).contains(&val) && val != 5);
count += 1;
}
assert_eq!(count, 10);
}
#[test]
#[cfg(feature = "alloc")]
fn test_dist_string() {
use core::str;
use crate::distributions::{Alphanumeric, DistString, Standard};
let mut rng = crate::test::rng(213);
let s1 = Alphanumeric.sample_string(&mut rng, 20);
assert_eq!(s1.len(), 20);
assert_eq!(str::from_utf8(s1.as_bytes()), Ok(s1.as_str()));
let s2 = Standard.sample_string(&mut rng, 20);
assert_eq!(s2.chars().count(), 20);
assert_eq!(str::from_utf8(s2.as_bytes()), Ok(s2.as_str()));
}
}

View File

@@ -0,0 +1,312 @@
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Basic floating-point number distributions
use crate::distributions::utils::FloatSIMDUtils;
use crate::distributions::{Distribution, Standard};
use crate::Rng;
use core::mem;
#[cfg(feature = "simd_support")] use packed_simd::*;
#[cfg(feature = "serde1")]
use serde::{Serialize, Deserialize};
/// A distribution to sample floating point numbers uniformly in the half-open
/// interval `(0, 1]`, i.e. including 1 but not 0.
///
/// All values that can be generated are of the form `n * ε/2`. For `f32`
/// the 24 most significant random bits of a `u32` are used and for `f64` the
/// 53 most significant bits of a `u64` are used. The conversion uses the
/// multiplicative method.
///
/// See also: [`Standard`] which samples from `[0, 1)`, [`Open01`]
/// which samples from `(0, 1)` and [`Uniform`] which samples from arbitrary
/// ranges.
///
/// # Example
/// ```
/// use rand::{thread_rng, Rng};
/// use rand::distributions::OpenClosed01;
///
/// let val: f32 = thread_rng().sample(OpenClosed01);
/// println!("f32 from (0, 1): {}", val);
/// ```
///
/// [`Standard`]: crate::distributions::Standard
/// [`Open01`]: crate::distributions::Open01
/// [`Uniform`]: crate::distributions::uniform::Uniform
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct OpenClosed01;
/// A distribution to sample floating point numbers uniformly in the open
/// interval `(0, 1)`, i.e. not including either endpoint.
///
/// All values that can be generated are of the form `n * ε + ε/2`. For `f32`
/// the 23 most significant random bits of an `u32` are used, for `f64` 52 from
/// an `u64`. The conversion uses a transmute-based method.
///
/// See also: [`Standard`] which samples from `[0, 1)`, [`OpenClosed01`]
/// which samples from `(0, 1]` and [`Uniform`] which samples from arbitrary
/// ranges.
///
/// # Example
/// ```
/// use rand::{thread_rng, Rng};
/// use rand::distributions::Open01;
///
/// let val: f32 = thread_rng().sample(Open01);
/// println!("f32 from (0, 1): {}", val);
/// ```
///
/// [`Standard`]: crate::distributions::Standard
/// [`OpenClosed01`]: crate::distributions::OpenClosed01
/// [`Uniform`]: crate::distributions::uniform::Uniform
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Open01;
// This trait is needed by both this lib and rand_distr hence is a hidden export
#[doc(hidden)]
pub trait IntoFloat {
type F;
/// Helper method to combine the fraction and a constant exponent into a
/// float.
///
/// Only the least significant bits of `self` may be set, 23 for `f32` and
/// 52 for `f64`.
/// The resulting value will fall in a range that depends on the exponent.
/// As an example the range with exponent 0 will be
/// [2<sup>0</sup>..2<sup>1</sup>), which is [1..2).
fn into_float_with_exponent(self, exponent: i32) -> Self::F;
}
macro_rules! float_impls {
($ty:ident, $uty:ident, $f_scalar:ident, $u_scalar:ty,
$fraction_bits:expr, $exponent_bias:expr) => {
impl IntoFloat for $uty {
type F = $ty;
#[inline(always)]
fn into_float_with_exponent(self, exponent: i32) -> $ty {
// The exponent is encoded using an offset-binary representation
let exponent_bits: $u_scalar =
(($exponent_bias + exponent) as $u_scalar) << $fraction_bits;
$ty::from_bits(self | exponent_bits)
}
}
impl Distribution<$ty> for Standard {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty {
// Multiply-based method; 24/53 random bits; [0, 1) interval.
// We use the most significant bits because for simple RNGs
// those are usually more random.
let float_size = mem::size_of::<$f_scalar>() as u32 * 8;
let precision = $fraction_bits + 1;
let scale = 1.0 / ((1 as $u_scalar << precision) as $f_scalar);
let value: $uty = rng.gen();
let value = value >> (float_size - precision);
scale * $ty::cast_from_int(value)
}
}
impl Distribution<$ty> for OpenClosed01 {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty {
// Multiply-based method; 24/53 random bits; (0, 1] interval.
// We use the most significant bits because for simple RNGs
// those are usually more random.
let float_size = mem::size_of::<$f_scalar>() as u32 * 8;
let precision = $fraction_bits + 1;
let scale = 1.0 / ((1 as $u_scalar << precision) as $f_scalar);
let value: $uty = rng.gen();
let value = value >> (float_size - precision);
// Add 1 to shift up; will not overflow because of right-shift:
scale * $ty::cast_from_int(value + 1)
}
}
impl Distribution<$ty> for Open01 {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty {
// Transmute-based method; 23/52 random bits; (0, 1) interval.
// We use the most significant bits because for simple RNGs
// those are usually more random.
use core::$f_scalar::EPSILON;
let float_size = mem::size_of::<$f_scalar>() as u32 * 8;
let value: $uty = rng.gen();
let fraction = value >> (float_size - $fraction_bits);
fraction.into_float_with_exponent(0) - (1.0 - EPSILON / 2.0)
}
}
}
}
float_impls! { f32, u32, f32, u32, 23, 127 }
float_impls! { f64, u64, f64, u64, 52, 1023 }
#[cfg(feature = "simd_support")]
float_impls! { f32x2, u32x2, f32, u32, 23, 127 }
#[cfg(feature = "simd_support")]
float_impls! { f32x4, u32x4, f32, u32, 23, 127 }
#[cfg(feature = "simd_support")]
float_impls! { f32x8, u32x8, f32, u32, 23, 127 }
#[cfg(feature = "simd_support")]
float_impls! { f32x16, u32x16, f32, u32, 23, 127 }
#[cfg(feature = "simd_support")]
float_impls! { f64x2, u64x2, f64, u64, 52, 1023 }
#[cfg(feature = "simd_support")]
float_impls! { f64x4, u64x4, f64, u64, 52, 1023 }
#[cfg(feature = "simd_support")]
float_impls! { f64x8, u64x8, f64, u64, 52, 1023 }
#[cfg(test)]
mod tests {
use super::*;
use crate::rngs::mock::StepRng;
const EPSILON32: f32 = ::core::f32::EPSILON;
const EPSILON64: f64 = ::core::f64::EPSILON;
macro_rules! test_f32 {
($fnn:ident, $ty:ident, $ZERO:expr, $EPSILON:expr) => {
#[test]
fn $fnn() {
// Standard
let mut zeros = StepRng::new(0, 0);
assert_eq!(zeros.gen::<$ty>(), $ZERO);
let mut one = StepRng::new(1 << 8 | 1 << (8 + 32), 0);
assert_eq!(one.gen::<$ty>(), $EPSILON / 2.0);
let mut max = StepRng::new(!0, 0);
assert_eq!(max.gen::<$ty>(), 1.0 - $EPSILON / 2.0);
// OpenClosed01
let mut zeros = StepRng::new(0, 0);
assert_eq!(zeros.sample::<$ty, _>(OpenClosed01), 0.0 + $EPSILON / 2.0);
let mut one = StepRng::new(1 << 8 | 1 << (8 + 32), 0);
assert_eq!(one.sample::<$ty, _>(OpenClosed01), $EPSILON);
let mut max = StepRng::new(!0, 0);
assert_eq!(max.sample::<$ty, _>(OpenClosed01), $ZERO + 1.0);
// Open01
let mut zeros = StepRng::new(0, 0);
assert_eq!(zeros.sample::<$ty, _>(Open01), 0.0 + $EPSILON / 2.0);
let mut one = StepRng::new(1 << 9 | 1 << (9 + 32), 0);
assert_eq!(one.sample::<$ty, _>(Open01), $EPSILON / 2.0 * 3.0);
let mut max = StepRng::new(!0, 0);
assert_eq!(max.sample::<$ty, _>(Open01), 1.0 - $EPSILON / 2.0);
}
};
}
test_f32! { f32_edge_cases, f32, 0.0, EPSILON32 }
#[cfg(feature = "simd_support")]
test_f32! { f32x2_edge_cases, f32x2, f32x2::splat(0.0), f32x2::splat(EPSILON32) }
#[cfg(feature = "simd_support")]
test_f32! { f32x4_edge_cases, f32x4, f32x4::splat(0.0), f32x4::splat(EPSILON32) }
#[cfg(feature = "simd_support")]
test_f32! { f32x8_edge_cases, f32x8, f32x8::splat(0.0), f32x8::splat(EPSILON32) }
#[cfg(feature = "simd_support")]
test_f32! { f32x16_edge_cases, f32x16, f32x16::splat(0.0), f32x16::splat(EPSILON32) }
macro_rules! test_f64 {
($fnn:ident, $ty:ident, $ZERO:expr, $EPSILON:expr) => {
#[test]
fn $fnn() {
// Standard
let mut zeros = StepRng::new(0, 0);
assert_eq!(zeros.gen::<$ty>(), $ZERO);
let mut one = StepRng::new(1 << 11, 0);
assert_eq!(one.gen::<$ty>(), $EPSILON / 2.0);
let mut max = StepRng::new(!0, 0);
assert_eq!(max.gen::<$ty>(), 1.0 - $EPSILON / 2.0);
// OpenClosed01
let mut zeros = StepRng::new(0, 0);
assert_eq!(zeros.sample::<$ty, _>(OpenClosed01), 0.0 + $EPSILON / 2.0);
let mut one = StepRng::new(1 << 11, 0);
assert_eq!(one.sample::<$ty, _>(OpenClosed01), $EPSILON);
let mut max = StepRng::new(!0, 0);
assert_eq!(max.sample::<$ty, _>(OpenClosed01), $ZERO + 1.0);
// Open01
let mut zeros = StepRng::new(0, 0);
assert_eq!(zeros.sample::<$ty, _>(Open01), 0.0 + $EPSILON / 2.0);
let mut one = StepRng::new(1 << 12, 0);
assert_eq!(one.sample::<$ty, _>(Open01), $EPSILON / 2.0 * 3.0);
let mut max = StepRng::new(!0, 0);
assert_eq!(max.sample::<$ty, _>(Open01), 1.0 - $EPSILON / 2.0);
}
};
}
test_f64! { f64_edge_cases, f64, 0.0, EPSILON64 }
#[cfg(feature = "simd_support")]
test_f64! { f64x2_edge_cases, f64x2, f64x2::splat(0.0), f64x2::splat(EPSILON64) }
#[cfg(feature = "simd_support")]
test_f64! { f64x4_edge_cases, f64x4, f64x4::splat(0.0), f64x4::splat(EPSILON64) }
#[cfg(feature = "simd_support")]
test_f64! { f64x8_edge_cases, f64x8, f64x8::splat(0.0), f64x8::splat(EPSILON64) }
#[test]
fn value_stability() {
fn test_samples<T: Copy + core::fmt::Debug + PartialEq, D: Distribution<T>>(
distr: &D, zero: T, expected: &[T],
) {
let mut rng = crate::test::rng(0x6f44f5646c2a7334);
let mut buf = [zero; 3];
for x in &mut buf {
*x = rng.sample(&distr);
}
assert_eq!(&buf, expected);
}
test_samples(&Standard, 0f32, &[0.0035963655, 0.7346052, 0.09778172]);
test_samples(&Standard, 0f64, &[
0.7346051961657583,
0.20298547462974248,
0.8166436635290655,
]);
test_samples(&OpenClosed01, 0f32, &[0.003596425, 0.73460525, 0.09778178]);
test_samples(&OpenClosed01, 0f64, &[
0.7346051961657584,
0.2029854746297426,
0.8166436635290656,
]);
test_samples(&Open01, 0f32, &[0.0035963655, 0.73460525, 0.09778172]);
test_samples(&Open01, 0f64, &[
0.7346051961657584,
0.20298547462974248,
0.8166436635290656,
]);
#[cfg(feature = "simd_support")]
{
// We only test a sub-set of types here. Values are identical to
// non-SIMD types; we assume this pattern continues across all
// SIMD types.
test_samples(&Standard, f32x2::new(0.0, 0.0), &[
f32x2::new(0.0035963655, 0.7346052),
f32x2::new(0.09778172, 0.20298547),
f32x2::new(0.34296435, 0.81664366),
]);
test_samples(&Standard, f64x2::new(0.0, 0.0), &[
f64x2::new(0.7346051961657583, 0.20298547462974248),
f64x2::new(0.8166436635290655, 0.7423708925400552),
f64x2::new(0.16387782224016323, 0.9087068770169618),
]);
}
}
}

View File

@@ -0,0 +1,274 @@
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The implementations of the `Standard` distribution for integer types.
use crate::distributions::{Distribution, Standard};
use crate::Rng;
#[cfg(all(target_arch = "x86", feature = "simd_support"))]
use core::arch::x86::{__m128i, __m256i};
#[cfg(all(target_arch = "x86_64", feature = "simd_support"))]
use core::arch::x86_64::{__m128i, __m256i};
use core::num::{NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8, NonZeroUsize,
NonZeroU128};
#[cfg(feature = "simd_support")] use packed_simd::*;
impl Distribution<u8> for Standard {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u8 {
rng.next_u32() as u8
}
}
impl Distribution<u16> for Standard {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u16 {
rng.next_u32() as u16
}
}
impl Distribution<u32> for Standard {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u32 {
rng.next_u32()
}
}
impl Distribution<u64> for Standard {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 {
rng.next_u64()
}
}
impl Distribution<u128> for Standard {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u128 {
// Use LE; we explicitly generate one value before the next.
let x = u128::from(rng.next_u64());
let y = u128::from(rng.next_u64());
(y << 64) | x
}
}
impl Distribution<usize> for Standard {
#[inline]
#[cfg(any(target_pointer_width = "32", target_pointer_width = "16"))]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize {
rng.next_u32() as usize
}
#[inline]
#[cfg(target_pointer_width = "64")]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize {
rng.next_u64() as usize
}
}
macro_rules! impl_int_from_uint {
($ty:ty, $uty:ty) => {
impl Distribution<$ty> for Standard {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty {
rng.gen::<$uty>() as $ty
}
}
};
}
impl_int_from_uint! { i8, u8 }
impl_int_from_uint! { i16, u16 }
impl_int_from_uint! { i32, u32 }
impl_int_from_uint! { i64, u64 }
impl_int_from_uint! { i128, u128 }
impl_int_from_uint! { isize, usize }
macro_rules! impl_nzint {
($ty:ty, $new:path) => {
impl Distribution<$ty> for Standard {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty {
loop {
if let Some(nz) = $new(rng.gen()) {
break nz;
}
}
}
}
};
}
impl_nzint!(NonZeroU8, NonZeroU8::new);
impl_nzint!(NonZeroU16, NonZeroU16::new);
impl_nzint!(NonZeroU32, NonZeroU32::new);
impl_nzint!(NonZeroU64, NonZeroU64::new);
impl_nzint!(NonZeroU128, NonZeroU128::new);
impl_nzint!(NonZeroUsize, NonZeroUsize::new);
#[cfg(feature = "simd_support")]
macro_rules! simd_impl {
($(($intrinsic:ident, $vec:ty),)+) => {$(
impl Distribution<$intrinsic> for Standard {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $intrinsic {
$intrinsic::from_bits(rng.gen::<$vec>())
}
}
)+};
($bits:expr,) => {};
($bits:expr, $ty:ty, $($ty_more:ty,)*) => {
simd_impl!($bits, $($ty_more,)*);
impl Distribution<$ty> for Standard {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty {
let mut vec: $ty = Default::default();
unsafe {
let ptr = &mut vec;
let b_ptr = &mut *(ptr as *mut $ty as *mut [u8; $bits/8]);
rng.fill_bytes(b_ptr);
}
vec.to_le()
}
}
};
}
#[cfg(feature = "simd_support")]
simd_impl!(16, u8x2, i8x2,);
#[cfg(feature = "simd_support")]
simd_impl!(32, u8x4, i8x4, u16x2, i16x2,);
#[cfg(feature = "simd_support")]
simd_impl!(64, u8x8, i8x8, u16x4, i16x4, u32x2, i32x2,);
#[cfg(feature = "simd_support")]
simd_impl!(128, u8x16, i8x16, u16x8, i16x8, u32x4, i32x4, u64x2, i64x2,);
#[cfg(feature = "simd_support")]
simd_impl!(256, u8x32, i8x32, u16x16, i16x16, u32x8, i32x8, u64x4, i64x4,);
#[cfg(feature = "simd_support")]
simd_impl!(512, u8x64, i8x64, u16x32, i16x32, u32x16, i32x16, u64x8, i64x8,);
#[cfg(all(
feature = "simd_support",
any(target_arch = "x86", target_arch = "x86_64")
))]
simd_impl!((__m128i, u8x16), (__m256i, u8x32),);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_integers() {
let mut rng = crate::test::rng(806);
rng.sample::<isize, _>(Standard);
rng.sample::<i8, _>(Standard);
rng.sample::<i16, _>(Standard);
rng.sample::<i32, _>(Standard);
rng.sample::<i64, _>(Standard);
rng.sample::<i128, _>(Standard);
rng.sample::<usize, _>(Standard);
rng.sample::<u8, _>(Standard);
rng.sample::<u16, _>(Standard);
rng.sample::<u32, _>(Standard);
rng.sample::<u64, _>(Standard);
rng.sample::<u128, _>(Standard);
}
#[test]
fn value_stability() {
fn test_samples<T: Copy + core::fmt::Debug + PartialEq>(zero: T, expected: &[T])
where Standard: Distribution<T> {
let mut rng = crate::test::rng(807);
let mut buf = [zero; 3];
for x in &mut buf {
*x = rng.sample(Standard);
}
assert_eq!(&buf, expected);
}
test_samples(0u8, &[9, 247, 111]);
test_samples(0u16, &[32265, 42999, 38255]);
test_samples(0u32, &[2220326409, 2575017975, 2018088303]);
test_samples(0u64, &[
11059617991457472009,
16096616328739788143,
1487364411147516184,
]);
test_samples(0u128, &[
296930161868957086625409848350820761097,
145644820879247630242265036535529306392,
111087889832015897993126088499035356354,
]);
#[cfg(any(target_pointer_width = "32", target_pointer_width = "16"))]
test_samples(0usize, &[2220326409, 2575017975, 2018088303]);
#[cfg(target_pointer_width = "64")]
test_samples(0usize, &[
11059617991457472009,
16096616328739788143,
1487364411147516184,
]);
test_samples(0i8, &[9, -9, 111]);
// Skip further i* types: they are simple reinterpretation of u* samples
#[cfg(feature = "simd_support")]
{
// We only test a sub-set of types here and make assumptions about the rest.
test_samples(u8x2::default(), &[
u8x2::new(9, 126),
u8x2::new(247, 167),
u8x2::new(111, 149),
]);
test_samples(u8x4::default(), &[
u8x4::new(9, 126, 87, 132),
u8x4::new(247, 167, 123, 153),
u8x4::new(111, 149, 73, 120),
]);
test_samples(u8x8::default(), &[
u8x8::new(9, 126, 87, 132, 247, 167, 123, 153),
u8x8::new(111, 149, 73, 120, 68, 171, 98, 223),
u8x8::new(24, 121, 1, 50, 13, 46, 164, 20),
]);
test_samples(i64x8::default(), &[
i64x8::new(
-7387126082252079607,
-2350127744969763473,
1487364411147516184,
7895421560427121838,
602190064936008898,
6022086574635100741,
-5080089175222015595,
-4066367846667249123,
),
i64x8::new(
9180885022207963908,
3095981199532211089,
6586075293021332726,
419343203796414657,
3186951873057035255,
5287129228749947252,
444726432079249540,
-1587028029513790706,
),
i64x8::new(
6075236523189346388,
1351763722368165432,
-6192309979959753740,
-7697775502176768592,
-4482022114172078123,
7522501477800909500,
-1837258847956201231,
-586926753024886735,
),
]);
}
}
}

View File

@@ -0,0 +1,218 @@
// Copyright 2018 Developers of the Rand project.
// Copyright 2013-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Generating random samples from probability distributions
//!
//! This module is the home of the [`Distribution`] trait and several of its
//! implementations. It is the workhorse behind some of the convenient
//! functionality of the [`Rng`] trait, e.g. [`Rng::gen`] and of course
//! [`Rng::sample`].
//!
//! Abstractly, a [probability distribution] describes the probability of
//! occurrence of each value in its sample space.
//!
//! More concretely, an implementation of `Distribution<T>` for type `X` is an
//! algorithm for choosing values from the sample space (a subset of `T`)
//! according to the distribution `X` represents, using an external source of
//! randomness (an RNG supplied to the `sample` function).
//!
//! A type `X` may implement `Distribution<T>` for multiple types `T`.
//! Any type implementing [`Distribution`] is stateless (i.e. immutable),
//! but it may have internal parameters set at construction time (for example,
//! [`Uniform`] allows specification of its sample space as a range within `T`).
//!
//!
//! # The `Standard` distribution
//!
//! The [`Standard`] distribution is important to mention. This is the
//! distribution used by [`Rng::gen`] and represents the "default" way to
//! produce a random value for many different types, including most primitive
//! types, tuples, arrays, and a few derived types. See the documentation of
//! [`Standard`] for more details.
//!
//! Implementing `Distribution<T>` for [`Standard`] for user types `T` makes it
//! possible to generate type `T` with [`Rng::gen`], and by extension also
//! with the [`random`] function.
//!
//! ## Random characters
//!
//! [`Alphanumeric`] is a simple distribution to sample random letters and
//! numbers of the `char` type; in contrast [`Standard`] may sample any valid
//! `char`.
//!
//!
//! # Uniform numeric ranges
//!
//! The [`Uniform`] distribution is more flexible than [`Standard`], but also
//! more specialised: it supports fewer target types, but allows the sample
//! space to be specified as an arbitrary range within its target type `T`.
//! Both [`Standard`] and [`Uniform`] are in some sense uniform distributions.
//!
//! Values may be sampled from this distribution using [`Rng::sample(Range)`] or
//! by creating a distribution object with [`Uniform::new`],
//! [`Uniform::new_inclusive`] or `From<Range>`. When the range limits are not
//! known at compile time it is typically faster to reuse an existing
//! `Uniform` object than to call [`Rng::sample(Range)`].
//!
//! User types `T` may also implement `Distribution<T>` for [`Uniform`],
//! although this is less straightforward than for [`Standard`] (see the
//! documentation in the [`uniform`] module). Doing so enables generation of
//! values of type `T` with [`Rng::sample(Range)`].
//!
//! ## Open and half-open ranges
//!
//! There are surprisingly many ways to uniformly generate random floats. A
//! range between 0 and 1 is standard, but the exact bounds (open vs closed)
//! and accuracy differ. In addition to the [`Standard`] distribution Rand offers
//! [`Open01`] and [`OpenClosed01`]. See "Floating point implementation" section of
//! [`Standard`] documentation for more details.
//!
//! # Non-uniform sampling
//!
//! Sampling a simple true/false outcome with a given probability has a name:
//! the [`Bernoulli`] distribution (this is used by [`Rng::gen_bool`]).
//!
//! For weighted sampling from a sequence of discrete values, use the
//! [`WeightedIndex`] distribution.
//!
//! This crate no longer includes other non-uniform distributions; instead
//! it is recommended that you use either [`rand_distr`] or [`statrs`].
//!
//!
//! [probability distribution]: https://en.wikipedia.org/wiki/Probability_distribution
//! [`rand_distr`]: https://crates.io/crates/rand_distr
//! [`statrs`]: https://crates.io/crates/statrs
//! [`random`]: crate::random
//! [`rand_distr`]: https://crates.io/crates/rand_distr
//! [`statrs`]: https://crates.io/crates/statrs
mod bernoulli;
mod distribution;
mod float;
mod integer;
mod other;
mod slice;
mod utils;
#[cfg(feature = "alloc")]
mod weighted_index;
#[doc(hidden)]
pub mod hidden_export {
pub use super::float::IntoFloat; // used by rand_distr
}
pub mod uniform;
#[deprecated(
since = "0.8.0",
note = "use rand::distributions::{WeightedIndex, WeightedError} instead"
)]
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
pub mod weighted;
pub use self::bernoulli::{Bernoulli, BernoulliError};
pub use self::distribution::{Distribution, DistIter, DistMap};
#[cfg(feature = "alloc")]
pub use self::distribution::DistString;
pub use self::float::{Open01, OpenClosed01};
pub use self::other::Alphanumeric;
pub use self::slice::Slice;
#[doc(inline)]
pub use self::uniform::Uniform;
#[cfg(feature = "alloc")]
pub use self::weighted_index::{WeightedError, WeightedIndex};
#[allow(unused)]
use crate::Rng;
/// A generic random value distribution, implemented for many primitive types.
/// Usually generates values with a numerically uniform distribution, and with a
/// range appropriate to the type.
///
/// ## Provided implementations
///
/// Assuming the provided `Rng` is well-behaved, these implementations
/// generate values with the following ranges and distributions:
///
/// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed
/// over all values of the type.
/// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all
/// code points in the range `0...0x10_FFFF`, except for the range
/// `0xD800...0xDFFF` (the surrogate code points). This includes
/// unassigned/reserved code points.
/// * `bool`: Generates `false` or `true`, each with probability 0.5.
/// * Floating point types (`f32` and `f64`): Uniformly distributed in the
/// half-open range `[0, 1)`. See notes below.
/// * Wrapping integers (`Wrapping<T>`), besides the type identical to their
/// normal integer variants.
///
/// The `Standard` distribution also supports generation of the following
/// compound types where all component types are supported:
///
/// * Tuples (up to 12 elements): each element is generated sequentially.
/// * Arrays (up to 32 elements): each element is generated sequentially;
/// see also [`Rng::fill`] which supports arbitrary array length for integer
/// and float types and tends to be faster for `u32` and smaller types.
/// When using `rustc` ≥ 1.51, enable the `min_const_gen` feature to support
/// arrays larger than 32 elements.
/// Note that [`Rng::fill`] and `Standard`'s array support are *not* equivalent:
/// the former is optimised for integer types (using fewer RNG calls for
/// element types smaller than the RNG word size), while the latter supports
/// any element type supported by `Standard`.
/// * `Option<T>` first generates a `bool`, and if true generates and returns
/// `Some(value)` where `value: T`, otherwise returning `None`.
///
/// ## Custom implementations
///
/// The [`Standard`] distribution may be implemented for user types as follows:
///
/// ```
/// # #![allow(dead_code)]
/// use rand::Rng;
/// use rand::distributions::{Distribution, Standard};
///
/// struct MyF32 {
/// x: f32,
/// }
///
/// impl Distribution<MyF32> for Standard {
/// fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> MyF32 {
/// MyF32 { x: rng.gen() }
/// }
/// }
/// ```
///
/// ## Example usage
/// ```
/// use rand::prelude::*;
/// use rand::distributions::Standard;
///
/// let val: f32 = StdRng::from_entropy().sample(Standard);
/// println!("f32 from [0, 1): {}", val);
/// ```
///
/// # Floating point implementation
/// The floating point implementations for `Standard` generate a random value in
/// the half-open interval `[0, 1)`, i.e. including 0 but not 1.
///
/// All values that can be generated are of the form `n * ε/2`. For `f32`
/// the 24 most significant random bits of a `u32` are used and for `f64` the
/// 53 most significant bits of a `u64` are used. The conversion uses the
/// multiplicative method: `(rng.gen::<$uty>() >> N) as $ty * (ε/2)`.
///
/// See also: [`Open01`] which samples from `(0, 1)`, [`OpenClosed01`] which
/// samples from `(0, 1]` and `Rng::gen_range(0..1)` which also samples from
/// `[0, 1)`. Note that `Open01` uses transmute-based methods which yield 1 bit
/// less precision but may perform faster on some architectures (on modern Intel
/// CPUs all methods have approximately equal performance).
///
/// [`Uniform`]: uniform::Uniform
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
pub struct Standard;

View File

@@ -0,0 +1,365 @@
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The implementations of the `Standard` distribution for other built-in types.
use core::char;
use core::num::Wrapping;
#[cfg(feature = "alloc")]
use alloc::string::String;
use crate::distributions::{Distribution, Standard, Uniform};
#[cfg(feature = "alloc")]
use crate::distributions::DistString;
use crate::Rng;
#[cfg(feature = "serde1")]
use serde::{Serialize, Deserialize};
#[cfg(feature = "min_const_gen")]
use core::mem::{self, MaybeUninit};
// ----- Sampling distributions -----
/// Sample a `u8`, uniformly distributed over ASCII letters and numbers:
/// a-z, A-Z and 0-9.
///
/// # Example
///
/// ```
/// use rand::{Rng, thread_rng};
/// use rand::distributions::Alphanumeric;
///
/// let mut rng = thread_rng();
/// let chars: String = (0..7).map(|_| rng.sample(Alphanumeric) as char).collect();
/// println!("Random chars: {}", chars);
/// ```
///
/// The [`DistString`] trait provides an easier method of generating
/// a random `String`, and offers more efficient allocation:
/// ```
/// use rand::distributions::{Alphanumeric, DistString};
/// let string = Alphanumeric.sample_string(&mut rand::thread_rng(), 16);
/// println!("Random string: {}", string);
/// ```
///
/// # Passwords
///
/// Users sometimes ask whether it is safe to use a string of random characters
/// as a password. In principle, all RNGs in Rand implementing `CryptoRng` are
/// suitable as a source of randomness for generating passwords (if they are
/// properly seeded), but it is more conservative to only use randomness
/// directly from the operating system via the `getrandom` crate, or the
/// corresponding bindings of a crypto library.
///
/// When generating passwords or keys, it is important to consider the threat
/// model and in some cases the memorability of the password. This is out of
/// scope of the Rand project, and therefore we defer to the following
/// references:
///
/// - [Wikipedia article on Password Strength](https://en.wikipedia.org/wiki/Password_strength)
/// - [Diceware for generating memorable passwords](https://en.wikipedia.org/wiki/Diceware)
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Alphanumeric;
// ----- Implementations of distributions -----
impl Distribution<char> for Standard {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> char {
// A valid `char` is either in the interval `[0, 0xD800)` or
// `(0xDFFF, 0x11_0000)`. All `char`s must therefore be in
// `[0, 0x11_0000)` but not in the "gap" `[0xD800, 0xDFFF]` which is
// reserved for surrogates. This is the size of that gap.
const GAP_SIZE: u32 = 0xDFFF - 0xD800 + 1;
// Uniform::new(0, 0x11_0000 - GAP_SIZE) can also be used but it
// seemed slower.
let range = Uniform::new(GAP_SIZE, 0x11_0000);
let mut n = range.sample(rng);
if n <= 0xDFFF {
n -= GAP_SIZE;
}
unsafe { char::from_u32_unchecked(n) }
}
}
/// Note: the `String` is potentially left with excess capacity; optionally the
/// user may call `string.shrink_to_fit()` afterwards.
#[cfg(feature = "alloc")]
impl DistString for Standard {
fn append_string<R: Rng + ?Sized>(&self, rng: &mut R, s: &mut String, len: usize) {
// A char is encoded with at most four bytes, thus this reservation is
// guaranteed to be sufficient. We do not shrink_to_fit afterwards so
// that repeated usage on the same `String` buffer does not reallocate.
s.reserve(4 * len);
s.extend(Distribution::<char>::sample_iter(self, rng).take(len));
}
}
impl Distribution<u8> for Alphanumeric {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u8 {
const RANGE: u32 = 26 + 26 + 10;
const GEN_ASCII_STR_CHARSET: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\
abcdefghijklmnopqrstuvwxyz\
0123456789";
// We can pick from 62 characters. This is so close to a power of 2, 64,
// that we can do better than `Uniform`. Use a simple bitshift and
// rejection sampling. We do not use a bitmask, because for small RNGs
// the most significant bits are usually of higher quality.
loop {
let var = rng.next_u32() >> (32 - 6);
if var < RANGE {
return GEN_ASCII_STR_CHARSET[var as usize];
}
}
}
}
#[cfg(feature = "alloc")]
impl DistString for Alphanumeric {
fn append_string<R: Rng + ?Sized>(&self, rng: &mut R, string: &mut String, len: usize) {
unsafe {
let v = string.as_mut_vec();
v.extend(self.sample_iter(rng).take(len));
}
}
}
impl Distribution<bool> for Standard {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool {
// We can compare against an arbitrary bit of an u32 to get a bool.
// Because the least significant bits of a lower quality RNG can have
// simple patterns, we compare against the most significant bit. This is
// easiest done using a sign test.
(rng.next_u32() as i32) < 0
}
}
macro_rules! tuple_impl {
// use variables to indicate the arity of the tuple
($($tyvar:ident),* ) => {
// the trailing commas are for the 1 tuple
impl< $( $tyvar ),* >
Distribution<( $( $tyvar ),* , )>
for Standard
where $( Standard: Distribution<$tyvar> ),*
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> ( $( $tyvar ),* , ) {
(
// use the $tyvar's to get the appropriate number of
// repeats (they're not actually needed)
$(
_rng.gen::<$tyvar>()
),*
,
)
}
}
}
}
impl Distribution<()> for Standard {
#[allow(clippy::unused_unit)]
#[inline]
fn sample<R: Rng + ?Sized>(&self, _: &mut R) -> () {
()
}
}
tuple_impl! {A}
tuple_impl! {A, B}
tuple_impl! {A, B, C}
tuple_impl! {A, B, C, D}
tuple_impl! {A, B, C, D, E}
tuple_impl! {A, B, C, D, E, F}
tuple_impl! {A, B, C, D, E, F, G}
tuple_impl! {A, B, C, D, E, F, G, H}
tuple_impl! {A, B, C, D, E, F, G, H, I}
tuple_impl! {A, B, C, D, E, F, G, H, I, J}
tuple_impl! {A, B, C, D, E, F, G, H, I, J, K}
tuple_impl! {A, B, C, D, E, F, G, H, I, J, K, L}
#[cfg(feature = "min_const_gen")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "min_const_gen")))]
impl<T, const N: usize> Distribution<[T; N]> for Standard
where Standard: Distribution<T>
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; N] {
let mut buff: [MaybeUninit<T>; N] = unsafe { MaybeUninit::uninit().assume_init() };
for elem in &mut buff {
*elem = MaybeUninit::new(_rng.gen());
}
unsafe { mem::transmute_copy::<_, _>(&buff) }
}
}
#[cfg(not(feature = "min_const_gen"))]
macro_rules! array_impl {
// recursive, given at least one type parameter:
{$n:expr, $t:ident, $($ts:ident,)*} => {
array_impl!{($n - 1), $($ts,)*}
impl<T> Distribution<[T; $n]> for Standard where Standard: Distribution<T> {
#[inline]
fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; $n] {
[_rng.gen::<$t>(), $(_rng.gen::<$ts>()),*]
}
}
};
// empty case:
{$n:expr,} => {
impl<T> Distribution<[T; $n]> for Standard {
fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; $n] { [] }
}
};
}
#[cfg(not(feature = "min_const_gen"))]
array_impl! {32, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T,}
impl<T> Distribution<Option<T>> for Standard
where Standard: Distribution<T>
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Option<T> {
// UFCS is needed here: https://github.com/rust-lang/rust/issues/24066
if rng.gen::<bool>() {
Some(rng.gen())
} else {
None
}
}
}
impl<T> Distribution<Wrapping<T>> for Standard
where Standard: Distribution<T>
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Wrapping<T> {
Wrapping(rng.gen())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::RngCore;
#[cfg(feature = "alloc")] use alloc::string::String;
#[test]
fn test_misc() {
let rng: &mut dyn RngCore = &mut crate::test::rng(820);
rng.sample::<char, _>(Standard);
rng.sample::<bool, _>(Standard);
}
#[cfg(feature = "alloc")]
#[test]
fn test_chars() {
use core::iter;
let mut rng = crate::test::rng(805);
// Test by generating a relatively large number of chars, so we also
// take the rejection sampling path.
let word: String = iter::repeat(())
.map(|()| rng.gen::<char>())
.take(1000)
.collect();
assert!(!word.is_empty());
}
#[test]
fn test_alphanumeric() {
let mut rng = crate::test::rng(806);
// Test by generating a relatively large number of chars, so we also
// take the rejection sampling path.
let mut incorrect = false;
for _ in 0..100 {
let c: char = rng.sample(Alphanumeric).into();
incorrect |= !(('0'..='9').contains(&c) ||
('A'..='Z').contains(&c) ||
('a'..='z').contains(&c) );
}
assert!(!incorrect);
}
#[test]
fn value_stability() {
fn test_samples<T: Copy + core::fmt::Debug + PartialEq, D: Distribution<T>>(
distr: &D, zero: T, expected: &[T],
) {
let mut rng = crate::test::rng(807);
let mut buf = [zero; 5];
for x in &mut buf {
*x = rng.sample(&distr);
}
assert_eq!(&buf, expected);
}
test_samples(&Standard, 'a', &[
'\u{8cdac}',
'\u{a346a}',
'\u{80120}',
'\u{ed692}',
'\u{35888}',
]);
test_samples(&Alphanumeric, 0, &[104, 109, 101, 51, 77]);
test_samples(&Standard, false, &[true, true, false, true, false]);
test_samples(&Standard, None as Option<bool>, &[
Some(true),
None,
Some(false),
None,
Some(false),
]);
test_samples(&Standard, Wrapping(0i32), &[
Wrapping(-2074640887),
Wrapping(-1719949321),
Wrapping(2018088303),
Wrapping(-547181756),
Wrapping(838957336),
]);
// We test only sub-sets of tuple and array impls
test_samples(&Standard, (), &[(), (), (), (), ()]);
test_samples(&Standard, (false,), &[
(true,),
(true,),
(false,),
(true,),
(false,),
]);
test_samples(&Standard, (false, false), &[
(true, true),
(false, true),
(false, false),
(true, false),
(false, false),
]);
test_samples(&Standard, [0u8; 0], &[[], [], [], [], []]);
test_samples(&Standard, [0u8; 3], &[
[9, 247, 111],
[68, 24, 13],
[174, 19, 194],
[172, 69, 213],
[149, 207, 29],
]);
}
}

View File

@@ -0,0 +1,117 @@
// Copyright 2021 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use crate::distributions::{Distribution, Uniform};
/// A distribution to sample items uniformly from a slice.
///
/// [`Slice::new`] constructs a distribution referencing a slice and uniformly
/// samples references from the items in the slice. It may do extra work up
/// front to make sampling of multiple values faster; if only one sample from
/// the slice is required, [`SliceRandom::choose`] can be more efficient.
///
/// Steps are taken to avoid bias which might be present in naive
/// implementations; for example `slice[rng.gen() % slice.len()]` samples from
/// the slice, but may be more likely to select numbers in the low range than
/// other values.
///
/// This distribution samples with replacement; each sample is independent.
/// Sampling without replacement requires state to be retained, and therefore
/// cannot be handled by a distribution; you should instead consider methods
/// on [`SliceRandom`], such as [`SliceRandom::choose_multiple`].
///
/// # Example
///
/// ```
/// use rand::Rng;
/// use rand::distributions::Slice;
///
/// let vowels = ['a', 'e', 'i', 'o', 'u'];
/// let vowels_dist = Slice::new(&vowels).unwrap();
/// let rng = rand::thread_rng();
///
/// // build a string of 10 vowels
/// let vowel_string: String = rng
/// .sample_iter(&vowels_dist)
/// .take(10)
/// .collect();
///
/// println!("{}", vowel_string);
/// assert_eq!(vowel_string.len(), 10);
/// assert!(vowel_string.chars().all(|c| vowels.contains(&c)));
/// ```
///
/// For a single sample, [`SliceRandom::choose`][crate::seq::SliceRandom::choose]
/// may be preferred:
///
/// ```
/// use rand::seq::SliceRandom;
///
/// let vowels = ['a', 'e', 'i', 'o', 'u'];
/// let mut rng = rand::thread_rng();
///
/// println!("{}", vowels.choose(&mut rng).unwrap())
/// ```
///
/// [`SliceRandom`]: crate::seq::SliceRandom
/// [`SliceRandom::choose`]: crate::seq::SliceRandom::choose
/// [`SliceRandom::choose_multiple`]: crate::seq::SliceRandom::choose_multiple
#[derive(Debug, Clone, Copy)]
pub struct Slice<'a, T> {
slice: &'a [T],
range: Uniform<usize>,
}
impl<'a, T> Slice<'a, T> {
/// Create a new `Slice` instance which samples uniformly from the slice.
/// Returns `Err` if the slice is empty.
pub fn new(slice: &'a [T]) -> Result<Self, EmptySlice> {
match slice.len() {
0 => Err(EmptySlice),
len => Ok(Self {
slice,
range: Uniform::new(0, len),
}),
}
}
}
impl<'a, T> Distribution<&'a T> for Slice<'a, T> {
fn sample<R: crate::Rng + ?Sized>(&self, rng: &mut R) -> &'a T {
let idx = self.range.sample(rng);
debug_assert!(
idx < self.slice.len(),
"Uniform::new(0, {}) somehow returned {}",
self.slice.len(),
idx
);
// Safety: at construction time, it was ensured that the slice was
// non-empty, and that the `Uniform` range produces values in range
// for the slice
unsafe { self.slice.get_unchecked(idx) }
}
}
/// Error type indicating that a [`Slice`] distribution was improperly
/// constructed with an empty slice.
#[derive(Debug, Clone, Copy)]
pub struct EmptySlice;
impl core::fmt::Display for EmptySlice {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(
f,
"Tried to create a `distributions::Slice` with an empty slice"
)
}
}
#[cfg(feature = "std")]
impl std::error::Error for EmptySlice {}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,429 @@
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Math helper functions
#[cfg(feature = "simd_support")] use packed_simd::*;
pub(crate) trait WideningMultiply<RHS = Self> {
type Output;
fn wmul(self, x: RHS) -> Self::Output;
}
macro_rules! wmul_impl {
($ty:ty, $wide:ty, $shift:expr) => {
impl WideningMultiply for $ty {
type Output = ($ty, $ty);
#[inline(always)]
fn wmul(self, x: $ty) -> Self::Output {
let tmp = (self as $wide) * (x as $wide);
((tmp >> $shift) as $ty, tmp as $ty)
}
}
};
// simd bulk implementation
($(($ty:ident, $wide:ident),)+, $shift:expr) => {
$(
impl WideningMultiply for $ty {
type Output = ($ty, $ty);
#[inline(always)]
fn wmul(self, x: $ty) -> Self::Output {
// For supported vectors, this should compile to a couple
// supported multiply & swizzle instructions (no actual
// casting).
// TODO: optimize
let y: $wide = self.cast();
let x: $wide = x.cast();
let tmp = y * x;
let hi: $ty = (tmp >> $shift).cast();
let lo: $ty = tmp.cast();
(hi, lo)
}
}
)+
};
}
wmul_impl! { u8, u16, 8 }
wmul_impl! { u16, u32, 16 }
wmul_impl! { u32, u64, 32 }
wmul_impl! { u64, u128, 64 }
// This code is a translation of the __mulddi3 function in LLVM's
// compiler-rt. It is an optimised variant of the common method
// `(a + b) * (c + d) = ac + ad + bc + bd`.
//
// For some reason LLVM can optimise the C version very well, but
// keeps shuffling registers in this Rust translation.
macro_rules! wmul_impl_large {
($ty:ty, $half:expr) => {
impl WideningMultiply for $ty {
type Output = ($ty, $ty);
#[inline(always)]
fn wmul(self, b: $ty) -> Self::Output {
const LOWER_MASK: $ty = !0 >> $half;
let mut low = (self & LOWER_MASK).wrapping_mul(b & LOWER_MASK);
let mut t = low >> $half;
low &= LOWER_MASK;
t += (self >> $half).wrapping_mul(b & LOWER_MASK);
low += (t & LOWER_MASK) << $half;
let mut high = t >> $half;
t = low >> $half;
low &= LOWER_MASK;
t += (b >> $half).wrapping_mul(self & LOWER_MASK);
low += (t & LOWER_MASK) << $half;
high += t >> $half;
high += (self >> $half).wrapping_mul(b >> $half);
(high, low)
}
}
};
// simd bulk implementation
(($($ty:ty,)+) $scalar:ty, $half:expr) => {
$(
impl WideningMultiply for $ty {
type Output = ($ty, $ty);
#[inline(always)]
fn wmul(self, b: $ty) -> Self::Output {
// needs wrapping multiplication
const LOWER_MASK: $scalar = !0 >> $half;
let mut low = (self & LOWER_MASK) * (b & LOWER_MASK);
let mut t = low >> $half;
low &= LOWER_MASK;
t += (self >> $half) * (b & LOWER_MASK);
low += (t & LOWER_MASK) << $half;
let mut high = t >> $half;
t = low >> $half;
low &= LOWER_MASK;
t += (b >> $half) * (self & LOWER_MASK);
low += (t & LOWER_MASK) << $half;
high += t >> $half;
high += (self >> $half) * (b >> $half);
(high, low)
}
}
)+
};
}
wmul_impl_large! { u128, 64 }
macro_rules! wmul_impl_usize {
($ty:ty) => {
impl WideningMultiply for usize {
type Output = (usize, usize);
#[inline(always)]
fn wmul(self, x: usize) -> Self::Output {
let (high, low) = (self as $ty).wmul(x as $ty);
(high as usize, low as usize)
}
}
};
}
#[cfg(target_pointer_width = "16")]
wmul_impl_usize! { u16 }
#[cfg(target_pointer_width = "32")]
wmul_impl_usize! { u32 }
#[cfg(target_pointer_width = "64")]
wmul_impl_usize! { u64 }
#[cfg(feature = "simd_support")]
mod simd_wmul {
use super::*;
#[cfg(target_arch = "x86")] use core::arch::x86::*;
#[cfg(target_arch = "x86_64")] use core::arch::x86_64::*;
wmul_impl! {
(u8x2, u16x2),
(u8x4, u16x4),
(u8x8, u16x8),
(u8x16, u16x16),
(u8x32, u16x32),,
8
}
wmul_impl! { (u16x2, u32x2),, 16 }
wmul_impl! { (u16x4, u32x4),, 16 }
#[cfg(not(target_feature = "sse2"))]
wmul_impl! { (u16x8, u32x8),, 16 }
#[cfg(not(target_feature = "avx2"))]
wmul_impl! { (u16x16, u32x16),, 16 }
// 16-bit lane widths allow use of the x86 `mulhi` instructions, which
// means `wmul` can be implemented with only two instructions.
#[allow(unused_macros)]
macro_rules! wmul_impl_16 {
($ty:ident, $intrinsic:ident, $mulhi:ident, $mullo:ident) => {
impl WideningMultiply for $ty {
type Output = ($ty, $ty);
#[inline(always)]
fn wmul(self, x: $ty) -> Self::Output {
let b = $intrinsic::from_bits(x);
let a = $intrinsic::from_bits(self);
let hi = $ty::from_bits(unsafe { $mulhi(a, b) });
let lo = $ty::from_bits(unsafe { $mullo(a, b) });
(hi, lo)
}
}
};
}
#[cfg(target_feature = "sse2")]
wmul_impl_16! { u16x8, __m128i, _mm_mulhi_epu16, _mm_mullo_epi16 }
#[cfg(target_feature = "avx2")]
wmul_impl_16! { u16x16, __m256i, _mm256_mulhi_epu16, _mm256_mullo_epi16 }
// FIXME: there are no `__m512i` types in stdsimd yet, so `wmul::<u16x32>`
// cannot use the same implementation.
wmul_impl! {
(u32x2, u64x2),
(u32x4, u64x4),
(u32x8, u64x8),,
32
}
// TODO: optimize, this seems to seriously slow things down
wmul_impl_large! { (u8x64,) u8, 4 }
wmul_impl_large! { (u16x32,) u16, 8 }
wmul_impl_large! { (u32x16,) u32, 16 }
wmul_impl_large! { (u64x2, u64x4, u64x8,) u64, 32 }
}
/// Helper trait when dealing with scalar and SIMD floating point types.
pub(crate) trait FloatSIMDUtils {
// `PartialOrd` for vectors compares lexicographically. We want to compare all
// the individual SIMD lanes instead, and get the combined result over all
// lanes. This is possible using something like `a.lt(b).all()`, but we
// implement it as a trait so we can write the same code for `f32` and `f64`.
// Only the comparison functions we need are implemented.
fn all_lt(self, other: Self) -> bool;
fn all_le(self, other: Self) -> bool;
fn all_finite(self) -> bool;
type Mask;
fn finite_mask(self) -> Self::Mask;
fn gt_mask(self, other: Self) -> Self::Mask;
fn ge_mask(self, other: Self) -> Self::Mask;
// Decrease all lanes where the mask is `true` to the next lower value
// representable by the floating-point type. At least one of the lanes
// must be set.
fn decrease_masked(self, mask: Self::Mask) -> Self;
// Convert from int value. Conversion is done while retaining the numerical
// value, not by retaining the binary representation.
type UInt;
fn cast_from_int(i: Self::UInt) -> Self;
}
/// Implement functions available in std builds but missing from core primitives
#[cfg(not(std))]
// False positive: We are following `std` here.
#[allow(clippy::wrong_self_convention)]
pub(crate) trait Float: Sized {
fn is_nan(self) -> bool;
fn is_infinite(self) -> bool;
fn is_finite(self) -> bool;
}
/// Implement functions on f32/f64 to give them APIs similar to SIMD types
pub(crate) trait FloatAsSIMD: Sized {
#[inline(always)]
fn lanes() -> usize {
1
}
#[inline(always)]
fn splat(scalar: Self) -> Self {
scalar
}
#[inline(always)]
fn extract(self, index: usize) -> Self {
debug_assert_eq!(index, 0);
self
}
#[inline(always)]
fn replace(self, index: usize, new_value: Self) -> Self {
debug_assert_eq!(index, 0);
new_value
}
}
pub(crate) trait BoolAsSIMD: Sized {
fn any(self) -> bool;
fn all(self) -> bool;
fn none(self) -> bool;
}
impl BoolAsSIMD for bool {
#[inline(always)]
fn any(self) -> bool {
self
}
#[inline(always)]
fn all(self) -> bool {
self
}
#[inline(always)]
fn none(self) -> bool {
!self
}
}
macro_rules! scalar_float_impl {
($ty:ident, $uty:ident) => {
#[cfg(not(std))]
impl Float for $ty {
#[inline]
fn is_nan(self) -> bool {
self != self
}
#[inline]
fn is_infinite(self) -> bool {
self == ::core::$ty::INFINITY || self == ::core::$ty::NEG_INFINITY
}
#[inline]
fn is_finite(self) -> bool {
!(self.is_nan() || self.is_infinite())
}
}
impl FloatSIMDUtils for $ty {
type Mask = bool;
type UInt = $uty;
#[inline(always)]
fn all_lt(self, other: Self) -> bool {
self < other
}
#[inline(always)]
fn all_le(self, other: Self) -> bool {
self <= other
}
#[inline(always)]
fn all_finite(self) -> bool {
self.is_finite()
}
#[inline(always)]
fn finite_mask(self) -> Self::Mask {
self.is_finite()
}
#[inline(always)]
fn gt_mask(self, other: Self) -> Self::Mask {
self > other
}
#[inline(always)]
fn ge_mask(self, other: Self) -> Self::Mask {
self >= other
}
#[inline(always)]
fn decrease_masked(self, mask: Self::Mask) -> Self {
debug_assert!(mask, "At least one lane must be set");
<$ty>::from_bits(self.to_bits() - 1)
}
#[inline]
fn cast_from_int(i: Self::UInt) -> Self {
i as $ty
}
}
impl FloatAsSIMD for $ty {}
};
}
scalar_float_impl!(f32, u32);
scalar_float_impl!(f64, u64);
#[cfg(feature = "simd_support")]
macro_rules! simd_impl {
($ty:ident, $f_scalar:ident, $mty:ident, $uty:ident) => {
impl FloatSIMDUtils for $ty {
type Mask = $mty;
type UInt = $uty;
#[inline(always)]
fn all_lt(self, other: Self) -> bool {
self.lt(other).all()
}
#[inline(always)]
fn all_le(self, other: Self) -> bool {
self.le(other).all()
}
#[inline(always)]
fn all_finite(self) -> bool {
self.finite_mask().all()
}
#[inline(always)]
fn finite_mask(self) -> Self::Mask {
// This can possibly be done faster by checking bit patterns
let neg_inf = $ty::splat(::core::$f_scalar::NEG_INFINITY);
let pos_inf = $ty::splat(::core::$f_scalar::INFINITY);
self.gt(neg_inf) & self.lt(pos_inf)
}
#[inline(always)]
fn gt_mask(self, other: Self) -> Self::Mask {
self.gt(other)
}
#[inline(always)]
fn ge_mask(self, other: Self) -> Self::Mask {
self.ge(other)
}
#[inline(always)]
fn decrease_masked(self, mask: Self::Mask) -> Self {
// Casting a mask into ints will produce all bits set for
// true, and 0 for false. Adding that to the binary
// representation of a float means subtracting one from
// the binary representation, resulting in the next lower
// value representable by $ty. This works even when the
// current value is infinity.
debug_assert!(mask.any(), "At least one lane must be set");
<$ty>::from_bits(<$uty>::from_bits(self) + <$uty>::from_bits(mask))
}
#[inline]
fn cast_from_int(i: Self::UInt) -> Self {
i.cast()
}
}
};
}
#[cfg(feature="simd_support")] simd_impl! { f32x2, f32, m32x2, u32x2 }
#[cfg(feature="simd_support")] simd_impl! { f32x4, f32, m32x4, u32x4 }
#[cfg(feature="simd_support")] simd_impl! { f32x8, f32, m32x8, u32x8 }
#[cfg(feature="simd_support")] simd_impl! { f32x16, f32, m32x16, u32x16 }
#[cfg(feature="simd_support")] simd_impl! { f64x2, f64, m64x2, u64x2 }
#[cfg(feature="simd_support")] simd_impl! { f64x4, f64, m64x4, u64x4 }
#[cfg(feature="simd_support")] simd_impl! { f64x8, f64, m64x8, u64x8 }

View File

@@ -0,0 +1,47 @@
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Weighted index sampling
//!
//! This module is deprecated. Use [`crate::distributions::WeightedIndex`] and
//! [`crate::distributions::WeightedError`] instead.
pub use super::{WeightedIndex, WeightedError};
#[allow(missing_docs)]
#[deprecated(since = "0.8.0", note = "moved to rand_distr crate")]
pub mod alias_method {
// This module exists to provide a deprecation warning which minimises
// compile errors, but still fails to compile if ever used.
use core::marker::PhantomData;
use alloc::vec::Vec;
use super::WeightedError;
#[derive(Debug)]
pub struct WeightedIndex<W: Weight> {
_phantom: PhantomData<W>,
}
impl<W: Weight> WeightedIndex<W> {
pub fn new(_weights: Vec<W>) -> Result<Self, WeightedError> {
Err(WeightedError::NoItem)
}
}
pub trait Weight {}
macro_rules! impl_weight {
() => {};
($T:ident, $($more:ident,)*) => {
impl Weight for $T {}
impl_weight!($($more,)*);
};
}
impl_weight!(f64, f32,);
impl_weight!(u8, u16, u32, u64, usize,);
impl_weight!(i8, i16, i32, i64, isize,);
impl_weight!(u128, i128,);
}

View File

@@ -0,0 +1,458 @@
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Weighted index sampling
use crate::distributions::uniform::{SampleBorrow, SampleUniform, UniformSampler};
use crate::distributions::Distribution;
use crate::Rng;
use core::cmp::PartialOrd;
use core::fmt;
// Note that this whole module is only imported if feature="alloc" is enabled.
use alloc::vec::Vec;
#[cfg(feature = "serde1")]
use serde::{Serialize, Deserialize};
/// A distribution using weighted sampling of discrete items
///
/// Sampling a `WeightedIndex` distribution returns the index of a randomly
/// selected element from the iterator used when the `WeightedIndex` was
/// created. The chance of a given element being picked is proportional to the
/// value of the element. The weights can use any type `X` for which an
/// implementation of [`Uniform<X>`] exists.
///
/// # Performance
///
/// Time complexity of sampling from `WeightedIndex` is `O(log N)` where
/// `N` is the number of weights. As an alternative,
/// [`rand_distr::weighted_alias`](https://docs.rs/rand_distr/*/rand_distr/weighted_alias/index.html)
/// supports `O(1)` sampling, but with much higher initialisation cost.
///
/// A `WeightedIndex<X>` contains a `Vec<X>` and a [`Uniform<X>`] and so its
/// size is the sum of the size of those objects, possibly plus some alignment.
///
/// Creating a `WeightedIndex<X>` will allocate enough space to hold `N - 1`
/// weights of type `X`, where `N` is the number of weights. However, since
/// `Vec` doesn't guarantee a particular growth strategy, additional memory
/// might be allocated but not used. Since the `WeightedIndex` object also
/// contains, this might cause additional allocations, though for primitive
/// types, [`Uniform<X>`] doesn't allocate any memory.
///
/// Sampling from `WeightedIndex` will result in a single call to
/// `Uniform<X>::sample` (method of the [`Distribution`] trait), which typically
/// will request a single value from the underlying [`RngCore`], though the
/// exact number depends on the implementation of `Uniform<X>::sample`.
///
/// # Example
///
/// ```
/// use rand::prelude::*;
/// use rand::distributions::WeightedIndex;
///
/// let choices = ['a', 'b', 'c'];
/// let weights = [2, 1, 1];
/// let dist = WeightedIndex::new(&weights).unwrap();
/// let mut rng = thread_rng();
/// for _ in 0..100 {
/// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
/// println!("{}", choices[dist.sample(&mut rng)]);
/// }
///
/// let items = [('a', 0), ('b', 3), ('c', 7)];
/// let dist2 = WeightedIndex::new(items.iter().map(|item| item.1)).unwrap();
/// for _ in 0..100 {
/// // 0% chance to print 'a', 30% chance to print 'b', 70% chance to print 'c'
/// println!("{}", items[dist2.sample(&mut rng)].0);
/// }
/// ```
///
/// [`Uniform<X>`]: crate::distributions::Uniform
/// [`RngCore`]: crate::RngCore
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
pub struct WeightedIndex<X: SampleUniform + PartialOrd> {
cumulative_weights: Vec<X>,
total_weight: X,
weight_distribution: X::Sampler,
}
impl<X: SampleUniform + PartialOrd> WeightedIndex<X> {
/// Creates a new a `WeightedIndex` [`Distribution`] using the values
/// in `weights`. The weights can use any type `X` for which an
/// implementation of [`Uniform<X>`] exists.
///
/// Returns an error if the iterator is empty, if any weight is `< 0`, or
/// if its total value is 0.
///
/// [`Uniform<X>`]: crate::distributions::uniform::Uniform
pub fn new<I>(weights: I) -> Result<WeightedIndex<X>, WeightedError>
where
I: IntoIterator,
I::Item: SampleBorrow<X>,
X: for<'a> ::core::ops::AddAssign<&'a X> + Clone + Default,
{
let mut iter = weights.into_iter();
let mut total_weight: X = iter.next().ok_or(WeightedError::NoItem)?.borrow().clone();
let zero = <X as Default>::default();
if !(total_weight >= zero) {
return Err(WeightedError::InvalidWeight);
}
let mut weights = Vec::<X>::with_capacity(iter.size_hint().0);
for w in iter {
// Note that `!(w >= x)` is not equivalent to `w < x` for partially
// ordered types due to NaNs which are equal to nothing.
if !(w.borrow() >= &zero) {
return Err(WeightedError::InvalidWeight);
}
weights.push(total_weight.clone());
total_weight += w.borrow();
}
if total_weight == zero {
return Err(WeightedError::AllWeightsZero);
}
let distr = X::Sampler::new(zero, total_weight.clone());
Ok(WeightedIndex {
cumulative_weights: weights,
total_weight,
weight_distribution: distr,
})
}
/// Update a subset of weights, without changing the number of weights.
///
/// `new_weights` must be sorted by the index.
///
/// Using this method instead of `new` might be more efficient if only a small number of
/// weights is modified. No allocations are performed, unless the weight type `X` uses
/// allocation internally.
///
/// In case of error, `self` is not modified.
pub fn update_weights(&mut self, new_weights: &[(usize, &X)]) -> Result<(), WeightedError>
where X: for<'a> ::core::ops::AddAssign<&'a X>
+ for<'a> ::core::ops::SubAssign<&'a X>
+ Clone
+ Default {
if new_weights.is_empty() {
return Ok(());
}
let zero = <X as Default>::default();
let mut total_weight = self.total_weight.clone();
// Check for errors first, so we don't modify `self` in case something
// goes wrong.
let mut prev_i = None;
for &(i, w) in new_weights {
if let Some(old_i) = prev_i {
if old_i >= i {
return Err(WeightedError::InvalidWeight);
}
}
if !(*w >= zero) {
return Err(WeightedError::InvalidWeight);
}
if i > self.cumulative_weights.len() {
return Err(WeightedError::TooMany);
}
let mut old_w = if i < self.cumulative_weights.len() {
self.cumulative_weights[i].clone()
} else {
self.total_weight.clone()
};
if i > 0 {
old_w -= &self.cumulative_weights[i - 1];
}
total_weight -= &old_w;
total_weight += w;
prev_i = Some(i);
}
if total_weight <= zero {
return Err(WeightedError::AllWeightsZero);
}
// Update the weights. Because we checked all the preconditions in the
// previous loop, this should never panic.
let mut iter = new_weights.iter();
let mut prev_weight = zero.clone();
let mut next_new_weight = iter.next();
let &(first_new_index, _) = next_new_weight.unwrap();
let mut cumulative_weight = if first_new_index > 0 {
self.cumulative_weights[first_new_index - 1].clone()
} else {
zero.clone()
};
for i in first_new_index..self.cumulative_weights.len() {
match next_new_weight {
Some(&(j, w)) if i == j => {
cumulative_weight += w;
next_new_weight = iter.next();
}
_ => {
let mut tmp = self.cumulative_weights[i].clone();
tmp -= &prev_weight; // We know this is positive.
cumulative_weight += &tmp;
}
}
prev_weight = cumulative_weight.clone();
core::mem::swap(&mut prev_weight, &mut self.cumulative_weights[i]);
}
self.total_weight = total_weight;
self.weight_distribution = X::Sampler::new(zero, self.total_weight.clone());
Ok(())
}
}
impl<X> Distribution<usize> for WeightedIndex<X>
where X: SampleUniform + PartialOrd
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize {
use ::core::cmp::Ordering;
let chosen_weight = self.weight_distribution.sample(rng);
// Find the first item which has a weight *higher* than the chosen weight.
self.cumulative_weights
.binary_search_by(|w| {
if *w <= chosen_weight {
Ordering::Less
} else {
Ordering::Greater
}
})
.unwrap_err()
}
}
#[cfg(test)]
mod test {
use super::*;
#[cfg(feature = "serde1")]
#[test]
fn test_weightedindex_serde1() {
let weighted_index = WeightedIndex::new(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).unwrap();
let ser_weighted_index = bincode::serialize(&weighted_index).unwrap();
let de_weighted_index: WeightedIndex<i32> =
bincode::deserialize(&ser_weighted_index).unwrap();
assert_eq!(
de_weighted_index.cumulative_weights,
weighted_index.cumulative_weights
);
assert_eq!(de_weighted_index.total_weight, weighted_index.total_weight);
}
#[test]
fn test_accepting_nan(){
assert_eq!(
WeightedIndex::new(&[core::f32::NAN, 0.5]).unwrap_err(),
WeightedError::InvalidWeight,
);
assert_eq!(
WeightedIndex::new(&[core::f32::NAN]).unwrap_err(),
WeightedError::InvalidWeight,
);
assert_eq!(
WeightedIndex::new(&[0.5, core::f32::NAN]).unwrap_err(),
WeightedError::InvalidWeight,
);
assert_eq!(
WeightedIndex::new(&[0.5, 7.0])
.unwrap()
.update_weights(&[(0, &core::f32::NAN)])
.unwrap_err(),
WeightedError::InvalidWeight,
)
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_weightedindex() {
let mut r = crate::test::rng(700);
const N_REPS: u32 = 5000;
let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
let total_weight = weights.iter().sum::<u32>() as f32;
let verify = |result: [i32; 14]| {
for (i, count) in result.iter().enumerate() {
let exp = (weights[i] * N_REPS) as f32 / total_weight;
let mut err = (*count as f32 - exp).abs();
if err != 0.0 {
err /= exp;
}
assert!(err <= 0.25);
}
};
// WeightedIndex from vec
let mut chosen = [0i32; 14];
let distr = WeightedIndex::new(weights.to_vec()).unwrap();
for _ in 0..N_REPS {
chosen[distr.sample(&mut r)] += 1;
}
verify(chosen);
// WeightedIndex from slice
chosen = [0i32; 14];
let distr = WeightedIndex::new(&weights[..]).unwrap();
for _ in 0..N_REPS {
chosen[distr.sample(&mut r)] += 1;
}
verify(chosen);
// WeightedIndex from iterator
chosen = [0i32; 14];
let distr = WeightedIndex::new(weights.iter()).unwrap();
for _ in 0..N_REPS {
chosen[distr.sample(&mut r)] += 1;
}
verify(chosen);
for _ in 0..5 {
assert_eq!(WeightedIndex::new(&[0, 1]).unwrap().sample(&mut r), 1);
assert_eq!(WeightedIndex::new(&[1, 0]).unwrap().sample(&mut r), 0);
assert_eq!(
WeightedIndex::new(&[0, 0, 0, 0, 10, 0])
.unwrap()
.sample(&mut r),
4
);
}
assert_eq!(
WeightedIndex::new(&[10][0..0]).unwrap_err(),
WeightedError::NoItem
);
assert_eq!(
WeightedIndex::new(&[0]).unwrap_err(),
WeightedError::AllWeightsZero
);
assert_eq!(
WeightedIndex::new(&[10, 20, -1, 30]).unwrap_err(),
WeightedError::InvalidWeight
);
assert_eq!(
WeightedIndex::new(&[-10, 20, 1, 30]).unwrap_err(),
WeightedError::InvalidWeight
);
assert_eq!(
WeightedIndex::new(&[-10]).unwrap_err(),
WeightedError::InvalidWeight
);
}
#[test]
fn test_update_weights() {
let data = [
(
&[10u32, 2, 3, 4][..],
&[(1, &100), (2, &4)][..], // positive change
&[10, 100, 4, 4][..],
),
(
&[1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7][..],
&[(2, &1), (5, &1), (13, &100)][..], // negative change and last element
&[1u32, 2, 1, 0, 5, 1, 7, 1, 2, 3, 4, 5, 6, 100][..],
),
];
for (weights, update, expected_weights) in data.iter() {
let total_weight = weights.iter().sum::<u32>();
let mut distr = WeightedIndex::new(weights.to_vec()).unwrap();
assert_eq!(distr.total_weight, total_weight);
distr.update_weights(update).unwrap();
let expected_total_weight = expected_weights.iter().sum::<u32>();
let expected_distr = WeightedIndex::new(expected_weights.to_vec()).unwrap();
assert_eq!(distr.total_weight, expected_total_weight);
assert_eq!(distr.total_weight, expected_distr.total_weight);
assert_eq!(distr.cumulative_weights, expected_distr.cumulative_weights);
}
}
#[test]
fn value_stability() {
fn test_samples<X: SampleUniform + PartialOrd, I>(
weights: I, buf: &mut [usize], expected: &[usize],
) where
I: IntoIterator,
I::Item: SampleBorrow<X>,
X: for<'a> ::core::ops::AddAssign<&'a X> + Clone + Default,
{
assert_eq!(buf.len(), expected.len());
let distr = WeightedIndex::new(weights).unwrap();
let mut rng = crate::test::rng(701);
for r in buf.iter_mut() {
*r = rng.sample(&distr);
}
assert_eq!(buf, expected);
}
let mut buf = [0; 10];
test_samples(&[1i32, 1, 1, 1, 1, 1, 1, 1, 1], &mut buf, &[
0, 6, 2, 6, 3, 4, 7, 8, 2, 5,
]);
test_samples(&[0.7f32, 0.1, 0.1, 0.1], &mut buf, &[
0, 0, 0, 1, 0, 0, 2, 3, 0, 0,
]);
test_samples(&[1.0f64, 0.999, 0.998, 0.997], &mut buf, &[
2, 2, 1, 3, 2, 1, 3, 3, 2, 1,
]);
}
#[test]
fn weighted_index_distributions_can_be_compared() {
assert_eq!(WeightedIndex::new(&[1, 2]), WeightedIndex::new(&[1, 2]));
}
}
/// Error type returned from `WeightedIndex::new`.
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum WeightedError {
/// The provided weight collection contains no items.
NoItem,
/// A weight is either less than zero, greater than the supported maximum,
/// NaN, or otherwise invalid.
InvalidWeight,
/// All items in the provided weight collection are zero.
AllWeightsZero,
/// Too many weights are provided (length greater than `u32::MAX`)
TooMany,
}
#[cfg(feature = "std")]
impl std::error::Error for WeightedError {}
impl fmt::Display for WeightedError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(match *self {
WeightedError::NoItem => "No weights provided in distribution",
WeightedError::InvalidWeight => "A weight is invalid in distribution",
WeightedError::AllWeightsZero => "All weights are zero in distribution",
WeightedError::TooMany => "Too many weights (hit u32::MAX) in distribution",
})
}
}

214
zeroidc/vendor/rand/src/lib.rs vendored Normal file
View File

@@ -0,0 +1,214 @@
// Copyright 2018 Developers of the Rand project.
// Copyright 2013-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Utilities for random number generation
//!
//! Rand provides utilities to generate random numbers, to convert them to
//! useful types and distributions, and some randomness-related algorithms.
//!
//! # Quick Start
//!
//! To get you started quickly, the easiest and highest-level way to get
//! a random value is to use [`random()`]; alternatively you can use
//! [`thread_rng()`]. The [`Rng`] trait provides a useful API on all RNGs, while
//! the [`distributions`] and [`seq`] modules provide further
//! functionality on top of RNGs.
//!
//! ```
//! use rand::prelude::*;
//!
//! if rand::random() { // generates a boolean
//! // Try printing a random unicode code point (probably a bad idea)!
//! println!("char: {}", rand::random::<char>());
//! }
//!
//! let mut rng = rand::thread_rng();
//! let y: f64 = rng.gen(); // generates a float between 0 and 1
//!
//! let mut nums: Vec<i32> = (1..100).collect();
//! nums.shuffle(&mut rng);
//! ```
//!
//! # The Book
//!
//! For the user guide and further documentation, please read
//! [The Rust Rand Book](https://rust-random.github.io/book).
#![doc(
html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
html_favicon_url = "https://www.rust-lang.org/favicon.ico",
html_root_url = "https://rust-random.github.io/rand/"
)]
#![deny(missing_docs)]
#![deny(missing_debug_implementations)]
#![doc(test(attr(allow(unused_variables), deny(warnings))))]
#![no_std]
#![cfg_attr(feature = "simd_support", feature(stdsimd))]
#![cfg_attr(doc_cfg, feature(doc_cfg))]
#![allow(
clippy::float_cmp,
clippy::neg_cmp_op_on_partial_ord,
)]
#[cfg(feature = "std")] extern crate std;
#[cfg(feature = "alloc")] extern crate alloc;
#[allow(unused)]
macro_rules! trace { ($($x:tt)*) => (
#[cfg(feature = "log")] {
log::trace!($($x)*)
}
) }
#[allow(unused)]
macro_rules! debug { ($($x:tt)*) => (
#[cfg(feature = "log")] {
log::debug!($($x)*)
}
) }
#[allow(unused)]
macro_rules! info { ($($x:tt)*) => (
#[cfg(feature = "log")] {
log::info!($($x)*)
}
) }
#[allow(unused)]
macro_rules! warn { ($($x:tt)*) => (
#[cfg(feature = "log")] {
log::warn!($($x)*)
}
) }
#[allow(unused)]
macro_rules! error { ($($x:tt)*) => (
#[cfg(feature = "log")] {
log::error!($($x)*)
}
) }
// Re-exports from rand_core
pub use rand_core::{CryptoRng, Error, RngCore, SeedableRng};
// Public modules
pub mod distributions;
pub mod prelude;
mod rng;
pub mod rngs;
pub mod seq;
// Public exports
#[cfg(all(feature = "std", feature = "std_rng"))]
pub use crate::rngs::thread::thread_rng;
pub use rng::{Fill, Rng};
#[cfg(all(feature = "std", feature = "std_rng"))]
use crate::distributions::{Distribution, Standard};
/// Generates a random value using the thread-local random number generator.
///
/// This is simply a shortcut for `thread_rng().gen()`. See [`thread_rng`] for
/// documentation of the entropy source and [`Standard`] for documentation of
/// distributions and type-specific generation.
///
/// # Provided implementations
///
/// The following types have provided implementations that
/// generate values with the following ranges and distributions:
///
/// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed
/// over all values of the type.
/// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all
/// code points in the range `0...0x10_FFFF`, except for the range
/// `0xD800...0xDFFF` (the surrogate code points). This includes
/// unassigned/reserved code points.
/// * `bool`: Generates `false` or `true`, each with probability 0.5.
/// * Floating point types (`f32` and `f64`): Uniformly distributed in the
/// half-open range `[0, 1)`. See notes below.
/// * Wrapping integers (`Wrapping<T>`), besides the type identical to their
/// normal integer variants.
///
/// Also supported is the generation of the following
/// compound types where all component types are supported:
///
/// * Tuples (up to 12 elements): each element is generated sequentially.
/// * Arrays (up to 32 elements): each element is generated sequentially;
/// see also [`Rng::fill`] which supports arbitrary array length for integer
/// types and tends to be faster for `u32` and smaller types.
/// * `Option<T>` first generates a `bool`, and if true generates and returns
/// `Some(value)` where `value: T`, otherwise returning `None`.
///
/// # Examples
///
/// ```
/// let x = rand::random::<u8>();
/// println!("{}", x);
///
/// let y = rand::random::<f64>();
/// println!("{}", y);
///
/// if rand::random() { // generates a boolean
/// println!("Better lucky than good!");
/// }
/// ```
///
/// If you're calling `random()` in a loop, caching the generator as in the
/// following example can increase performance.
///
/// ```
/// use rand::Rng;
///
/// let mut v = vec![1, 2, 3];
///
/// for x in v.iter_mut() {
/// *x = rand::random()
/// }
///
/// // can be made faster by caching thread_rng
///
/// let mut rng = rand::thread_rng();
///
/// for x in v.iter_mut() {
/// *x = rng.gen();
/// }
/// ```
///
/// [`Standard`]: distributions::Standard
#[cfg(all(feature = "std", feature = "std_rng"))]
#[cfg_attr(doc_cfg, doc(cfg(all(feature = "std", feature = "std_rng"))))]
#[inline]
pub fn random<T>() -> T
where Standard: Distribution<T> {
thread_rng().gen()
}
#[cfg(test)]
mod test {
use super::*;
/// Construct a deterministic RNG with the given seed
pub fn rng(seed: u64) -> impl RngCore {
// For tests, we want a statistically good, fast, reproducible RNG.
// PCG32 will do fine, and will be easy to embed if we ever need to.
const INC: u64 = 11634580027462260723;
rand_pcg::Pcg32::new(seed, INC)
}
#[test]
#[cfg(all(feature = "std", feature = "std_rng"))]
fn test_random() {
let _n: usize = random();
let _f: f32 = random();
let _o: Option<Option<i8>> = random();
#[allow(clippy::type_complexity)]
let _many: (
(),
(usize, isize, Option<(u32, (bool,))>),
(u8, i8, u16, i16, u32, i32, u64, i64),
(f32, (f64, (f64,))),
) = random();
}
}

34
zeroidc/vendor/rand/src/prelude.rs vendored Normal file
View File

@@ -0,0 +1,34 @@
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Convenience re-export of common members
//!
//! Like the standard library's prelude, this module simplifies importing of
//! common items. Unlike the standard prelude, the contents of this module must
//! be imported manually:
//!
//! ```
//! use rand::prelude::*;
//! # let mut r = StdRng::from_rng(thread_rng()).unwrap();
//! # let _: f32 = r.gen();
//! ```
#[doc(no_inline)] pub use crate::distributions::Distribution;
#[cfg(feature = "small_rng")]
#[doc(no_inline)]
pub use crate::rngs::SmallRng;
#[cfg(feature = "std_rng")]
#[doc(no_inline)] pub use crate::rngs::StdRng;
#[doc(no_inline)]
#[cfg(all(feature = "std", feature = "std_rng"))]
pub use crate::rngs::ThreadRng;
#[doc(no_inline)] pub use crate::seq::{IteratorRandom, SliceRandom};
#[doc(no_inline)]
#[cfg(all(feature = "std", feature = "std_rng"))]
pub use crate::{random, thread_rng};
#[doc(no_inline)] pub use crate::{CryptoRng, Rng, RngCore, SeedableRng};

600
zeroidc/vendor/rand/src/rng.rs vendored Normal file
View File

@@ -0,0 +1,600 @@
// Copyright 2018 Developers of the Rand project.
// Copyright 2013-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! [`Rng`] trait
use rand_core::{Error, RngCore};
use crate::distributions::uniform::{SampleRange, SampleUniform};
use crate::distributions::{self, Distribution, Standard};
use core::num::Wrapping;
use core::{mem, slice};
/// An automatically-implemented extension trait on [`RngCore`] providing high-level
/// generic methods for sampling values and other convenience methods.
///
/// This is the primary trait to use when generating random values.
///
/// # Generic usage
///
/// The basic pattern is `fn foo<R: Rng + ?Sized>(rng: &mut R)`. Some
/// things are worth noting here:
///
/// - Since `Rng: RngCore` and every `RngCore` implements `Rng`, it makes no
/// difference whether we use `R: Rng` or `R: RngCore`.
/// - The `+ ?Sized` un-bounding allows functions to be called directly on
/// type-erased references; i.e. `foo(r)` where `r: &mut dyn RngCore`. Without
/// this it would be necessary to write `foo(&mut r)`.
///
/// An alternative pattern is possible: `fn foo<R: Rng>(rng: R)`. This has some
/// trade-offs. It allows the argument to be consumed directly without a `&mut`
/// (which is how `from_rng(thread_rng())` works); also it still works directly
/// on references (including type-erased references). Unfortunately within the
/// function `foo` it is not known whether `rng` is a reference type or not,
/// hence many uses of `rng` require an extra reference, either explicitly
/// (`distr.sample(&mut rng)`) or implicitly (`rng.gen()`); one may hope the
/// optimiser can remove redundant references later.
///
/// Example:
///
/// ```
/// # use rand::thread_rng;
/// use rand::Rng;
///
/// fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 {
/// rng.gen()
/// }
///
/// # let v = foo(&mut thread_rng());
/// ```
pub trait Rng: RngCore {
/// Return a random value supporting the [`Standard`] distribution.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// let x: u32 = rng.gen();
/// println!("{}", x);
/// println!("{:?}", rng.gen::<(f64, bool)>());
/// ```
///
/// # Arrays and tuples
///
/// The `rng.gen()` method is able to generate arrays (up to 32 elements)
/// and tuples (up to 12 elements), so long as all element types can be
/// generated.
/// When using `rustc` ≥ 1.51, enable the `min_const_gen` feature to support
/// arrays larger than 32 elements.
///
/// For arrays of integers, especially for those with small element types
/// (< 64 bit), it will likely be faster to instead use [`Rng::fill`].
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// let tuple: (u8, i32, char) = rng.gen(); // arbitrary tuple support
///
/// let arr1: [f32; 32] = rng.gen(); // array construction
/// let mut arr2 = [0u8; 128];
/// rng.fill(&mut arr2); // array fill
/// ```
///
/// [`Standard`]: distributions::Standard
#[inline]
fn gen<T>(&mut self) -> T
where Standard: Distribution<T> {
Standard.sample(self)
}
/// Generate a random value in the given range.
///
/// This function is optimised for the case that only a single sample is
/// made from the given range. See also the [`Uniform`] distribution
/// type which may be faster if sampling from the same range repeatedly.
///
/// Only `gen_range(low..high)` and `gen_range(low..=high)` are supported.
///
/// # Panics
///
/// Panics if the range is empty.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
///
/// // Exclusive range
/// let n: u32 = rng.gen_range(0..10);
/// println!("{}", n);
/// let m: f64 = rng.gen_range(-40.0..1.3e5);
/// println!("{}", m);
///
/// // Inclusive range
/// let n: u32 = rng.gen_range(0..=10);
/// println!("{}", n);
/// ```
///
/// [`Uniform`]: distributions::uniform::Uniform
fn gen_range<T, R>(&mut self, range: R) -> T
where
T: SampleUniform,
R: SampleRange<T>
{
assert!(!range.is_empty(), "cannot sample empty range");
range.sample_single(self)
}
/// Sample a new value, using the given distribution.
///
/// ### Example
///
/// ```
/// use rand::{thread_rng, Rng};
/// use rand::distributions::Uniform;
///
/// let mut rng = thread_rng();
/// let x = rng.sample(Uniform::new(10u32, 15));
/// // Type annotation requires two types, the type and distribution; the
/// // distribution can be inferred.
/// let y = rng.sample::<u16, _>(Uniform::new(10, 15));
/// ```
fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T {
distr.sample(self)
}
/// Create an iterator that generates values using the given distribution.
///
/// Note that this function takes its arguments by value. This works since
/// `(&mut R): Rng where R: Rng` and
/// `(&D): Distribution where D: Distribution`,
/// however borrowing is not automatic hence `rng.sample_iter(...)` may
/// need to be replaced with `(&mut rng).sample_iter(...)`.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
/// use rand::distributions::{Alphanumeric, Uniform, Standard};
///
/// let mut rng = thread_rng();
///
/// // Vec of 16 x f32:
/// let v: Vec<f32> = (&mut rng).sample_iter(Standard).take(16).collect();
///
/// // String:
/// let s: String = (&mut rng).sample_iter(Alphanumeric)
/// .take(7)
/// .map(char::from)
/// .collect();
///
/// // Combined values
/// println!("{:?}", (&mut rng).sample_iter(Standard).take(5)
/// .collect::<Vec<(f64, bool)>>());
///
/// // Dice-rolling:
/// let die_range = Uniform::new_inclusive(1, 6);
/// let mut roll_die = (&mut rng).sample_iter(die_range);
/// while roll_die.next().unwrap() != 6 {
/// println!("Not a 6; rolling again!");
/// }
/// ```
fn sample_iter<T, D>(self, distr: D) -> distributions::DistIter<D, Self, T>
where
D: Distribution<T>,
Self: Sized,
{
distr.sample_iter(self)
}
/// Fill any type implementing [`Fill`] with random data
///
/// The distribution is expected to be uniform with portable results, but
/// this cannot be guaranteed for third-party implementations.
///
/// This is identical to [`try_fill`] except that it panics on error.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let mut arr = [0i8; 20];
/// thread_rng().fill(&mut arr[..]);
/// ```
///
/// [`fill_bytes`]: RngCore::fill_bytes
/// [`try_fill`]: Rng::try_fill
fn fill<T: Fill + ?Sized>(&mut self, dest: &mut T) {
dest.try_fill(self).unwrap_or_else(|_| panic!("Rng::fill failed"))
}
/// Fill any type implementing [`Fill`] with random data
///
/// The distribution is expected to be uniform with portable results, but
/// this cannot be guaranteed for third-party implementations.
///
/// This is identical to [`fill`] except that it forwards errors.
///
/// # Example
///
/// ```
/// # use rand::Error;
/// use rand::{thread_rng, Rng};
///
/// # fn try_inner() -> Result<(), Error> {
/// let mut arr = [0u64; 4];
/// thread_rng().try_fill(&mut arr[..])?;
/// # Ok(())
/// # }
///
/// # try_inner().unwrap()
/// ```
///
/// [`try_fill_bytes`]: RngCore::try_fill_bytes
/// [`fill`]: Rng::fill
fn try_fill<T: Fill + ?Sized>(&mut self, dest: &mut T) -> Result<(), Error> {
dest.try_fill(self)
}
/// Return a bool with a probability `p` of being true.
///
/// See also the [`Bernoulli`] distribution, which may be faster if
/// sampling from the same probability repeatedly.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// println!("{}", rng.gen_bool(1.0 / 3.0));
/// ```
///
/// # Panics
///
/// If `p < 0` or `p > 1`.
///
/// [`Bernoulli`]: distributions::Bernoulli
#[inline]
fn gen_bool(&mut self, p: f64) -> bool {
let d = distributions::Bernoulli::new(p).unwrap();
self.sample(d)
}
/// Return a bool with a probability of `numerator/denominator` of being
/// true. I.e. `gen_ratio(2, 3)` has chance of 2 in 3, or about 67%, of
/// returning true. If `numerator == denominator`, then the returned value
/// is guaranteed to be `true`. If `numerator == 0`, then the returned
/// value is guaranteed to be `false`.
///
/// See also the [`Bernoulli`] distribution, which may be faster if
/// sampling from the same `numerator` and `denominator` repeatedly.
///
/// # Panics
///
/// If `denominator == 0` or `numerator > denominator`.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// println!("{}", rng.gen_ratio(2, 3));
/// ```
///
/// [`Bernoulli`]: distributions::Bernoulli
#[inline]
fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool {
let d = distributions::Bernoulli::from_ratio(numerator, denominator).unwrap();
self.sample(d)
}
}
impl<R: RngCore + ?Sized> Rng for R {}
/// Types which may be filled with random data
///
/// This trait allows arrays to be efficiently filled with random data.
///
/// Implementations are expected to be portable across machines unless
/// clearly documented otherwise (see the
/// [Chapter on Portability](https://rust-random.github.io/book/portability.html)).
pub trait Fill {
/// Fill self with random data
fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error>;
}
macro_rules! impl_fill_each {
() => {};
($t:ty) => {
impl Fill for [$t] {
fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
for elt in self.iter_mut() {
*elt = rng.gen();
}
Ok(())
}
}
};
($t:ty, $($tt:ty,)*) => {
impl_fill_each!($t);
impl_fill_each!($($tt,)*);
};
}
impl_fill_each!(bool, char, f32, f64,);
impl Fill for [u8] {
fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
rng.try_fill_bytes(self)
}
}
macro_rules! impl_fill {
() => {};
($t:ty) => {
impl Fill for [$t] {
#[inline(never)] // in micro benchmarks, this improves performance
fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
if self.len() > 0 {
rng.try_fill_bytes(unsafe {
slice::from_raw_parts_mut(self.as_mut_ptr()
as *mut u8,
self.len() * mem::size_of::<$t>()
)
})?;
for x in self {
*x = x.to_le();
}
}
Ok(())
}
}
impl Fill for [Wrapping<$t>] {
#[inline(never)]
fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
if self.len() > 0 {
rng.try_fill_bytes(unsafe {
slice::from_raw_parts_mut(self.as_mut_ptr()
as *mut u8,
self.len() * mem::size_of::<$t>()
)
})?;
for x in self {
*x = Wrapping(x.0.to_le());
}
}
Ok(())
}
}
};
($t:ty, $($tt:ty,)*) => {
impl_fill!($t);
// TODO: this could replace above impl once Rust #32463 is fixed
// impl_fill!(Wrapping<$t>);
impl_fill!($($tt,)*);
}
}
impl_fill!(u16, u32, u64, usize, u128,);
impl_fill!(i8, i16, i32, i64, isize, i128,);
#[cfg_attr(doc_cfg, doc(cfg(feature = "min_const_gen")))]
#[cfg(feature = "min_const_gen")]
impl<T, const N: usize> Fill for [T; N]
where [T]: Fill
{
fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
self[..].try_fill(rng)
}
}
#[cfg(not(feature = "min_const_gen"))]
macro_rules! impl_fill_arrays {
($n:expr,) => {};
($n:expr, $N:ident) => {
impl<T> Fill for [T; $n] where [T]: Fill {
fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
self[..].try_fill(rng)
}
}
};
($n:expr, $N:ident, $($NN:ident,)*) => {
impl_fill_arrays!($n, $N);
impl_fill_arrays!($n - 1, $($NN,)*);
};
(!div $n:expr,) => {};
(!div $n:expr, $N:ident, $($NN:ident,)*) => {
impl_fill_arrays!($n, $N);
impl_fill_arrays!(!div $n / 2, $($NN,)*);
};
}
#[cfg(not(feature = "min_const_gen"))]
#[rustfmt::skip]
impl_fill_arrays!(32, N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,);
#[cfg(not(feature = "min_const_gen"))]
impl_fill_arrays!(!div 4096, N,N,N,N,N,N,N,);
#[cfg(test)]
mod test {
use super::*;
use crate::test::rng;
use crate::rngs::mock::StepRng;
#[cfg(feature = "alloc")] use alloc::boxed::Box;
#[test]
fn test_fill_bytes_default() {
let mut r = StepRng::new(0x11_22_33_44_55_66_77_88, 0);
// check every remainder mod 8, both in small and big vectors.
let lengths = [0, 1, 2, 3, 4, 5, 6, 7, 80, 81, 82, 83, 84, 85, 86, 87];
for &n in lengths.iter() {
let mut buffer = [0u8; 87];
let v = &mut buffer[0..n];
r.fill_bytes(v);
// use this to get nicer error messages.
for (i, &byte) in v.iter().enumerate() {
if byte == 0 {
panic!("byte {} of {} is zero", i, n)
}
}
}
}
#[test]
fn test_fill() {
let x = 9041086907909331047; // a random u64
let mut rng = StepRng::new(x, 0);
// Convert to byte sequence and back to u64; byte-swap twice if BE.
let mut array = [0u64; 2];
rng.fill(&mut array[..]);
assert_eq!(array, [x, x]);
assert_eq!(rng.next_u64(), x);
// Convert to bytes then u32 in LE order
let mut array = [0u32; 2];
rng.fill(&mut array[..]);
assert_eq!(array, [x as u32, (x >> 32) as u32]);
assert_eq!(rng.next_u32(), x as u32);
// Check equivalence using wrapped arrays
let mut warray = [Wrapping(0u32); 2];
rng.fill(&mut warray[..]);
assert_eq!(array[0], warray[0].0);
assert_eq!(array[1], warray[1].0);
// Check equivalence for generated floats
let mut array = [0f32; 2];
rng.fill(&mut array);
let gen: [f32; 2] = rng.gen();
assert_eq!(array, gen);
}
#[test]
fn test_fill_empty() {
let mut array = [0u32; 0];
let mut rng = StepRng::new(0, 1);
rng.fill(&mut array);
rng.fill(&mut array[..]);
}
#[test]
fn test_gen_range_int() {
let mut r = rng(101);
for _ in 0..1000 {
let a = r.gen_range(-4711..17);
assert!((-4711..17).contains(&a));
let a: i8 = r.gen_range(-3..42);
assert!((-3..42).contains(&a));
let a: u16 = r.gen_range(10..99);
assert!((10..99).contains(&a));
let a: i32 = r.gen_range(-100..2000);
assert!((-100..2000).contains(&a));
let a: u32 = r.gen_range(12..=24);
assert!((12..=24).contains(&a));
assert_eq!(r.gen_range(0u32..1), 0u32);
assert_eq!(r.gen_range(-12i64..-11), -12i64);
assert_eq!(r.gen_range(3_000_000..3_000_001), 3_000_000);
}
}
#[test]
fn test_gen_range_float() {
let mut r = rng(101);
for _ in 0..1000 {
let a = r.gen_range(-4.5..1.7);
assert!((-4.5..1.7).contains(&a));
let a = r.gen_range(-1.1..=-0.3);
assert!((-1.1..=-0.3).contains(&a));
assert_eq!(r.gen_range(0.0f32..=0.0), 0.);
assert_eq!(r.gen_range(-11.0..=-11.0), -11.);
assert_eq!(r.gen_range(3_000_000.0..=3_000_000.0), 3_000_000.);
}
}
#[test]
#[should_panic]
fn test_gen_range_panic_int() {
#![allow(clippy::reversed_empty_ranges)]
let mut r = rng(102);
r.gen_range(5..-2);
}
#[test]
#[should_panic]
fn test_gen_range_panic_usize() {
#![allow(clippy::reversed_empty_ranges)]
let mut r = rng(103);
r.gen_range(5..2);
}
#[test]
fn test_gen_bool() {
#![allow(clippy::bool_assert_comparison)]
let mut r = rng(105);
for _ in 0..5 {
assert_eq!(r.gen_bool(0.0), false);
assert_eq!(r.gen_bool(1.0), true);
}
}
#[test]
fn test_rng_trait_object() {
use crate::distributions::{Distribution, Standard};
let mut rng = rng(109);
let mut r = &mut rng as &mut dyn RngCore;
r.next_u32();
r.gen::<i32>();
assert_eq!(r.gen_range(0..1), 0);
let _c: u8 = Standard.sample(&mut r);
}
#[test]
#[cfg(feature = "alloc")]
fn test_rng_boxed_trait() {
use crate::distributions::{Distribution, Standard};
let rng = rng(110);
let mut r = Box::new(rng) as Box<dyn RngCore>;
r.next_u32();
r.gen::<i32>();
assert_eq!(r.gen_range(0..1), 0);
let _c: u8 = Standard.sample(&mut r);
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_gen_ratio_average() {
const NUM: u32 = 3;
const DENOM: u32 = 10;
const N: u32 = 100_000;
let mut sum: u32 = 0;
let mut rng = rng(111);
for _ in 0..N {
if rng.gen_ratio(NUM, DENOM) {
sum += 1;
}
}
// Have Binomial(N, NUM/DENOM) distribution
let expected = (NUM * N) / DENOM; // exact integer
assert!(((sum - expected) as i32).abs() < 500);
}
}

View File

@@ -0,0 +1,16 @@
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Wrappers / adapters forming RNGs
mod read;
mod reseeding;
#[allow(deprecated)]
pub use self::read::{ReadError, ReadRng};
pub use self::reseeding::ReseedingRng;

View File

@@ -0,0 +1,150 @@
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A wrapper around any Read to treat it as an RNG.
#![allow(deprecated)]
use std::fmt;
use std::io::Read;
use rand_core::{impls, Error, RngCore};
/// An RNG that reads random bytes straight from any type supporting
/// [`std::io::Read`], for example files.
///
/// This will work best with an infinite reader, but that is not required.
///
/// This can be used with `/dev/urandom` on Unix but it is recommended to use
/// [`OsRng`] instead.
///
/// # Panics
///
/// `ReadRng` uses [`std::io::Read::read_exact`], which retries on interrupts.
/// All other errors from the underlying reader, including when it does not
/// have enough data, will only be reported through [`try_fill_bytes`].
/// The other [`RngCore`] methods will panic in case of an error.
///
/// [`OsRng`]: crate::rngs::OsRng
/// [`try_fill_bytes`]: RngCore::try_fill_bytes
#[derive(Debug)]
#[deprecated(since="0.8.4", note="removal due to lack of usage")]
pub struct ReadRng<R> {
reader: R,
}
impl<R: Read> ReadRng<R> {
/// Create a new `ReadRng` from a `Read`.
pub fn new(r: R) -> ReadRng<R> {
ReadRng { reader: r }
}
}
impl<R: Read> RngCore for ReadRng<R> {
fn next_u32(&mut self) -> u32 {
impls::next_u32_via_fill(self)
}
fn next_u64(&mut self) -> u64 {
impls::next_u64_via_fill(self)
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.try_fill_bytes(dest).unwrap_or_else(|err| {
panic!(
"reading random bytes from Read implementation failed; error: {}",
err
)
});
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
if dest.is_empty() {
return Ok(());
}
// Use `std::io::read_exact`, which retries on `ErrorKind::Interrupted`.
self.reader
.read_exact(dest)
.map_err(|e| Error::new(ReadError(e)))
}
}
/// `ReadRng` error type
#[derive(Debug)]
#[deprecated(since="0.8.4")]
pub struct ReadError(std::io::Error);
impl fmt::Display for ReadError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "ReadError: {}", self.0)
}
}
impl std::error::Error for ReadError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
Some(&self.0)
}
}
#[cfg(test)]
mod test {
use std::println;
use super::ReadRng;
use crate::RngCore;
#[test]
fn test_reader_rng_u64() {
// transmute from the target to avoid endianness concerns.
#[rustfmt::skip]
let v = [0u8, 0, 0, 0, 0, 0, 0, 1,
0, 4, 0, 0, 3, 0, 0, 2,
5, 0, 0, 0, 0, 0, 0, 0];
let mut rng = ReadRng::new(&v[..]);
assert_eq!(rng.next_u64(), 1 << 56);
assert_eq!(rng.next_u64(), (2 << 56) + (3 << 32) + (4 << 8));
assert_eq!(rng.next_u64(), 5);
}
#[test]
fn test_reader_rng_u32() {
let v = [0u8, 0, 0, 1, 0, 0, 2, 0, 3, 0, 0, 0];
let mut rng = ReadRng::new(&v[..]);
assert_eq!(rng.next_u32(), 1 << 24);
assert_eq!(rng.next_u32(), 2 << 16);
assert_eq!(rng.next_u32(), 3);
}
#[test]
fn test_reader_rng_fill_bytes() {
let v = [1u8, 2, 3, 4, 5, 6, 7, 8];
let mut w = [0u8; 8];
let mut rng = ReadRng::new(&v[..]);
rng.fill_bytes(&mut w);
assert!(v == w);
}
#[test]
fn test_reader_rng_insufficient_bytes() {
let v = [1u8, 2, 3, 4, 5, 6, 7, 8];
let mut w = [0u8; 9];
let mut rng = ReadRng::new(&v[..]);
let result = rng.try_fill_bytes(&mut w);
assert!(result.is_err());
println!("Error: {}", result.unwrap_err());
}
}

View File

@@ -0,0 +1,386 @@
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A wrapper around another PRNG that reseeds it after it
//! generates a certain number of random bytes.
use core::mem::size_of;
use rand_core::block::{BlockRng, BlockRngCore};
use rand_core::{CryptoRng, Error, RngCore, SeedableRng};
/// A wrapper around any PRNG that implements [`BlockRngCore`], that adds the
/// ability to reseed it.
///
/// `ReseedingRng` reseeds the underlying PRNG in the following cases:
///
/// - On a manual call to [`reseed()`].
/// - After `clone()`, the clone will be reseeded on first use.
/// - When a process is forked on UNIX, the RNGs in both the parent and child
/// processes will be reseeded just before the next call to
/// [`BlockRngCore::generate`], i.e. "soon". For ChaCha and Hc128 this is a
/// maximum of fifteen `u32` values before reseeding.
/// - After the PRNG has generated a configurable number of random bytes.
///
/// # When should reseeding after a fixed number of generated bytes be used?
///
/// Reseeding after a fixed number of generated bytes is never strictly
/// *necessary*. Cryptographic PRNGs don't have a limited number of bytes they
/// can output, or at least not a limit reachable in any practical way. There is
/// no such thing as 'running out of entropy'.
///
/// Occasionally reseeding can be seen as some form of 'security in depth'. Even
/// if in the future a cryptographic weakness is found in the CSPRNG being used,
/// or a flaw in the implementation, occasionally reseeding should make
/// exploiting it much more difficult or even impossible.
///
/// Use [`ReseedingRng::new`] with a `threshold` of `0` to disable reseeding
/// after a fixed number of generated bytes.
///
/// # Limitations
///
/// It is recommended that a `ReseedingRng` (including `ThreadRng`) not be used
/// from a fork handler.
/// Use `OsRng` or `getrandom`, or defer your use of the RNG until later.
///
/// # Error handling
///
/// Although unlikely, reseeding the wrapped PRNG can fail. `ReseedingRng` will
/// never panic but try to handle the error intelligently through some
/// combination of retrying and delaying reseeding until later.
/// If handling the source error fails `ReseedingRng` will continue generating
/// data from the wrapped PRNG without reseeding.
///
/// Manually calling [`reseed()`] will not have this retry or delay logic, but
/// reports the error.
///
/// # Example
///
/// ```
/// use rand::prelude::*;
/// use rand_chacha::ChaCha20Core; // Internal part of ChaChaRng that
/// // implements BlockRngCore
/// use rand::rngs::OsRng;
/// use rand::rngs::adapter::ReseedingRng;
///
/// let prng = ChaCha20Core::from_entropy();
/// let mut reseeding_rng = ReseedingRng::new(prng, 0, OsRng);
///
/// println!("{}", reseeding_rng.gen::<u64>());
///
/// let mut cloned_rng = reseeding_rng.clone();
/// assert!(reseeding_rng.gen::<u64>() != cloned_rng.gen::<u64>());
/// ```
///
/// [`BlockRngCore`]: rand_core::block::BlockRngCore
/// [`ReseedingRng::new`]: ReseedingRng::new
/// [`reseed()`]: ReseedingRng::reseed
#[derive(Debug)]
pub struct ReseedingRng<R, Rsdr>(BlockRng<ReseedingCore<R, Rsdr>>)
where
R: BlockRngCore + SeedableRng,
Rsdr: RngCore;
impl<R, Rsdr> ReseedingRng<R, Rsdr>
where
R: BlockRngCore + SeedableRng,
Rsdr: RngCore,
{
/// Create a new `ReseedingRng` from an existing PRNG, combined with a RNG
/// to use as reseeder.
///
/// `threshold` sets the number of generated bytes after which to reseed the
/// PRNG. Set it to zero to never reseed based on the number of generated
/// values.
pub fn new(rng: R, threshold: u64, reseeder: Rsdr) -> Self {
ReseedingRng(BlockRng::new(ReseedingCore::new(rng, threshold, reseeder)))
}
/// Reseed the internal PRNG.
pub fn reseed(&mut self) -> Result<(), Error> {
self.0.core.reseed()
}
}
// TODO: this should be implemented for any type where the inner type
// implements RngCore, but we can't specify that because ReseedingCore is private
impl<R, Rsdr: RngCore> RngCore for ReseedingRng<R, Rsdr>
where
R: BlockRngCore<Item = u32> + SeedableRng,
<R as BlockRngCore>::Results: AsRef<[u32]> + AsMut<[u32]>,
{
#[inline(always)]
fn next_u32(&mut self) -> u32 {
self.0.next_u32()
}
#[inline(always)]
fn next_u64(&mut self) -> u64 {
self.0.next_u64()
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.0.fill_bytes(dest)
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.0.try_fill_bytes(dest)
}
}
impl<R, Rsdr> Clone for ReseedingRng<R, Rsdr>
where
R: BlockRngCore + SeedableRng + Clone,
Rsdr: RngCore + Clone,
{
fn clone(&self) -> ReseedingRng<R, Rsdr> {
// Recreating `BlockRng` seems easier than cloning it and resetting
// the index.
ReseedingRng(BlockRng::new(self.0.core.clone()))
}
}
impl<R, Rsdr> CryptoRng for ReseedingRng<R, Rsdr>
where
R: BlockRngCore + SeedableRng + CryptoRng,
Rsdr: RngCore + CryptoRng,
{
}
#[derive(Debug)]
struct ReseedingCore<R, Rsdr> {
inner: R,
reseeder: Rsdr,
threshold: i64,
bytes_until_reseed: i64,
fork_counter: usize,
}
impl<R, Rsdr> BlockRngCore for ReseedingCore<R, Rsdr>
where
R: BlockRngCore + SeedableRng,
Rsdr: RngCore,
{
type Item = <R as BlockRngCore>::Item;
type Results = <R as BlockRngCore>::Results;
fn generate(&mut self, results: &mut Self::Results) {
let global_fork_counter = fork::get_fork_counter();
if self.bytes_until_reseed <= 0 || self.is_forked(global_fork_counter) {
// We get better performance by not calling only `reseed` here
// and continuing with the rest of the function, but by directly
// returning from a non-inlined function.
return self.reseed_and_generate(results, global_fork_counter);
}
let num_bytes = results.as_ref().len() * size_of::<Self::Item>();
self.bytes_until_reseed -= num_bytes as i64;
self.inner.generate(results);
}
}
impl<R, Rsdr> ReseedingCore<R, Rsdr>
where
R: BlockRngCore + SeedableRng,
Rsdr: RngCore,
{
/// Create a new `ReseedingCore`.
fn new(rng: R, threshold: u64, reseeder: Rsdr) -> Self {
use ::core::i64::MAX;
fork::register_fork_handler();
// Because generating more values than `i64::MAX` takes centuries on
// current hardware, we just clamp to that value.
// Also we set a threshold of 0, which indicates no limit, to that
// value.
let threshold = if threshold == 0 {
MAX
} else if threshold <= MAX as u64 {
threshold as i64
} else {
MAX
};
ReseedingCore {
inner: rng,
reseeder,
threshold: threshold as i64,
bytes_until_reseed: threshold as i64,
fork_counter: 0,
}
}
/// Reseed the internal PRNG.
fn reseed(&mut self) -> Result<(), Error> {
R::from_rng(&mut self.reseeder).map(|result| {
self.bytes_until_reseed = self.threshold;
self.inner = result
})
}
fn is_forked(&self, global_fork_counter: usize) -> bool {
// In theory, on 32-bit platforms, it is possible for
// `global_fork_counter` to wrap around after ~4e9 forks.
//
// This check will detect a fork in the normal case where
// `fork_counter < global_fork_counter`, and also when the difference
// between both is greater than `isize::MAX` (wrapped around).
//
// It will still fail to detect a fork if there have been more than
// `isize::MAX` forks, without any reseed in between. Seems unlikely
// enough.
(self.fork_counter.wrapping_sub(global_fork_counter) as isize) < 0
}
#[inline(never)]
fn reseed_and_generate(
&mut self, results: &mut <Self as BlockRngCore>::Results, global_fork_counter: usize,
) {
#![allow(clippy::if_same_then_else)] // false positive
if self.is_forked(global_fork_counter) {
info!("Fork detected, reseeding RNG");
} else {
trace!("Reseeding RNG (periodic reseed)");
}
let num_bytes = results.as_ref().len() * size_of::<<R as BlockRngCore>::Item>();
if let Err(e) = self.reseed() {
warn!("Reseeding RNG failed: {}", e);
let _ = e;
}
self.fork_counter = global_fork_counter;
self.bytes_until_reseed = self.threshold - num_bytes as i64;
self.inner.generate(results);
}
}
impl<R, Rsdr> Clone for ReseedingCore<R, Rsdr>
where
R: BlockRngCore + SeedableRng + Clone,
Rsdr: RngCore + Clone,
{
fn clone(&self) -> ReseedingCore<R, Rsdr> {
ReseedingCore {
inner: self.inner.clone(),
reseeder: self.reseeder.clone(),
threshold: self.threshold,
bytes_until_reseed: 0, // reseed clone on first use
fork_counter: self.fork_counter,
}
}
}
impl<R, Rsdr> CryptoRng for ReseedingCore<R, Rsdr>
where
R: BlockRngCore + SeedableRng + CryptoRng,
Rsdr: RngCore + CryptoRng,
{
}
#[cfg(all(unix, not(target_os = "emscripten")))]
mod fork {
use core::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Once;
// Fork protection
//
// We implement fork protection on Unix using `pthread_atfork`.
// When the process is forked, we increment `RESEEDING_RNG_FORK_COUNTER`.
// Every `ReseedingRng` stores the last known value of the static in
// `fork_counter`. If the cached `fork_counter` is less than
// `RESEEDING_RNG_FORK_COUNTER`, it is time to reseed this RNG.
//
// If reseeding fails, we don't deal with this by setting a delay, but just
// don't update `fork_counter`, so a reseed is attempted as soon as
// possible.
static RESEEDING_RNG_FORK_COUNTER: AtomicUsize = AtomicUsize::new(0);
pub fn get_fork_counter() -> usize {
RESEEDING_RNG_FORK_COUNTER.load(Ordering::Relaxed)
}
extern "C" fn fork_handler() {
// Note: fetch_add is defined to wrap on overflow
// (which is what we want).
RESEEDING_RNG_FORK_COUNTER.fetch_add(1, Ordering::Relaxed);
}
pub fn register_fork_handler() {
static REGISTER: Once = Once::new();
REGISTER.call_once(|| {
// Bump the counter before and after forking (see #1169):
let ret = unsafe { libc::pthread_atfork(
Some(fork_handler),
Some(fork_handler),
Some(fork_handler),
) };
if ret != 0 {
panic!("libc::pthread_atfork failed with code {}", ret);
}
});
}
}
#[cfg(not(all(unix, not(target_os = "emscripten"))))]
mod fork {
pub fn get_fork_counter() -> usize {
0
}
pub fn register_fork_handler() {}
}
#[cfg(feature = "std_rng")]
#[cfg(test)]
mod test {
use super::ReseedingRng;
use crate::rngs::mock::StepRng;
use crate::rngs::std::Core;
use crate::{Rng, SeedableRng};
#[test]
fn test_reseeding() {
let mut zero = StepRng::new(0, 0);
let rng = Core::from_rng(&mut zero).unwrap();
let thresh = 1; // reseed every time the buffer is exhausted
let mut reseeding = ReseedingRng::new(rng, thresh, zero);
// RNG buffer size is [u32; 64]
// Debug is only implemented up to length 32 so use two arrays
let mut buf = ([0u32; 32], [0u32; 32]);
reseeding.fill(&mut buf.0);
reseeding.fill(&mut buf.1);
let seq = buf;
for _ in 0..10 {
reseeding.fill(&mut buf.0);
reseeding.fill(&mut buf.1);
assert_eq!(buf, seq);
}
}
#[test]
fn test_clone_reseeding() {
#![allow(clippy::redundant_clone)]
let mut zero = StepRng::new(0, 0);
let rng = Core::from_rng(&mut zero).unwrap();
let mut rng1 = ReseedingRng::new(rng, 32 * 4, zero);
let first: u32 = rng1.gen();
for _ in 0..10 {
let _ = rng1.gen::<u32>();
}
let mut rng2 = rng1.clone();
assert_eq!(first, rng2.gen::<u32>());
}
}

87
zeroidc/vendor/rand/src/rngs/mock.rs vendored Normal file
View File

@@ -0,0 +1,87 @@
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Mock random number generator
use rand_core::{impls, Error, RngCore};
#[cfg(feature = "serde1")]
use serde::{Serialize, Deserialize};
/// A simple implementation of `RngCore` for testing purposes.
///
/// This generates an arithmetic sequence (i.e. adds a constant each step)
/// over a `u64` number, using wrapping arithmetic. If the increment is 0
/// the generator yields a constant.
///
/// ```
/// use rand::Rng;
/// use rand::rngs::mock::StepRng;
///
/// let mut my_rng = StepRng::new(2, 1);
/// let sample: [u64; 3] = my_rng.gen();
/// assert_eq!(sample, [2, 3, 4]);
/// ```
#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct StepRng {
v: u64,
a: u64,
}
impl StepRng {
/// Create a `StepRng`, yielding an arithmetic sequence starting with
/// `initial` and incremented by `increment` each time.
pub fn new(initial: u64, increment: u64) -> Self {
StepRng {
v: initial,
a: increment,
}
}
}
impl RngCore for StepRng {
#[inline]
fn next_u32(&mut self) -> u32 {
self.next_u64() as u32
}
#[inline]
fn next_u64(&mut self) -> u64 {
let result = self.v;
self.v = self.v.wrapping_add(self.a);
result
}
#[inline]
fn fill_bytes(&mut self, dest: &mut [u8]) {
impls::fill_bytes_via_next(self, dest);
}
#[inline]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.fill_bytes(dest);
Ok(())
}
}
#[cfg(test)]
mod tests {
#[test]
#[cfg(feature = "serde1")]
fn test_serialization_step_rng() {
use super::StepRng;
let some_rng = StepRng::new(42, 7);
let de_some_rng: StepRng =
bincode::deserialize(&bincode::serialize(&some_rng).unwrap()).unwrap();
assert_eq!(some_rng.v, de_some_rng.v);
assert_eq!(some_rng.a, de_some_rng.a);
}
}

119
zeroidc/vendor/rand/src/rngs/mod.rs vendored Normal file
View File

@@ -0,0 +1,119 @@
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Random number generators and adapters
//!
//! ## Background: Random number generators (RNGs)
//!
//! Computers cannot produce random numbers from nowhere. We classify
//! random number generators as follows:
//!
//! - "True" random number generators (TRNGs) use hard-to-predict data sources
//! (e.g. the high-resolution parts of event timings and sensor jitter) to
//! harvest random bit-sequences, apply algorithms to remove bias and
//! estimate available entropy, then combine these bits into a byte-sequence
//! or an entropy pool. This job is usually done by the operating system or
//! a hardware generator (HRNG).
//! - "Pseudo"-random number generators (PRNGs) use algorithms to transform a
//! seed into a sequence of pseudo-random numbers. These generators can be
//! fast and produce well-distributed unpredictable random numbers (or not).
//! They are usually deterministic: given algorithm and seed, the output
//! sequence can be reproduced. They have finite period and eventually loop;
//! with many algorithms this period is fixed and can be proven sufficiently
//! long, while others are chaotic and the period depends on the seed.
//! - "Cryptographically secure" pseudo-random number generators (CSPRNGs)
//! are the sub-set of PRNGs which are secure. Security of the generator
//! relies both on hiding the internal state and using a strong algorithm.
//!
//! ## Traits and functionality
//!
//! All RNGs implement the [`RngCore`] trait, as a consequence of which the
//! [`Rng`] extension trait is automatically implemented. Secure RNGs may
//! additionally implement the [`CryptoRng`] trait.
//!
//! All PRNGs require a seed to produce their random number sequence. The
//! [`SeedableRng`] trait provides three ways of constructing PRNGs:
//!
//! - `from_seed` accepts a type specific to the PRNG
//! - `from_rng` allows a PRNG to be seeded from any other RNG
//! - `seed_from_u64` allows any PRNG to be seeded from a `u64` insecurely
//! - `from_entropy` securely seeds a PRNG from fresh entropy
//!
//! Use the [`rand_core`] crate when implementing your own RNGs.
//!
//! ## Our generators
//!
//! This crate provides several random number generators:
//!
//! - [`OsRng`] is an interface to the operating system's random number
//! source. Typically the operating system uses a CSPRNG with entropy
//! provided by a TRNG and some type of on-going re-seeding.
//! - [`ThreadRng`], provided by the [`thread_rng`] function, is a handle to a
//! thread-local CSPRNG with periodic seeding from [`OsRng`]. Because this
//! is local, it is typically much faster than [`OsRng`]. It should be
//! secure, though the paranoid may prefer [`OsRng`].
//! - [`StdRng`] is a CSPRNG chosen for good performance and trust of security
//! (based on reviews, maturity and usage). The current algorithm is ChaCha12,
//! which is well established and rigorously analysed.
//! [`StdRng`] provides the algorithm used by [`ThreadRng`] but without
//! periodic reseeding.
//! - [`SmallRng`] is an **insecure** PRNG designed to be fast, simple, require
//! little memory, and have good output quality.
//!
//! The algorithms selected for [`StdRng`] and [`SmallRng`] may change in any
//! release and may be platform-dependent, therefore they should be considered
//! **not reproducible**.
//!
//! ## Additional generators
//!
//! **TRNGs**: The [`rdrand`] crate provides an interface to the RDRAND and
//! RDSEED instructions available in modern Intel and AMD CPUs.
//! The [`rand_jitter`] crate provides a user-space implementation of
//! entropy harvesting from CPU timer jitter, but is very slow and has
//! [security issues](https://github.com/rust-random/rand/issues/699).
//!
//! **PRNGs**: Several companion crates are available, providing individual or
//! families of PRNG algorithms. These provide the implementations behind
//! [`StdRng`] and [`SmallRng`] but can also be used directly, indeed *should*
//! be used directly when **reproducibility** matters.
//! Some suggestions are: [`rand_chacha`], [`rand_pcg`], [`rand_xoshiro`].
//! A full list can be found by searching for crates with the [`rng` tag].
//!
//! [`Rng`]: crate::Rng
//! [`RngCore`]: crate::RngCore
//! [`CryptoRng`]: crate::CryptoRng
//! [`SeedableRng`]: crate::SeedableRng
//! [`thread_rng`]: crate::thread_rng
//! [`rdrand`]: https://crates.io/crates/rdrand
//! [`rand_jitter`]: https://crates.io/crates/rand_jitter
//! [`rand_chacha`]: https://crates.io/crates/rand_chacha
//! [`rand_pcg`]: https://crates.io/crates/rand_pcg
//! [`rand_xoshiro`]: https://crates.io/crates/rand_xoshiro
//! [`rng` tag]: https://crates.io/keywords/rng
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
#[cfg(feature = "std")] pub mod adapter;
pub mod mock; // Public so we don't export `StepRng` directly, making it a bit
// more clear it is intended for testing.
#[cfg(all(feature = "small_rng", target_pointer_width = "64"))]
mod xoshiro256plusplus;
#[cfg(all(feature = "small_rng", not(target_pointer_width = "64")))]
mod xoshiro128plusplus;
#[cfg(feature = "small_rng")] mod small;
#[cfg(feature = "std_rng")] mod std;
#[cfg(all(feature = "std", feature = "std_rng"))] pub(crate) mod thread;
#[cfg(feature = "small_rng")] pub use self::small::SmallRng;
#[cfg(feature = "std_rng")] pub use self::std::StdRng;
#[cfg(all(feature = "std", feature = "std_rng"))] pub use self::thread::ThreadRng;
#[cfg_attr(doc_cfg, doc(cfg(feature = "getrandom")))]
#[cfg(feature = "getrandom")] pub use rand_core::OsRng;

117
zeroidc/vendor/rand/src/rngs/small.rs vendored Normal file
View File

@@ -0,0 +1,117 @@
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A small fast RNG
use rand_core::{Error, RngCore, SeedableRng};
#[cfg(target_pointer_width = "64")]
type Rng = super::xoshiro256plusplus::Xoshiro256PlusPlus;
#[cfg(not(target_pointer_width = "64"))]
type Rng = super::xoshiro128plusplus::Xoshiro128PlusPlus;
/// A small-state, fast non-crypto PRNG
///
/// `SmallRng` may be a good choice when a PRNG with small state, cheap
/// initialization, good statistical quality and good performance are required.
/// Note that depending on the application, [`StdRng`] may be faster on many
/// modern platforms while providing higher-quality randomness. Furthermore,
/// `SmallRng` is **not** a good choice when:
/// - Security against prediction is important. Use [`StdRng`] instead.
/// - Seeds with many zeros are provided. In such cases, it takes `SmallRng`
/// about 10 samples to produce 0 and 1 bits with equal probability. Either
/// provide seeds with an approximately equal number of 0 and 1 (for example
/// by using [`SeedableRng::from_entropy`] or [`SeedableRng::seed_from_u64`]),
/// or use [`StdRng`] instead.
///
/// The algorithm is deterministic but should not be considered reproducible
/// due to dependence on platform and possible replacement in future
/// library versions. For a reproducible generator, use a named PRNG from an
/// external crate, e.g. [rand_xoshiro] or [rand_chacha].
/// Refer also to [The Book](https://rust-random.github.io/book/guide-rngs.html).
///
/// The PRNG algorithm in `SmallRng` is chosen to be efficient on the current
/// platform, without consideration for cryptography or security. The size of
/// its state is much smaller than [`StdRng`]. The current algorithm is
/// `Xoshiro256PlusPlus` on 64-bit platforms and `Xoshiro128PlusPlus` on 32-bit
/// platforms. Both are also implemented by the [rand_xoshiro] crate.
///
/// # Examples
///
/// Initializing `SmallRng` with a random seed can be done using [`SeedableRng::from_entropy`]:
///
/// ```
/// use rand::{Rng, SeedableRng};
/// use rand::rngs::SmallRng;
///
/// // Create small, cheap to initialize and fast RNG with a random seed.
/// // The randomness is supplied by the operating system.
/// let mut small_rng = SmallRng::from_entropy();
/// # let v: u32 = small_rng.gen();
/// ```
///
/// When initializing a lot of `SmallRng`'s, using [`thread_rng`] can be more
/// efficient:
///
/// ```
/// use rand::{SeedableRng, thread_rng};
/// use rand::rngs::SmallRng;
///
/// // Create a big, expensive to initialize and slower, but unpredictable RNG.
/// // This is cached and done only once per thread.
/// let mut thread_rng = thread_rng();
/// // Create small, cheap to initialize and fast RNGs with random seeds.
/// // One can generally assume this won't fail.
/// let rngs: Vec<SmallRng> = (0..10)
/// .map(|_| SmallRng::from_rng(&mut thread_rng).unwrap())
/// .collect();
/// ```
///
/// [`StdRng`]: crate::rngs::StdRng
/// [`thread_rng`]: crate::thread_rng
/// [rand_chacha]: https://crates.io/crates/rand_chacha
/// [rand_xoshiro]: https://crates.io/crates/rand_xoshiro
#[cfg_attr(doc_cfg, doc(cfg(feature = "small_rng")))]
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct SmallRng(Rng);
impl RngCore for SmallRng {
#[inline(always)]
fn next_u32(&mut self) -> u32 {
self.0.next_u32()
}
#[inline(always)]
fn next_u64(&mut self) -> u64 {
self.0.next_u64()
}
#[inline(always)]
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.0.fill_bytes(dest);
}
#[inline(always)]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.0.try_fill_bytes(dest)
}
}
impl SeedableRng for SmallRng {
type Seed = <Rng as SeedableRng>::Seed;
#[inline(always)]
fn from_seed(seed: Self::Seed) -> Self {
SmallRng(Rng::from_seed(seed))
}
#[inline(always)]
fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> {
Rng::from_rng(rng).map(SmallRng)
}
}

98
zeroidc/vendor/rand/src/rngs/std.rs vendored Normal file
View File

@@ -0,0 +1,98 @@
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The standard RNG
use crate::{CryptoRng, Error, RngCore, SeedableRng};
pub(crate) use rand_chacha::ChaCha12Core as Core;
use rand_chacha::ChaCha12Rng as Rng;
/// The standard RNG. The PRNG algorithm in `StdRng` is chosen to be efficient
/// on the current platform, to be statistically strong and unpredictable
/// (meaning a cryptographically secure PRNG).
///
/// The current algorithm used is the ChaCha block cipher with 12 rounds. Please
/// see this relevant [rand issue] for the discussion. This may change as new
/// evidence of cipher security and performance becomes available.
///
/// The algorithm is deterministic but should not be considered reproducible
/// due to dependence on configuration and possible replacement in future
/// library versions. For a secure reproducible generator, we recommend use of
/// the [rand_chacha] crate directly.
///
/// [rand_chacha]: https://crates.io/crates/rand_chacha
/// [rand issue]: https://github.com/rust-random/rand/issues/932
#[cfg_attr(doc_cfg, doc(cfg(feature = "std_rng")))]
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct StdRng(Rng);
impl RngCore for StdRng {
#[inline(always)]
fn next_u32(&mut self) -> u32 {
self.0.next_u32()
}
#[inline(always)]
fn next_u64(&mut self) -> u64 {
self.0.next_u64()
}
#[inline(always)]
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.0.fill_bytes(dest);
}
#[inline(always)]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.0.try_fill_bytes(dest)
}
}
impl SeedableRng for StdRng {
type Seed = <Rng as SeedableRng>::Seed;
#[inline(always)]
fn from_seed(seed: Self::Seed) -> Self {
StdRng(Rng::from_seed(seed))
}
#[inline(always)]
fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> {
Rng::from_rng(rng).map(StdRng)
}
}
impl CryptoRng for StdRng {}
#[cfg(test)]
mod test {
use crate::rngs::StdRng;
use crate::{RngCore, SeedableRng};
#[test]
fn test_stdrng_construction() {
// Test value-stability of StdRng. This is expected to break any time
// the algorithm is changed.
#[rustfmt::skip]
let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
let target = [10719222850664546238, 14064965282130556830];
let mut rng0 = StdRng::from_seed(seed);
let x0 = rng0.next_u64();
let mut rng1 = StdRng::from_rng(rng0).unwrap();
let x1 = rng1.next_u64();
assert_eq!([x0, x1], target);
}
}

143
zeroidc/vendor/rand/src/rngs/thread.rs vendored Normal file
View File

@@ -0,0 +1,143 @@
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Thread-local random number generator
use core::cell::UnsafeCell;
use std::rc::Rc;
use std::thread_local;
use super::std::Core;
use crate::rngs::adapter::ReseedingRng;
use crate::rngs::OsRng;
use crate::{CryptoRng, Error, RngCore, SeedableRng};
// Rationale for using `UnsafeCell` in `ThreadRng`:
//
// Previously we used a `RefCell`, with an overhead of ~15%. There will only
// ever be one mutable reference to the interior of the `UnsafeCell`, because
// we only have such a reference inside `next_u32`, `next_u64`, etc. Within a
// single thread (which is the definition of `ThreadRng`), there will only ever
// be one of these methods active at a time.
//
// A possible scenario where there could be multiple mutable references is if
// `ThreadRng` is used inside `next_u32` and co. But the implementation is
// completely under our control. We just have to ensure none of them use
// `ThreadRng` internally, which is nonsensical anyway. We should also never run
// `ThreadRng` in destructors of its implementation, which is also nonsensical.
// Number of generated bytes after which to reseed `ThreadRng`.
// According to benchmarks, reseeding has a noticeable impact with thresholds
// of 32 kB and less. We choose 64 kB to avoid significant overhead.
const THREAD_RNG_RESEED_THRESHOLD: u64 = 1024 * 64;
/// A reference to the thread-local generator
///
/// An instance can be obtained via [`thread_rng`] or via `ThreadRng::default()`.
/// This handle is safe to use everywhere (including thread-local destructors),
/// though it is recommended not to use inside a fork handler.
/// The handle cannot be passed between threads (is not `Send` or `Sync`).
///
/// `ThreadRng` uses the same PRNG as [`StdRng`] for security and performance
/// and is automatically seeded from [`OsRng`].
///
/// Unlike `StdRng`, `ThreadRng` uses the [`ReseedingRng`] wrapper to reseed
/// the PRNG from fresh entropy every 64 kiB of random data as well as after a
/// fork on Unix (though not quite immediately; see documentation of
/// [`ReseedingRng`]).
/// Note that the reseeding is done as an extra precaution against side-channel
/// attacks and mis-use (e.g. if somehow weak entropy were supplied initially).
/// The PRNG algorithms used are assumed to be secure.
///
/// [`ReseedingRng`]: crate::rngs::adapter::ReseedingRng
/// [`StdRng`]: crate::rngs::StdRng
#[cfg_attr(doc_cfg, doc(cfg(all(feature = "std", feature = "std_rng"))))]
#[derive(Clone, Debug)]
pub struct ThreadRng {
// Rc is explicitly !Send and !Sync
rng: Rc<UnsafeCell<ReseedingRng<Core, OsRng>>>,
}
thread_local!(
// We require Rc<..> to avoid premature freeing when thread_rng is used
// within thread-local destructors. See #968.
static THREAD_RNG_KEY: Rc<UnsafeCell<ReseedingRng<Core, OsRng>>> = {
let r = Core::from_rng(OsRng).unwrap_or_else(|err|
panic!("could not initialize thread_rng: {}", err));
let rng = ReseedingRng::new(r,
THREAD_RNG_RESEED_THRESHOLD,
OsRng);
Rc::new(UnsafeCell::new(rng))
}
);
/// Retrieve the lazily-initialized thread-local random number generator,
/// seeded by the system. Intended to be used in method chaining style,
/// e.g. `thread_rng().gen::<i32>()`, or cached locally, e.g.
/// `let mut rng = thread_rng();`. Invoked by the `Default` trait, making
/// `ThreadRng::default()` equivalent.
///
/// For more information see [`ThreadRng`].
#[cfg_attr(doc_cfg, doc(cfg(all(feature = "std", feature = "std_rng"))))]
pub fn thread_rng() -> ThreadRng {
let rng = THREAD_RNG_KEY.with(|t| t.clone());
ThreadRng { rng }
}
impl Default for ThreadRng {
fn default() -> ThreadRng {
crate::prelude::thread_rng()
}
}
impl RngCore for ThreadRng {
#[inline(always)]
fn next_u32(&mut self) -> u32 {
// SAFETY: We must make sure to stop using `rng` before anyone else
// creates another mutable reference
let rng = unsafe { &mut *self.rng.get() };
rng.next_u32()
}
#[inline(always)]
fn next_u64(&mut self) -> u64 {
// SAFETY: We must make sure to stop using `rng` before anyone else
// creates another mutable reference
let rng = unsafe { &mut *self.rng.get() };
rng.next_u64()
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
// SAFETY: We must make sure to stop using `rng` before anyone else
// creates another mutable reference
let rng = unsafe { &mut *self.rng.get() };
rng.fill_bytes(dest)
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
// SAFETY: We must make sure to stop using `rng` before anyone else
// creates another mutable reference
let rng = unsafe { &mut *self.rng.get() };
rng.try_fill_bytes(dest)
}
}
impl CryptoRng for ThreadRng {}
#[cfg(test)]
mod test {
#[test]
fn test_thread_rng() {
use crate::Rng;
let mut r = crate::thread_rng();
r.gen::<i32>();
assert_eq!(r.gen_range(0..1), 0);
}
}

View File

@@ -0,0 +1,118 @@
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[cfg(feature="serde1")] use serde::{Serialize, Deserialize};
use rand_core::impls::{next_u64_via_u32, fill_bytes_via_next};
use rand_core::le::read_u32_into;
use rand_core::{SeedableRng, RngCore, Error};
/// A xoshiro128++ random number generator.
///
/// The xoshiro128++ algorithm is not suitable for cryptographic purposes, but
/// is very fast and has excellent statistical properties.
///
/// The algorithm used here is translated from [the `xoshiro128plusplus.c`
/// reference source code](http://xoshiro.di.unimi.it/xoshiro128plusplus.c) by
/// David Blackman and Sebastiano Vigna.
#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))]
pub struct Xoshiro128PlusPlus {
s: [u32; 4],
}
impl SeedableRng for Xoshiro128PlusPlus {
type Seed = [u8; 16];
/// Create a new `Xoshiro128PlusPlus`. If `seed` is entirely 0, it will be
/// mapped to a different seed.
#[inline]
fn from_seed(seed: [u8; 16]) -> Xoshiro128PlusPlus {
if seed.iter().all(|&x| x == 0) {
return Self::seed_from_u64(0);
}
let mut state = [0; 4];
read_u32_into(&seed, &mut state);
Xoshiro128PlusPlus { s: state }
}
/// Create a new `Xoshiro128PlusPlus` from a `u64` seed.
///
/// This uses the SplitMix64 generator internally.
fn seed_from_u64(mut state: u64) -> Self {
const PHI: u64 = 0x9e3779b97f4a7c15;
let mut seed = Self::Seed::default();
for chunk in seed.as_mut().chunks_mut(8) {
state = state.wrapping_add(PHI);
let mut z = state;
z = (z ^ (z >> 30)).wrapping_mul(0xbf58476d1ce4e5b9);
z = (z ^ (z >> 27)).wrapping_mul(0x94d049bb133111eb);
z = z ^ (z >> 31);
chunk.copy_from_slice(&z.to_le_bytes());
}
Self::from_seed(seed)
}
}
impl RngCore for Xoshiro128PlusPlus {
#[inline]
fn next_u32(&mut self) -> u32 {
let result_starstar = self.s[0]
.wrapping_add(self.s[3])
.rotate_left(7)
.wrapping_add(self.s[0]);
let t = self.s[1] << 9;
self.s[2] ^= self.s[0];
self.s[3] ^= self.s[1];
self.s[1] ^= self.s[2];
self.s[0] ^= self.s[3];
self.s[2] ^= t;
self.s[3] = self.s[3].rotate_left(11);
result_starstar
}
#[inline]
fn next_u64(&mut self) -> u64 {
next_u64_via_u32(self)
}
#[inline]
fn fill_bytes(&mut self, dest: &mut [u8]) {
fill_bytes_via_next(self, dest);
}
#[inline]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.fill_bytes(dest);
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn reference() {
let mut rng = Xoshiro128PlusPlus::from_seed(
[1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0]);
// These values were produced with the reference implementation:
// http://xoshiro.di.unimi.it/xoshiro128plusplus.c
let expected = [
641, 1573767, 3222811527, 3517856514, 836907274, 4247214768,
3867114732, 1355841295, 495546011, 621204420,
];
for &e in &expected {
assert_eq!(rng.next_u32(), e);
}
}
}

View File

@@ -0,0 +1,122 @@
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[cfg(feature="serde1")] use serde::{Serialize, Deserialize};
use rand_core::impls::fill_bytes_via_next;
use rand_core::le::read_u64_into;
use rand_core::{SeedableRng, RngCore, Error};
/// A xoshiro256++ random number generator.
///
/// The xoshiro256++ algorithm is not suitable for cryptographic purposes, but
/// is very fast and has excellent statistical properties.
///
/// The algorithm used here is translated from [the `xoshiro256plusplus.c`
/// reference source code](http://xoshiro.di.unimi.it/xoshiro256plusplus.c) by
/// David Blackman and Sebastiano Vigna.
#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))]
pub struct Xoshiro256PlusPlus {
s: [u64; 4],
}
impl SeedableRng for Xoshiro256PlusPlus {
type Seed = [u8; 32];
/// Create a new `Xoshiro256PlusPlus`. If `seed` is entirely 0, it will be
/// mapped to a different seed.
#[inline]
fn from_seed(seed: [u8; 32]) -> Xoshiro256PlusPlus {
if seed.iter().all(|&x| x == 0) {
return Self::seed_from_u64(0);
}
let mut state = [0; 4];
read_u64_into(&seed, &mut state);
Xoshiro256PlusPlus { s: state }
}
/// Create a new `Xoshiro256PlusPlus` from a `u64` seed.
///
/// This uses the SplitMix64 generator internally.
fn seed_from_u64(mut state: u64) -> Self {
const PHI: u64 = 0x9e3779b97f4a7c15;
let mut seed = Self::Seed::default();
for chunk in seed.as_mut().chunks_mut(8) {
state = state.wrapping_add(PHI);
let mut z = state;
z = (z ^ (z >> 30)).wrapping_mul(0xbf58476d1ce4e5b9);
z = (z ^ (z >> 27)).wrapping_mul(0x94d049bb133111eb);
z = z ^ (z >> 31);
chunk.copy_from_slice(&z.to_le_bytes());
}
Self::from_seed(seed)
}
}
impl RngCore for Xoshiro256PlusPlus {
#[inline]
fn next_u32(&mut self) -> u32 {
// The lowest bits have some linear dependencies, so we use the
// upper bits instead.
(self.next_u64() >> 32) as u32
}
#[inline]
fn next_u64(&mut self) -> u64 {
let result_plusplus = self.s[0]
.wrapping_add(self.s[3])
.rotate_left(23)
.wrapping_add(self.s[0]);
let t = self.s[1] << 17;
self.s[2] ^= self.s[0];
self.s[3] ^= self.s[1];
self.s[1] ^= self.s[2];
self.s[0] ^= self.s[3];
self.s[2] ^= t;
self.s[3] = self.s[3].rotate_left(45);
result_plusplus
}
#[inline]
fn fill_bytes(&mut self, dest: &mut [u8]) {
fill_bytes_via_next(self, dest);
}
#[inline]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.fill_bytes(dest);
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn reference() {
let mut rng = Xoshiro256PlusPlus::from_seed(
[1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0,
3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0]);
// These values were produced with the reference implementation:
// http://xoshiro.di.unimi.it/xoshiro256plusplus.c
let expected = [
41943041, 58720359, 3588806011781223, 3591011842654386,
9228616714210784205, 9973669472204895162, 14011001112246962877,
12406186145184390807, 15849039046786891736, 10450023813501588000,
];
for &e in &expected {
assert_eq!(rng.next_u64(), e);
}
}
}

678
zeroidc/vendor/rand/src/seq/index.rs vendored Normal file
View File

@@ -0,0 +1,678 @@
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Low-level API for sampling indices
#[cfg(feature = "alloc")] use core::slice;
#[cfg(feature = "alloc")] use alloc::vec::{self, Vec};
// BTreeMap is not as fast in tests, but better than nothing.
#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::collections::BTreeSet;
#[cfg(feature = "std")] use std::collections::HashSet;
#[cfg(feature = "std")]
use crate::distributions::WeightedError;
#[cfg(feature = "alloc")]
use crate::{Rng, distributions::{uniform::SampleUniform, Distribution, Uniform}};
#[cfg(feature = "serde1")]
use serde::{Serialize, Deserialize};
/// A vector of indices.
///
/// Multiple internal representations are possible.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum IndexVec {
#[doc(hidden)]
U32(Vec<u32>),
#[doc(hidden)]
USize(Vec<usize>),
}
impl IndexVec {
/// Returns the number of indices
#[inline]
pub fn len(&self) -> usize {
match *self {
IndexVec::U32(ref v) => v.len(),
IndexVec::USize(ref v) => v.len(),
}
}
/// Returns `true` if the length is 0.
#[inline]
pub fn is_empty(&self) -> bool {
match *self {
IndexVec::U32(ref v) => v.is_empty(),
IndexVec::USize(ref v) => v.is_empty(),
}
}
/// Return the value at the given `index`.
///
/// (Note: we cannot implement [`std::ops::Index`] because of lifetime
/// restrictions.)
#[inline]
pub fn index(&self, index: usize) -> usize {
match *self {
IndexVec::U32(ref v) => v[index] as usize,
IndexVec::USize(ref v) => v[index],
}
}
/// Return result as a `Vec<usize>`. Conversion may or may not be trivial.
#[inline]
pub fn into_vec(self) -> Vec<usize> {
match self {
IndexVec::U32(v) => v.into_iter().map(|i| i as usize).collect(),
IndexVec::USize(v) => v,
}
}
/// Iterate over the indices as a sequence of `usize` values
#[inline]
pub fn iter(&self) -> IndexVecIter<'_> {
match *self {
IndexVec::U32(ref v) => IndexVecIter::U32(v.iter()),
IndexVec::USize(ref v) => IndexVecIter::USize(v.iter()),
}
}
}
impl IntoIterator for IndexVec {
type Item = usize;
type IntoIter = IndexVecIntoIter;
/// Convert into an iterator over the indices as a sequence of `usize` values
#[inline]
fn into_iter(self) -> IndexVecIntoIter {
match self {
IndexVec::U32(v) => IndexVecIntoIter::U32(v.into_iter()),
IndexVec::USize(v) => IndexVecIntoIter::USize(v.into_iter()),
}
}
}
impl PartialEq for IndexVec {
fn eq(&self, other: &IndexVec) -> bool {
use self::IndexVec::*;
match (self, other) {
(&U32(ref v1), &U32(ref v2)) => v1 == v2,
(&USize(ref v1), &USize(ref v2)) => v1 == v2,
(&U32(ref v1), &USize(ref v2)) => {
(v1.len() == v2.len()) && (v1.iter().zip(v2.iter()).all(|(x, y)| *x as usize == *y))
}
(&USize(ref v1), &U32(ref v2)) => {
(v1.len() == v2.len()) && (v1.iter().zip(v2.iter()).all(|(x, y)| *x == *y as usize))
}
}
}
}
impl From<Vec<u32>> for IndexVec {
#[inline]
fn from(v: Vec<u32>) -> Self {
IndexVec::U32(v)
}
}
impl From<Vec<usize>> for IndexVec {
#[inline]
fn from(v: Vec<usize>) -> Self {
IndexVec::USize(v)
}
}
/// Return type of `IndexVec::iter`.
#[derive(Debug)]
pub enum IndexVecIter<'a> {
#[doc(hidden)]
U32(slice::Iter<'a, u32>),
#[doc(hidden)]
USize(slice::Iter<'a, usize>),
}
impl<'a> Iterator for IndexVecIter<'a> {
type Item = usize;
#[inline]
fn next(&mut self) -> Option<usize> {
use self::IndexVecIter::*;
match *self {
U32(ref mut iter) => iter.next().map(|i| *i as usize),
USize(ref mut iter) => iter.next().cloned(),
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
match *self {
IndexVecIter::U32(ref v) => v.size_hint(),
IndexVecIter::USize(ref v) => v.size_hint(),
}
}
}
impl<'a> ExactSizeIterator for IndexVecIter<'a> {}
/// Return type of `IndexVec::into_iter`.
#[derive(Clone, Debug)]
pub enum IndexVecIntoIter {
#[doc(hidden)]
U32(vec::IntoIter<u32>),
#[doc(hidden)]
USize(vec::IntoIter<usize>),
}
impl Iterator for IndexVecIntoIter {
type Item = usize;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
use self::IndexVecIntoIter::*;
match *self {
U32(ref mut v) => v.next().map(|i| i as usize),
USize(ref mut v) => v.next(),
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
use self::IndexVecIntoIter::*;
match *self {
U32(ref v) => v.size_hint(),
USize(ref v) => v.size_hint(),
}
}
}
impl ExactSizeIterator for IndexVecIntoIter {}
/// Randomly sample exactly `amount` distinct indices from `0..length`, and
/// return them in random order (fully shuffled).
///
/// This method is used internally by the slice sampling methods, but it can
/// sometimes be useful to have the indices themselves so this is provided as
/// an alternative.
///
/// The implementation used is not specified; we automatically select the
/// fastest available algorithm for the `length` and `amount` parameters
/// (based on detailed profiling on an Intel Haswell CPU). Roughly speaking,
/// complexity is `O(amount)`, except that when `amount` is small, performance
/// is closer to `O(amount^2)`, and when `length` is close to `amount` then
/// `O(length)`.
///
/// Note that performance is significantly better over `u32` indices than over
/// `u64` indices. Because of this we hide the underlying type behind an
/// abstraction, `IndexVec`.
///
/// If an allocation-free `no_std` function is required, it is suggested
/// to adapt the internal `sample_floyd` implementation.
///
/// Panics if `amount > length`.
pub fn sample<R>(rng: &mut R, length: usize, amount: usize) -> IndexVec
where R: Rng + ?Sized {
if amount > length {
panic!("`amount` of samples must be less than or equal to `length`");
}
if length > (::core::u32::MAX as usize) {
// We never want to use inplace here, but could use floyd's alg
// Lazy version: always use the cache alg.
return sample_rejection(rng, length, amount);
}
let amount = amount as u32;
let length = length as u32;
// Choice of algorithm here depends on both length and amount. See:
// https://github.com/rust-random/rand/pull/479
// We do some calculations with f32. Accuracy is not very important.
if amount < 163 {
const C: [[f32; 2]; 2] = [[1.6, 8.0 / 45.0], [10.0, 70.0 / 9.0]];
let j = if length < 500_000 { 0 } else { 1 };
let amount_fp = amount as f32;
let m4 = C[0][j] * amount_fp;
// Short-cut: when amount < 12, floyd's is always faster
if amount > 11 && (length as f32) < (C[1][j] + m4) * amount_fp {
sample_inplace(rng, length, amount)
} else {
sample_floyd(rng, length, amount)
}
} else {
const C: [f32; 2] = [270.0, 330.0 / 9.0];
let j = if length < 500_000 { 0 } else { 1 };
if (length as f32) < C[j] * (amount as f32) {
sample_inplace(rng, length, amount)
} else {
sample_rejection(rng, length, amount)
}
}
}
/// Randomly sample exactly `amount` distinct indices from `0..length`, and
/// return them in an arbitrary order (there is no guarantee of shuffling or
/// ordering). The weights are to be provided by the input function `weights`,
/// which will be called once for each index.
///
/// This method is used internally by the slice sampling methods, but it can
/// sometimes be useful to have the indices themselves so this is provided as
/// an alternative.
///
/// This implementation uses `O(length + amount)` space and `O(length)` time
/// if the "nightly" feature is enabled, or `O(length)` space and
/// `O(length + amount * log length)` time otherwise.
///
/// Panics if `amount > length`.
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn sample_weighted<R, F, X>(
rng: &mut R, length: usize, weight: F, amount: usize,
) -> Result<IndexVec, WeightedError>
where
R: Rng + ?Sized,
F: Fn(usize) -> X,
X: Into<f64>,
{
if length > (core::u32::MAX as usize) {
sample_efraimidis_spirakis(rng, length, weight, amount)
} else {
assert!(amount <= core::u32::MAX as usize);
let amount = amount as u32;
let length = length as u32;
sample_efraimidis_spirakis(rng, length, weight, amount)
}
}
/// Randomly sample exactly `amount` distinct indices from `0..length`, and
/// return them in an arbitrary order (there is no guarantee of shuffling or
/// ordering). The weights are to be provided by the input function `weights`,
/// which will be called once for each index.
///
/// This implementation uses the algorithm described by Efraimidis and Spirakis
/// in this paper: https://doi.org/10.1016/j.ipl.2005.11.003
/// It uses `O(length + amount)` space and `O(length)` time if the
/// "nightly" feature is enabled, or `O(length)` space and `O(length
/// + amount * log length)` time otherwise.
///
/// Panics if `amount > length`.
#[cfg(feature = "std")]
fn sample_efraimidis_spirakis<R, F, X, N>(
rng: &mut R, length: N, weight: F, amount: N,
) -> Result<IndexVec, WeightedError>
where
R: Rng + ?Sized,
F: Fn(usize) -> X,
X: Into<f64>,
N: UInt,
IndexVec: From<Vec<N>>,
{
if amount == N::zero() {
return Ok(IndexVec::U32(Vec::new()));
}
if amount > length {
panic!("`amount` of samples must be less than or equal to `length`");
}
struct Element<N> {
index: N,
key: f64,
}
impl<N> PartialOrd for Element<N> {
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
self.key.partial_cmp(&other.key)
}
}
impl<N> Ord for Element<N> {
fn cmp(&self, other: &Self) -> core::cmp::Ordering {
// partial_cmp will always produce a value,
// because we check that the weights are not nan
self.partial_cmp(other).unwrap()
}
}
impl<N> PartialEq for Element<N> {
fn eq(&self, other: &Self) -> bool {
self.key == other.key
}
}
impl<N> Eq for Element<N> {}
#[cfg(feature = "nightly")]
{
let mut candidates = Vec::with_capacity(length.as_usize());
let mut index = N::zero();
while index < length {
let weight = weight(index.as_usize()).into();
if !(weight >= 0.) {
return Err(WeightedError::InvalidWeight);
}
let key = rng.gen::<f64>().powf(1.0 / weight);
candidates.push(Element { index, key });
index += N::one();
}
// Partially sort the array to find the `amount` elements with the greatest
// keys. Do this by using `select_nth_unstable` to put the elements with
// the *smallest* keys at the beginning of the list in `O(n)` time, which
// provides equivalent information about the elements with the *greatest* keys.
let (_, mid, greater)
= candidates.select_nth_unstable(length.as_usize() - amount.as_usize());
let mut result: Vec<N> = Vec::with_capacity(amount.as_usize());
result.push(mid.index);
for element in greater {
result.push(element.index);
}
Ok(IndexVec::from(result))
}
#[cfg(not(feature = "nightly"))]
{
use alloc::collections::BinaryHeap;
// Partially sort the array such that the `amount` elements with the largest
// keys are first using a binary max heap.
let mut candidates = BinaryHeap::with_capacity(length.as_usize());
let mut index = N::zero();
while index < length {
let weight = weight(index.as_usize()).into();
if !(weight >= 0.) {
return Err(WeightedError::InvalidWeight);
}
let key = rng.gen::<f64>().powf(1.0 / weight);
candidates.push(Element { index, key });
index += N::one();
}
let mut result: Vec<N> = Vec::with_capacity(amount.as_usize());
while result.len() < amount.as_usize() {
result.push(candidates.pop().unwrap().index);
}
Ok(IndexVec::from(result))
}
}
/// Randomly sample exactly `amount` indices from `0..length`, using Floyd's
/// combination algorithm.
///
/// The output values are fully shuffled. (Overhead is under 50%.)
///
/// This implementation uses `O(amount)` memory and `O(amount^2)` time.
fn sample_floyd<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
where R: Rng + ?Sized {
// For small amount we use Floyd's fully-shuffled variant. For larger
// amounts this is slow due to Vec::insert performance, so we shuffle
// afterwards. Benchmarks show little overhead from extra logic.
let floyd_shuffle = amount < 50;
debug_assert!(amount <= length);
let mut indices = Vec::with_capacity(amount as usize);
for j in length - amount..length {
let t = rng.gen_range(0..=j);
if floyd_shuffle {
if let Some(pos) = indices.iter().position(|&x| x == t) {
indices.insert(pos, j);
continue;
}
} else if indices.contains(&t) {
indices.push(j);
continue;
}
indices.push(t);
}
if !floyd_shuffle {
// Reimplement SliceRandom::shuffle with smaller indices
for i in (1..amount).rev() {
// invariant: elements with index > i have been locked in place.
indices.swap(i as usize, rng.gen_range(0..=i) as usize);
}
}
IndexVec::from(indices)
}
/// Randomly sample exactly `amount` indices from `0..length`, using an inplace
/// partial Fisher-Yates method.
/// Sample an amount of indices using an inplace partial fisher yates method.
///
/// This allocates the entire `length` of indices and randomizes only the first `amount`.
/// It then truncates to `amount` and returns.
///
/// This method is not appropriate for large `length` and potentially uses a lot
/// of memory; because of this we only implement for `u32` index (which improves
/// performance in all cases).
///
/// Set-up is `O(length)` time and memory and shuffling is `O(amount)` time.
fn sample_inplace<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
where R: Rng + ?Sized {
debug_assert!(amount <= length);
let mut indices: Vec<u32> = Vec::with_capacity(length as usize);
indices.extend(0..length);
for i in 0..amount {
let j: u32 = rng.gen_range(i..length);
indices.swap(i as usize, j as usize);
}
indices.truncate(amount as usize);
debug_assert_eq!(indices.len(), amount as usize);
IndexVec::from(indices)
}
trait UInt: Copy + PartialOrd + Ord + PartialEq + Eq + SampleUniform
+ core::hash::Hash + core::ops::AddAssign {
fn zero() -> Self;
fn one() -> Self;
fn as_usize(self) -> usize;
}
impl UInt for u32 {
#[inline]
fn zero() -> Self {
0
}
#[inline]
fn one() -> Self {
1
}
#[inline]
fn as_usize(self) -> usize {
self as usize
}
}
impl UInt for usize {
#[inline]
fn zero() -> Self {
0
}
#[inline]
fn one() -> Self {
1
}
#[inline]
fn as_usize(self) -> usize {
self
}
}
/// Randomly sample exactly `amount` indices from `0..length`, using rejection
/// sampling.
///
/// Since `amount <<< length` there is a low chance of a random sample in
/// `0..length` being a duplicate. We test for duplicates and resample where
/// necessary. The algorithm is `O(amount)` time and memory.
///
/// This function is generic over X primarily so that results are value-stable
/// over 32-bit and 64-bit platforms.
fn sample_rejection<X: UInt, R>(rng: &mut R, length: X, amount: X) -> IndexVec
where
R: Rng + ?Sized,
IndexVec: From<Vec<X>>,
{
debug_assert!(amount < length);
#[cfg(feature = "std")]
let mut cache = HashSet::with_capacity(amount.as_usize());
#[cfg(not(feature = "std"))]
let mut cache = BTreeSet::new();
let distr = Uniform::new(X::zero(), length);
let mut indices = Vec::with_capacity(amount.as_usize());
for _ in 0..amount.as_usize() {
let mut pos = distr.sample(rng);
while !cache.insert(pos) {
pos = distr.sample(rng);
}
indices.push(pos);
}
debug_assert_eq!(indices.len(), amount.as_usize());
IndexVec::from(indices)
}
#[cfg(test)]
mod test {
use super::*;
#[test]
#[cfg(feature = "serde1")]
fn test_serialization_index_vec() {
let some_index_vec = IndexVec::from(vec![254_usize, 234, 2, 1]);
let de_some_index_vec: IndexVec = bincode::deserialize(&bincode::serialize(&some_index_vec).unwrap()).unwrap();
match (some_index_vec, de_some_index_vec) {
(IndexVec::U32(a), IndexVec::U32(b)) => {
assert_eq!(a, b);
},
(IndexVec::USize(a), IndexVec::USize(b)) => {
assert_eq!(a, b);
},
_ => {panic!("failed to seralize/deserialize `IndexVec`")}
}
}
#[cfg(feature = "alloc")] use alloc::vec;
#[test]
fn test_sample_boundaries() {
let mut r = crate::test::rng(404);
assert_eq!(sample_inplace(&mut r, 0, 0).len(), 0);
assert_eq!(sample_inplace(&mut r, 1, 0).len(), 0);
assert_eq!(sample_inplace(&mut r, 1, 1).into_vec(), vec![0]);
assert_eq!(sample_rejection(&mut r, 1u32, 0).len(), 0);
assert_eq!(sample_floyd(&mut r, 0, 0).len(), 0);
assert_eq!(sample_floyd(&mut r, 1, 0).len(), 0);
assert_eq!(sample_floyd(&mut r, 1, 1).into_vec(), vec![0]);
// These algorithms should be fast with big numbers. Test average.
let sum: usize = sample_rejection(&mut r, 1 << 25, 10u32).into_iter().sum();
assert!(1 << 25 < sum && sum < (1 << 25) * 25);
let sum: usize = sample_floyd(&mut r, 1 << 25, 10).into_iter().sum();
assert!(1 << 25 < sum && sum < (1 << 25) * 25);
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_sample_alg() {
let seed_rng = crate::test::rng;
// We can't test which algorithm is used directly, but Floyd's alg
// should produce different results from the others. (Also, `inplace`
// and `cached` currently use different sizes thus produce different results.)
// A small length and relatively large amount should use inplace
let (length, amount): (usize, usize) = (100, 50);
let v1 = sample(&mut seed_rng(420), length, amount);
let v2 = sample_inplace(&mut seed_rng(420), length as u32, amount as u32);
assert!(v1.iter().all(|e| e < length));
assert_eq!(v1, v2);
// Test Floyd's alg does produce different results
let v3 = sample_floyd(&mut seed_rng(420), length as u32, amount as u32);
assert!(v1 != v3);
// A large length and small amount should use Floyd
let (length, amount): (usize, usize) = (1 << 20, 50);
let v1 = sample(&mut seed_rng(421), length, amount);
let v2 = sample_floyd(&mut seed_rng(421), length as u32, amount as u32);
assert!(v1.iter().all(|e| e < length));
assert_eq!(v1, v2);
// A large length and larger amount should use cache
let (length, amount): (usize, usize) = (1 << 20, 600);
let v1 = sample(&mut seed_rng(422), length, amount);
let v2 = sample_rejection(&mut seed_rng(422), length as u32, amount as u32);
assert!(v1.iter().all(|e| e < length));
assert_eq!(v1, v2);
}
#[cfg(feature = "std")]
#[test]
fn test_sample_weighted() {
let seed_rng = crate::test::rng;
for &(amount, len) in &[(0, 10), (5, 10), (10, 10)] {
let v = sample_weighted(&mut seed_rng(423), len, |i| i as f64, amount).unwrap();
match v {
IndexVec::U32(mut indices) => {
assert_eq!(indices.len(), amount);
indices.sort_unstable();
indices.dedup();
assert_eq!(indices.len(), amount);
for &i in &indices {
assert!((i as usize) < len);
}
},
IndexVec::USize(_) => panic!("expected `IndexVec::U32`"),
}
}
}
#[test]
fn value_stability_sample() {
let do_test = |length, amount, values: &[u32]| {
let mut buf = [0u32; 8];
let mut rng = crate::test::rng(410);
let res = sample(&mut rng, length, amount);
let len = res.len().min(buf.len());
for (x, y) in res.into_iter().zip(buf.iter_mut()) {
*y = x as u32;
}
assert_eq!(
&buf[0..len],
values,
"failed sampling {}, {}",
length,
amount
);
};
do_test(10, 6, &[8, 0, 3, 5, 9, 6]); // floyd
do_test(25, 10, &[18, 15, 14, 9, 0, 13, 5, 24]); // floyd
do_test(300, 8, &[30, 283, 150, 1, 73, 13, 285, 35]); // floyd
do_test(300, 80, &[31, 289, 248, 154, 5, 78, 19, 286]); // inplace
do_test(300, 180, &[31, 289, 248, 154, 5, 78, 19, 286]); // inplace
do_test(1_000_000, 8, &[
103717, 963485, 826422, 509101, 736394, 807035, 5327, 632573,
]); // floyd
do_test(1_000_000, 180, &[
103718, 963490, 826426, 509103, 736396, 807036, 5327, 632573,
]); // rejection
}
}

1356
zeroidc/vendor/rand/src/seq/mod.rs vendored Normal file

File diff suppressed because it is too large Load Diff