RPM build fix (reverted CI changes which will need to be un-reverted or made conditional) and vendor Rust dependencies to make builds much faster in any CI system.

This commit is contained in:
Adam Ierymenko
2022-06-08 07:32:16 -04:00
parent 373ca30269
commit d5ca4e5f52
12611 changed files with 2898014 additions and 284 deletions

865
zeroidc/vendor/ppv-lite86/src/generic.rs vendored Normal file
View File

@@ -0,0 +1,865 @@
#![allow(non_camel_case_types)]
use crate::soft::{x2, x4};
use crate::types::*;
use core::ops::*;
#[repr(C)]
#[derive(Clone, Copy)]
pub union vec128_storage {
d: [u32; 4],
q: [u64; 2],
}
impl From<[u32; 4]> for vec128_storage {
#[inline(always)]
fn from(d: [u32; 4]) -> Self {
Self { d }
}
}
impl From<vec128_storage> for [u32; 4] {
#[inline(always)]
fn from(d: vec128_storage) -> Self {
unsafe { d.d }
}
}
impl From<[u64; 2]> for vec128_storage {
#[inline(always)]
fn from(q: [u64; 2]) -> Self {
Self { q }
}
}
impl From<vec128_storage> for [u64; 2] {
#[inline(always)]
fn from(q: vec128_storage) -> Self {
unsafe { q.q }
}
}
impl Default for vec128_storage {
#[inline(always)]
fn default() -> Self {
Self { q: [0, 0] }
}
}
impl Eq for vec128_storage {}
impl PartialEq<vec128_storage> for vec128_storage {
#[inline(always)]
fn eq(&self, rhs: &Self) -> bool {
unsafe { self.q == rhs.q }
}
}
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct vec256_storage {
v128: [vec128_storage; 2],
}
impl vec256_storage {
#[inline(always)]
pub fn new128(v128: [vec128_storage; 2]) -> Self {
Self { v128 }
}
#[inline(always)]
pub fn split128(self) -> [vec128_storage; 2] {
self.v128
}
}
impl From<vec256_storage> for [u64; 4] {
#[inline(always)]
fn from(q: vec256_storage) -> Self {
let [a, b]: [u64; 2] = q.v128[0].into();
let [c, d]: [u64; 2] = q.v128[1].into();
[a, b, c, d]
}
}
impl From<[u64; 4]> for vec256_storage {
#[inline(always)]
fn from([a, b, c, d]: [u64; 4]) -> Self {
Self {
v128: [[a, b].into(), [c, d].into()],
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct vec512_storage {
v128: [vec128_storage; 4],
}
impl vec512_storage {
#[inline(always)]
pub fn new128(v128: [vec128_storage; 4]) -> Self {
Self { v128 }
}
#[inline(always)]
pub fn split128(self) -> [vec128_storage; 4] {
self.v128
}
}
#[inline(always)]
fn dmap<T, F>(t: T, f: F) -> T
where
T: Store<vec128_storage> + Into<vec128_storage>,
F: Fn(u32) -> u32,
{
let t: vec128_storage = t.into();
let d = unsafe { t.d };
let d = vec128_storage {
d: [f(d[0]), f(d[1]), f(d[2]), f(d[3])],
};
unsafe { T::unpack(d) }
}
fn dmap2<T, F>(a: T, b: T, f: F) -> T
where
T: Store<vec128_storage> + Into<vec128_storage>,
F: Fn(u32, u32) -> u32,
{
let a: vec128_storage = a.into();
let b: vec128_storage = b.into();
let ao = unsafe { a.d };
let bo = unsafe { b.d };
let d = vec128_storage {
d: [
f(ao[0], bo[0]),
f(ao[1], bo[1]),
f(ao[2], bo[2]),
f(ao[3], bo[3]),
],
};
unsafe { T::unpack(d) }
}
#[inline(always)]
fn qmap<T, F>(t: T, f: F) -> T
where
T: Store<vec128_storage> + Into<vec128_storage>,
F: Fn(u64) -> u64,
{
let t: vec128_storage = t.into();
let q = unsafe { t.q };
let q = vec128_storage {
q: [f(q[0]), f(q[1])],
};
unsafe { T::unpack(q) }
}
#[inline(always)]
fn qmap2<T, F>(a: T, b: T, f: F) -> T
where
T: Store<vec128_storage> + Into<vec128_storage>,
F: Fn(u64, u64) -> u64,
{
let a: vec128_storage = a.into();
let b: vec128_storage = b.into();
let ao = unsafe { a.q };
let bo = unsafe { b.q };
let q = vec128_storage {
q: [f(ao[0], bo[0]), f(ao[1], bo[1])],
};
unsafe { T::unpack(q) }
}
#[inline(always)]
fn o_of_q(q: [u64; 2]) -> u128 {
u128::from(q[0]) | (u128::from(q[1]) << 64)
}
#[inline(always)]
fn q_of_o(o: u128) -> [u64; 2] {
[o as u64, (o >> 64) as u64]
}
#[inline(always)]
fn omap<T, F>(a: T, f: F) -> T
where
T: Store<vec128_storage> + Into<vec128_storage>,
F: Fn(u128) -> u128,
{
let a: vec128_storage = a.into();
let ao = o_of_q(unsafe { a.q });
let o = vec128_storage { q: q_of_o(f(ao)) };
unsafe { T::unpack(o) }
}
#[inline(always)]
fn omap2<T, F>(a: T, b: T, f: F) -> T
where
T: Store<vec128_storage> + Into<vec128_storage>,
F: Fn(u128, u128) -> u128,
{
let a: vec128_storage = a.into();
let b: vec128_storage = b.into();
let ao = o_of_q(unsafe { a.q });
let bo = o_of_q(unsafe { b.q });
let o = vec128_storage {
q: q_of_o(f(ao, bo)),
};
unsafe { T::unpack(o) }
}
impl RotateEachWord128 for u128x1_generic {}
impl BitOps128 for u128x1_generic {}
impl BitOps64 for u128x1_generic {}
impl BitOps64 for u64x2_generic {}
impl BitOps32 for u128x1_generic {}
impl BitOps32 for u64x2_generic {}
impl BitOps32 for u32x4_generic {}
impl BitOps0 for u128x1_generic {}
impl BitOps0 for u64x2_generic {}
impl BitOps0 for u32x4_generic {}
macro_rules! impl_bitops {
($vec:ident) => {
impl Not for $vec {
type Output = Self;
#[inline(always)]
fn not(self) -> Self::Output {
omap(self, |x| !x)
}
}
impl BitAnd for $vec {
type Output = Self;
#[inline(always)]
fn bitand(self, rhs: Self) -> Self::Output {
omap2(self, rhs, |x, y| x & y)
}
}
impl BitOr for $vec {
type Output = Self;
#[inline(always)]
fn bitor(self, rhs: Self) -> Self::Output {
omap2(self, rhs, |x, y| x | y)
}
}
impl BitXor for $vec {
type Output = Self;
#[inline(always)]
fn bitxor(self, rhs: Self) -> Self::Output {
omap2(self, rhs, |x, y| x ^ y)
}
}
impl AndNot for $vec {
type Output = Self;
#[inline(always)]
fn andnot(self, rhs: Self) -> Self::Output {
omap2(self, rhs, |x, y| !x & y)
}
}
impl BitAndAssign for $vec {
#[inline(always)]
fn bitand_assign(&mut self, rhs: Self) {
*self = *self & rhs
}
}
impl BitOrAssign for $vec {
#[inline(always)]
fn bitor_assign(&mut self, rhs: Self) {
*self = *self | rhs
}
}
impl BitXorAssign for $vec {
#[inline(always)]
fn bitxor_assign(&mut self, rhs: Self) {
*self = *self ^ rhs
}
}
impl Swap64 for $vec {
#[inline(always)]
fn swap1(self) -> Self {
qmap(self, |x| {
((x & 0x5555555555555555) << 1) | ((x & 0xaaaaaaaaaaaaaaaa) >> 1)
})
}
#[inline(always)]
fn swap2(self) -> Self {
qmap(self, |x| {
((x & 0x3333333333333333) << 2) | ((x & 0xcccccccccccccccc) >> 2)
})
}
#[inline(always)]
fn swap4(self) -> Self {
qmap(self, |x| {
((x & 0x0f0f0f0f0f0f0f0f) << 4) | ((x & 0xf0f0f0f0f0f0f0f0) >> 4)
})
}
#[inline(always)]
fn swap8(self) -> Self {
qmap(self, |x| {
((x & 0x00ff00ff00ff00ff) << 8) | ((x & 0xff00ff00ff00ff00) >> 8)
})
}
#[inline(always)]
fn swap16(self) -> Self {
dmap(self, |x| x.rotate_left(16))
}
#[inline(always)]
fn swap32(self) -> Self {
qmap(self, |x| x.rotate_left(32))
}
#[inline(always)]
fn swap64(self) -> Self {
omap(self, |x| (x << 64) | (x >> 64))
}
}
};
}
impl_bitops!(u32x4_generic);
impl_bitops!(u64x2_generic);
impl_bitops!(u128x1_generic);
impl RotateEachWord32 for u32x4_generic {
#[inline(always)]
fn rotate_each_word_right7(self) -> Self {
dmap(self, |x| x.rotate_right(7))
}
#[inline(always)]
fn rotate_each_word_right8(self) -> Self {
dmap(self, |x| x.rotate_right(8))
}
#[inline(always)]
fn rotate_each_word_right11(self) -> Self {
dmap(self, |x| x.rotate_right(11))
}
#[inline(always)]
fn rotate_each_word_right12(self) -> Self {
dmap(self, |x| x.rotate_right(12))
}
#[inline(always)]
fn rotate_each_word_right16(self) -> Self {
dmap(self, |x| x.rotate_right(16))
}
#[inline(always)]
fn rotate_each_word_right20(self) -> Self {
dmap(self, |x| x.rotate_right(20))
}
#[inline(always)]
fn rotate_each_word_right24(self) -> Self {
dmap(self, |x| x.rotate_right(24))
}
#[inline(always)]
fn rotate_each_word_right25(self) -> Self {
dmap(self, |x| x.rotate_right(25))
}
}
impl RotateEachWord32 for u64x2_generic {
#[inline(always)]
fn rotate_each_word_right7(self) -> Self {
qmap(self, |x| x.rotate_right(7))
}
#[inline(always)]
fn rotate_each_word_right8(self) -> Self {
qmap(self, |x| x.rotate_right(8))
}
#[inline(always)]
fn rotate_each_word_right11(self) -> Self {
qmap(self, |x| x.rotate_right(11))
}
#[inline(always)]
fn rotate_each_word_right12(self) -> Self {
qmap(self, |x| x.rotate_right(12))
}
#[inline(always)]
fn rotate_each_word_right16(self) -> Self {
qmap(self, |x| x.rotate_right(16))
}
#[inline(always)]
fn rotate_each_word_right20(self) -> Self {
qmap(self, |x| x.rotate_right(20))
}
#[inline(always)]
fn rotate_each_word_right24(self) -> Self {
qmap(self, |x| x.rotate_right(24))
}
#[inline(always)]
fn rotate_each_word_right25(self) -> Self {
qmap(self, |x| x.rotate_right(25))
}
}
impl RotateEachWord64 for u64x2_generic {
#[inline(always)]
fn rotate_each_word_right32(self) -> Self {
qmap(self, |x| x.rotate_right(32))
}
}
// workaround for koute/cargo-web#52 (u128::rotate_* broken with cargo web)
#[inline(always)]
fn rotate_u128_right(x: u128, i: u32) -> u128 {
(x >> i) | (x << (128 - i))
}
#[test]
fn test_rotate_u128() {
const X: u128 = 0x0001_0203_0405_0607_0809_0a0b_0c0d_0e0f;
assert_eq!(rotate_u128_right(X, 17), X.rotate_right(17));
}
impl RotateEachWord32 for u128x1_generic {
#[inline(always)]
fn rotate_each_word_right7(self) -> Self {
Self([rotate_u128_right(self.0[0], 7)])
}
#[inline(always)]
fn rotate_each_word_right8(self) -> Self {
Self([rotate_u128_right(self.0[0], 8)])
}
#[inline(always)]
fn rotate_each_word_right11(self) -> Self {
Self([rotate_u128_right(self.0[0], 11)])
}
#[inline(always)]
fn rotate_each_word_right12(self) -> Self {
Self([rotate_u128_right(self.0[0], 12)])
}
#[inline(always)]
fn rotate_each_word_right16(self) -> Self {
Self([rotate_u128_right(self.0[0], 16)])
}
#[inline(always)]
fn rotate_each_word_right20(self) -> Self {
Self([rotate_u128_right(self.0[0], 20)])
}
#[inline(always)]
fn rotate_each_word_right24(self) -> Self {
Self([rotate_u128_right(self.0[0], 24)])
}
#[inline(always)]
fn rotate_each_word_right25(self) -> Self {
Self([rotate_u128_right(self.0[0], 25)])
}
}
impl RotateEachWord64 for u128x1_generic {
#[inline(always)]
fn rotate_each_word_right32(self) -> Self {
Self([rotate_u128_right(self.0[0], 32)])
}
}
#[derive(Copy, Clone)]
pub struct GenericMachine;
impl Machine for GenericMachine {
type u32x4 = u32x4_generic;
type u64x2 = u64x2_generic;
type u128x1 = u128x1_generic;
type u32x4x2 = u32x4x2_generic;
type u64x2x2 = u64x2x2_generic;
type u64x4 = u64x4_generic;
type u128x2 = u128x2_generic;
type u32x4x4 = u32x4x4_generic;
type u64x2x4 = u64x2x4_generic;
type u128x4 = u128x4_generic;
#[inline(always)]
unsafe fn instance() -> Self {
Self
}
}
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct u32x4_generic([u32; 4]);
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct u64x2_generic([u64; 2]);
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct u128x1_generic([u128; 1]);
impl From<u32x4_generic> for vec128_storage {
#[inline(always)]
fn from(d: u32x4_generic) -> Self {
Self { d: d.0 }
}
}
impl From<u64x2_generic> for vec128_storage {
#[inline(always)]
fn from(q: u64x2_generic) -> Self {
Self { q: q.0 }
}
}
impl From<u128x1_generic> for vec128_storage {
#[inline(always)]
fn from(o: u128x1_generic) -> Self {
Self { q: q_of_o(o.0[0]) }
}
}
impl Store<vec128_storage> for u32x4_generic {
#[inline(always)]
unsafe fn unpack(s: vec128_storage) -> Self {
Self(s.d)
}
}
impl Store<vec128_storage> for u64x2_generic {
#[inline(always)]
unsafe fn unpack(s: vec128_storage) -> Self {
Self(s.q)
}
}
impl Store<vec128_storage> for u128x1_generic {
#[inline(always)]
unsafe fn unpack(s: vec128_storage) -> Self {
Self([o_of_q(s.q); 1])
}
}
impl ArithOps for u32x4_generic {}
impl ArithOps for u64x2_generic {}
impl ArithOps for u128x1_generic {}
impl Add for u32x4_generic {
type Output = Self;
#[inline(always)]
fn add(self, rhs: Self) -> Self::Output {
dmap2(self, rhs, |x, y| x.wrapping_add(y))
}
}
impl Add for u64x2_generic {
type Output = Self;
#[inline(always)]
fn add(self, rhs: Self) -> Self::Output {
qmap2(self, rhs, |x, y| x.wrapping_add(y))
}
}
impl Add for u128x1_generic {
type Output = Self;
#[inline(always)]
fn add(self, rhs: Self) -> Self::Output {
omap2(self, rhs, |x, y| x.wrapping_add(y))
}
}
impl AddAssign for u32x4_generic {
#[inline(always)]
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs
}
}
impl AddAssign for u64x2_generic {
#[inline(always)]
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs
}
}
impl AddAssign for u128x1_generic {
#[inline(always)]
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs
}
}
impl BSwap for u32x4_generic {
#[inline(always)]
fn bswap(self) -> Self {
dmap(self, |x| x.swap_bytes())
}
}
impl BSwap for u64x2_generic {
#[inline(always)]
fn bswap(self) -> Self {
qmap(self, |x| x.swap_bytes())
}
}
impl BSwap for u128x1_generic {
#[inline(always)]
fn bswap(self) -> Self {
omap(self, |x| x.swap_bytes())
}
}
impl StoreBytes for u32x4_generic {
#[inline(always)]
unsafe fn unsafe_read_le(input: &[u8]) -> Self {
assert_eq!(input.len(), 16);
let x = core::mem::transmute(core::ptr::read(input as *const _ as *const [u8; 16]));
dmap(x, |x| x.to_le())
}
#[inline(always)]
unsafe fn unsafe_read_be(input: &[u8]) -> Self {
assert_eq!(input.len(), 16);
let x = core::mem::transmute(core::ptr::read(input as *const _ as *const [u8; 16]));
dmap(x, |x| x.to_be())
}
#[inline(always)]
fn write_le(self, out: &mut [u8]) {
assert_eq!(out.len(), 16);
let x = dmap(self, |x| x.to_le());
unsafe { core::ptr::write(out as *mut _ as *mut [u8; 16], core::mem::transmute(x)) }
}
#[inline(always)]
fn write_be(self, out: &mut [u8]) {
assert_eq!(out.len(), 16);
let x = dmap(self, |x| x.to_be());
unsafe { core::ptr::write(out as *mut _ as *mut [u8; 16], core::mem::transmute(x)) }
}
}
impl StoreBytes for u64x2_generic {
#[inline(always)]
unsafe fn unsafe_read_le(input: &[u8]) -> Self {
assert_eq!(input.len(), 16);
let x = core::mem::transmute(core::ptr::read(input as *const _ as *const [u8; 16]));
qmap(x, |x| x.to_le())
}
#[inline(always)]
unsafe fn unsafe_read_be(input: &[u8]) -> Self {
assert_eq!(input.len(), 16);
let x = core::mem::transmute(core::ptr::read(input as *const _ as *const [u8; 16]));
qmap(x, |x| x.to_be())
}
#[inline(always)]
fn write_le(self, out: &mut [u8]) {
assert_eq!(out.len(), 16);
let x = qmap(self, |x| x.to_le());
unsafe { core::ptr::write(out as *mut _ as *mut [u8; 16], core::mem::transmute(x)) }
}
#[inline(always)]
fn write_be(self, out: &mut [u8]) {
assert_eq!(out.len(), 16);
let x = qmap(self, |x| x.to_be());
unsafe { core::ptr::write(out as *mut _ as *mut [u8; 16], core::mem::transmute(x)) }
}
}
#[derive(Copy, Clone)]
pub struct G0;
#[derive(Copy, Clone)]
pub struct G1;
pub type u32x4x2_generic = x2<u32x4_generic, G0>;
pub type u64x2x2_generic = x2<u64x2_generic, G0>;
pub type u64x4_generic = x2<u64x2_generic, G1>;
pub type u128x2_generic = x2<u128x1_generic, G0>;
pub type u32x4x4_generic = x4<u32x4_generic>;
pub type u64x2x4_generic = x4<u64x2_generic>;
pub type u128x4_generic = x4<u128x1_generic>;
impl Vector<[u32; 16]> for u32x4x4_generic {
fn to_scalars(self) -> [u32; 16] {
let [a, b, c, d] = self.0;
let a = a.0;
let b = b.0;
let c = c.0;
let d = d.0;
[
a[0], a[1], a[2], a[3], //
b[0], b[1], b[2], b[3], //
c[0], c[1], c[2], c[3], //
d[0], d[1], d[2], d[3], //
]
}
}
impl MultiLane<[u32; 4]> for u32x4_generic {
#[inline(always)]
fn to_lanes(self) -> [u32; 4] {
self.0
}
#[inline(always)]
fn from_lanes(xs: [u32; 4]) -> Self {
Self(xs)
}
}
impl MultiLane<[u64; 2]> for u64x2_generic {
#[inline(always)]
fn to_lanes(self) -> [u64; 2] {
self.0
}
#[inline(always)]
fn from_lanes(xs: [u64; 2]) -> Self {
Self(xs)
}
}
impl MultiLane<[u64; 4]> for u64x4_generic {
#[inline(always)]
fn to_lanes(self) -> [u64; 4] {
let (a, b) = (self.0[0].to_lanes(), self.0[1].to_lanes());
[a[0], a[1], b[0], b[1]]
}
#[inline(always)]
fn from_lanes(xs: [u64; 4]) -> Self {
let (a, b) = (
u64x2_generic::from_lanes([xs[0], xs[1]]),
u64x2_generic::from_lanes([xs[2], xs[3]]),
);
x2::new([a, b])
}
}
impl MultiLane<[u128; 1]> for u128x1_generic {
#[inline(always)]
fn to_lanes(self) -> [u128; 1] {
self.0
}
#[inline(always)]
fn from_lanes(xs: [u128; 1]) -> Self {
Self(xs)
}
}
impl Vec4<u32> for u32x4_generic {
#[inline(always)]
fn extract(self, i: u32) -> u32 {
self.0[i as usize]
}
#[inline(always)]
fn insert(mut self, v: u32, i: u32) -> Self {
self.0[i as usize] = v;
self
}
}
impl Vec4<u64> for u64x4_generic {
#[inline(always)]
fn extract(self, i: u32) -> u64 {
let d: [u64; 4] = self.to_lanes();
d[i as usize]
}
#[inline(always)]
fn insert(self, v: u64, i: u32) -> Self {
self.0[(i / 2) as usize].insert(v, i % 2);
self
}
}
impl Vec2<u64> for u64x2_generic {
#[inline(always)]
fn extract(self, i: u32) -> u64 {
self.0[i as usize]
}
#[inline(always)]
fn insert(mut self, v: u64, i: u32) -> Self {
self.0[i as usize] = v;
self
}
}
impl Words4 for u32x4_generic {
#[inline(always)]
fn shuffle2301(self) -> Self {
self.swap64()
}
#[inline(always)]
fn shuffle1230(self) -> Self {
let x = self.0;
Self([x[3], x[0], x[1], x[2]])
}
#[inline(always)]
fn shuffle3012(self) -> Self {
let x = self.0;
Self([x[1], x[2], x[3], x[0]])
}
}
impl LaneWords4 for u32x4_generic {
#[inline(always)]
fn shuffle_lane_words2301(self) -> Self {
self.shuffle2301()
}
#[inline(always)]
fn shuffle_lane_words1230(self) -> Self {
self.shuffle1230()
}
#[inline(always)]
fn shuffle_lane_words3012(self) -> Self {
self.shuffle3012()
}
}
impl Words4 for u64x4_generic {
#[inline(always)]
fn shuffle2301(self) -> Self {
x2::new([self.0[1], self.0[0]])
}
#[inline(always)]
fn shuffle1230(self) -> Self {
unimplemented!()
}
#[inline(always)]
fn shuffle3012(self) -> Self {
unimplemented!()
}
}
impl u32x4<GenericMachine> for u32x4_generic {}
impl u64x2<GenericMachine> for u64x2_generic {}
impl u128x1<GenericMachine> for u128x1_generic {}
impl u32x4x2<GenericMachine> for u32x4x2_generic {}
impl u64x2x2<GenericMachine> for u64x2x2_generic {}
impl u64x4<GenericMachine> for u64x4_generic {}
impl u128x2<GenericMachine> for u128x2_generic {}
impl u32x4x4<GenericMachine> for u32x4x4_generic {}
impl u64x2x4<GenericMachine> for u64x2x4_generic {}
impl u128x4<GenericMachine> for u128x4_generic {}
#[macro_export]
macro_rules! dispatch {
($mach:ident, $MTy:ident, { $([$pub:tt$(($krate:tt))*])* fn $name:ident($($arg:ident: $argty:ty),* $(,)*) -> $ret:ty $body:block }) => {
#[inline(always)]
$($pub$(($krate))*)* fn $name($($arg: $argty),*) -> $ret {
let $mach = unsafe { $crate::generic::GenericMachine::instance() };
#[inline(always)]
fn fn_impl<$MTy: $crate::Machine>($mach: $MTy, $($arg: $argty),*) -> $ret $body
fn_impl($mach, $($arg),*)
}
};
($mach:ident, $MTy:ident, { $([$pub:tt $(($krate:tt))*])* fn $name:ident($($arg:ident: $argty:ty),* $(,)*) $body:block }) => {
dispatch!($mach, $MTy, {
$([$pub $(($krate))*])* fn $name($($arg: $argty),*) -> () $body
});
}
}
#[macro_export]
macro_rules! dispatch_light128 {
($mach:ident, $MTy:ident, { $([$pub:tt$(($krate:tt))*])* fn $name:ident($($arg:ident: $argty:ty),* $(,)*) -> $ret:ty $body:block }) => {
#[inline(always)]
$($pub$(($krate))*)* fn $name($($arg: $argty),*) -> $ret {
let $mach = unsafe { $crate::generic::GenericMachine::instance() };
#[inline(always)]
fn fn_impl<$MTy: $crate::Machine>($mach: $MTy, $($arg: $argty),*) -> $ret $body
fn_impl($mach, $($arg),*)
}
};
($mach:ident, $MTy:ident, { $([$pub:tt $(($krate:tt))*])* fn $name:ident($($arg:ident: $argty:ty),* $(,)*) $body:block }) => {
dispatch!($mach, $MTy, {
$([$pub $(($krate))*])* fn $name($($arg: $argty),*) -> () $body
});
}
}
#[macro_export]
macro_rules! dispatch_light256 {
($mach:ident, $MTy:ident, { $([$pub:tt$(($krate:tt))*])* fn $name:ident($($arg:ident: $argty:ty),* $(,)*) -> $ret:ty $body:block }) => {
#[inline(always)]
$($pub$(($krate))*)* fn $name($($arg: $argty),*) -> $ret {
let $mach = unsafe { $crate::generic::GenericMachine::instance() };
#[inline(always)]
fn fn_impl<$MTy: $crate::Machine>($mach: $MTy, $($arg: $argty),*) -> $ret $body
fn_impl($mach, $($arg),*)
}
};
($mach:ident, $MTy:ident, { $([$pub:tt $(($krate:tt))*])* fn $name:ident($($arg:ident: $argty:ty),* $(,)*) $body:block }) => {
dispatch!($mach, $MTy, {
$([$pub $(($krate))*])* fn $name($($arg: $argty),*) -> () $body
});
}
}
#[macro_export]
macro_rules! dispatch_light512 {
($mach:ident, $MTy:ident, { $([$pub:tt$(($krate:tt))*])* fn $name:ident($($arg:ident: $argty:ty),* $(,)*) -> $ret:ty $body:block }) => {
#[inline(always)]
$($pub$(($krate))*)* fn $name($($arg: $argty),*) -> $ret {
let $mach = unsafe { $crate::generic::GenericMachine::instance() };
#[inline(always)]
fn fn_impl<$MTy: $crate::Machine>($mach: $MTy, $($arg: $argty),*) -> $ret $body
fn_impl($mach, $($arg),*)
}
};
($mach:ident, $MTy:ident, { $([$pub:tt $(($krate:tt))*])* fn $name:ident($($arg:ident: $argty:ty),* $(,)*) $body:block }) => {
dispatch!($mach, $MTy, {
$([$pub $(($krate))*])* fn $name($($arg: $argty),*) -> () $body
});
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_bswap32() {
let xs = [0x0f0e_0d0c, 0x0b0a_0908, 0x0706_0504, 0x0302_0100];
let ys = [0x0c0d_0e0f, 0x0809_0a0b, 0x0405_0607, 0x0001_0203];
let m = unsafe { GenericMachine::instance() };
let x: <GenericMachine as Machine>::u32x4 = m.vec(xs);
let x = x.bswap();
let y = m.vec(ys);
assert_eq!(x, y);
}
}

22
zeroidc/vendor/ppv-lite86/src/lib.rs vendored Normal file
View File

@@ -0,0 +1,22 @@
#![no_std]
// Design:
// - safety: safe creation of any machine type is done only by instance methods of a
// Machine (which is a ZST + Copy type), which can only by created unsafely or safely
// through feature detection (e.g. fn AVX2::try_get() -> Option<Machine>).
mod soft;
mod types;
pub use self::types::*;
#[cfg(all(target_arch = "x86_64", not(feature = "no_simd"), not(miri)))]
pub mod x86_64;
#[cfg(all(target_arch = "x86_64", not(feature = "no_simd"), not(miri)))]
use self::x86_64 as arch;
#[cfg(any(feature = "no_simd", miri, not(target_arch = "x86_64")))]
pub mod generic;
#[cfg(any(feature = "no_simd", miri, not(target_arch = "x86_64")))]
use self::generic as arch;
pub use self::arch::{vec128_storage, vec256_storage, vec512_storage};

472
zeroidc/vendor/ppv-lite86/src/soft.rs vendored Normal file
View File

@@ -0,0 +1,472 @@
//! Implement 256- and 512- bit in terms of 128-bit, for machines without native wide SIMD.
use crate::types::*;
use crate::{vec128_storage, vec256_storage, vec512_storage};
use core::marker::PhantomData;
use core::ops::*;
#[derive(Copy, Clone, Default)]
#[allow(non_camel_case_types)]
pub struct x2<W, G>(pub [W; 2], PhantomData<G>);
impl<W, G> x2<W, G> {
#[inline(always)]
pub fn new(xs: [W; 2]) -> Self {
x2(xs, PhantomData)
}
}
macro_rules! fwd_binop_x2 {
($trait:ident, $fn:ident) => {
impl<W: $trait + Copy, G> $trait for x2<W, G> {
type Output = x2<W::Output, G>;
#[inline(always)]
fn $fn(self, rhs: Self) -> Self::Output {
x2::new([self.0[0].$fn(rhs.0[0]), self.0[1].$fn(rhs.0[1])])
}
}
};
}
macro_rules! fwd_binop_assign_x2 {
($trait:ident, $fn_assign:ident) => {
impl<W: $trait + Copy, G> $trait for x2<W, G> {
#[inline(always)]
fn $fn_assign(&mut self, rhs: Self) {
(self.0[0]).$fn_assign(rhs.0[0]);
(self.0[1]).$fn_assign(rhs.0[1]);
}
}
};
}
macro_rules! fwd_unop_x2 {
($fn:ident) => {
#[inline(always)]
fn $fn(self) -> Self {
x2::new([self.0[0].$fn(), self.0[1].$fn()])
}
};
}
impl<W, G> RotateEachWord32 for x2<W, G>
where
W: Copy + RotateEachWord32,
{
fwd_unop_x2!(rotate_each_word_right7);
fwd_unop_x2!(rotate_each_word_right8);
fwd_unop_x2!(rotate_each_word_right11);
fwd_unop_x2!(rotate_each_word_right12);
fwd_unop_x2!(rotate_each_word_right16);
fwd_unop_x2!(rotate_each_word_right20);
fwd_unop_x2!(rotate_each_word_right24);
fwd_unop_x2!(rotate_each_word_right25);
}
impl<W, G> RotateEachWord64 for x2<W, G>
where
W: Copy + RotateEachWord64,
{
fwd_unop_x2!(rotate_each_word_right32);
}
impl<W, G> RotateEachWord128 for x2<W, G> where W: RotateEachWord128 {}
impl<W, G> BitOps0 for x2<W, G>
where
W: BitOps0,
G: Copy,
{
}
impl<W, G> BitOps32 for x2<W, G>
where
W: BitOps32 + BitOps0,
G: Copy,
{
}
impl<W, G> BitOps64 for x2<W, G>
where
W: BitOps64 + BitOps0,
G: Copy,
{
}
impl<W, G> BitOps128 for x2<W, G>
where
W: BitOps128 + BitOps0,
G: Copy,
{
}
fwd_binop_x2!(BitAnd, bitand);
fwd_binop_x2!(BitOr, bitor);
fwd_binop_x2!(BitXor, bitxor);
fwd_binop_x2!(AndNot, andnot);
fwd_binop_assign_x2!(BitAndAssign, bitand_assign);
fwd_binop_assign_x2!(BitOrAssign, bitor_assign);
fwd_binop_assign_x2!(BitXorAssign, bitxor_assign);
impl<W, G> ArithOps for x2<W, G>
where
W: ArithOps,
G: Copy,
{
}
fwd_binop_x2!(Add, add);
fwd_binop_assign_x2!(AddAssign, add_assign);
impl<W: Not + Copy, G> Not for x2<W, G> {
type Output = x2<W::Output, G>;
#[inline(always)]
fn not(self) -> Self::Output {
x2::new([self.0[0].not(), self.0[1].not()])
}
}
impl<W, G> UnsafeFrom<[W; 2]> for x2<W, G> {
#[inline(always)]
unsafe fn unsafe_from(xs: [W; 2]) -> Self {
x2::new(xs)
}
}
impl<W: Copy, G> Vec2<W> for x2<W, G> {
#[inline(always)]
fn extract(self, i: u32) -> W {
self.0[i as usize]
}
#[inline(always)]
fn insert(mut self, w: W, i: u32) -> Self {
self.0[i as usize] = w;
self
}
}
impl<W: Copy + Store<vec128_storage>, G> Store<vec256_storage> for x2<W, G> {
#[inline(always)]
unsafe fn unpack(p: vec256_storage) -> Self {
let p = p.split128();
x2::new([W::unpack(p[0]), W::unpack(p[1])])
}
}
impl<W, G> From<x2<W, G>> for vec256_storage
where
W: Copy,
vec128_storage: From<W>,
{
#[inline(always)]
fn from(x: x2<W, G>) -> Self {
vec256_storage::new128([x.0[0].into(), x.0[1].into()])
}
}
impl<W, G> Swap64 for x2<W, G>
where
W: Swap64 + Copy,
{
fwd_unop_x2!(swap1);
fwd_unop_x2!(swap2);
fwd_unop_x2!(swap4);
fwd_unop_x2!(swap8);
fwd_unop_x2!(swap16);
fwd_unop_x2!(swap32);
fwd_unop_x2!(swap64);
}
impl<W: Copy, G> MultiLane<[W; 2]> for x2<W, G> {
#[inline(always)]
fn to_lanes(self) -> [W; 2] {
self.0
}
#[inline(always)]
fn from_lanes(lanes: [W; 2]) -> Self {
x2::new(lanes)
}
}
impl<W: BSwap + Copy, G> BSwap for x2<W, G> {
#[inline(always)]
fn bswap(self) -> Self {
x2::new([self.0[0].bswap(), self.0[1].bswap()])
}
}
impl<W: StoreBytes + BSwap + Copy, G> StoreBytes for x2<W, G> {
#[inline(always)]
unsafe fn unsafe_read_le(input: &[u8]) -> Self {
let input = input.split_at(input.len() / 2);
x2::new([W::unsafe_read_le(input.0), W::unsafe_read_le(input.1)])
}
#[inline(always)]
unsafe fn unsafe_read_be(input: &[u8]) -> Self {
let input = input.split_at(input.len() / 2);
x2::new([W::unsafe_read_be(input.0), W::unsafe_read_be(input.1)])
}
#[inline(always)]
fn write_le(self, out: &mut [u8]) {
let out = out.split_at_mut(out.len() / 2);
self.0[0].write_le(out.0);
self.0[1].write_le(out.1);
}
#[inline(always)]
fn write_be(self, out: &mut [u8]) {
let out = out.split_at_mut(out.len() / 2);
self.0[0].write_be(out.0);
self.0[1].write_be(out.1);
}
}
impl<W: Copy + LaneWords4, G: Copy> LaneWords4 for x2<W, G> {
#[inline(always)]
fn shuffle_lane_words2301(self) -> Self {
Self::new([
self.0[0].shuffle_lane_words2301(),
self.0[1].shuffle_lane_words2301(),
])
}
#[inline(always)]
fn shuffle_lane_words1230(self) -> Self {
Self::new([
self.0[0].shuffle_lane_words1230(),
self.0[1].shuffle_lane_words1230(),
])
}
#[inline(always)]
fn shuffle_lane_words3012(self) -> Self {
Self::new([
self.0[0].shuffle_lane_words3012(),
self.0[1].shuffle_lane_words3012(),
])
}
}
#[derive(Copy, Clone, Default)]
#[allow(non_camel_case_types)]
pub struct x4<W>(pub [W; 4]);
impl<W> x4<W> {
#[inline(always)]
pub fn new(xs: [W; 4]) -> Self {
x4(xs)
}
}
macro_rules! fwd_binop_x4 {
($trait:ident, $fn:ident) => {
impl<W: $trait + Copy> $trait for x4<W> {
type Output = x4<W::Output>;
#[inline(always)]
fn $fn(self, rhs: Self) -> Self::Output {
x4([
self.0[0].$fn(rhs.0[0]),
self.0[1].$fn(rhs.0[1]),
self.0[2].$fn(rhs.0[2]),
self.0[3].$fn(rhs.0[3]),
])
}
}
};
}
macro_rules! fwd_binop_assign_x4 {
($trait:ident, $fn_assign:ident) => {
impl<W: $trait + Copy> $trait for x4<W> {
#[inline(always)]
fn $fn_assign(&mut self, rhs: Self) {
self.0[0].$fn_assign(rhs.0[0]);
self.0[1].$fn_assign(rhs.0[1]);
self.0[2].$fn_assign(rhs.0[2]);
self.0[3].$fn_assign(rhs.0[3]);
}
}
};
}
macro_rules! fwd_unop_x4 {
($fn:ident) => {
#[inline(always)]
fn $fn(self) -> Self {
x4([
self.0[0].$fn(),
self.0[1].$fn(),
self.0[2].$fn(),
self.0[3].$fn(),
])
}
};
}
impl<W> RotateEachWord32 for x4<W>
where
W: Copy + RotateEachWord32,
{
fwd_unop_x4!(rotate_each_word_right7);
fwd_unop_x4!(rotate_each_word_right8);
fwd_unop_x4!(rotate_each_word_right11);
fwd_unop_x4!(rotate_each_word_right12);
fwd_unop_x4!(rotate_each_word_right16);
fwd_unop_x4!(rotate_each_word_right20);
fwd_unop_x4!(rotate_each_word_right24);
fwd_unop_x4!(rotate_each_word_right25);
}
impl<W> RotateEachWord64 for x4<W>
where
W: Copy + RotateEachWord64,
{
fwd_unop_x4!(rotate_each_word_right32);
}
impl<W> RotateEachWord128 for x4<W> where W: RotateEachWord128 {}
impl<W> BitOps0 for x4<W> where W: BitOps0 {}
impl<W> BitOps32 for x4<W> where W: BitOps32 + BitOps0 {}
impl<W> BitOps64 for x4<W> where W: BitOps64 + BitOps0 {}
impl<W> BitOps128 for x4<W> where W: BitOps128 + BitOps0 {}
fwd_binop_x4!(BitAnd, bitand);
fwd_binop_x4!(BitOr, bitor);
fwd_binop_x4!(BitXor, bitxor);
fwd_binop_x4!(AndNot, andnot);
fwd_binop_assign_x4!(BitAndAssign, bitand_assign);
fwd_binop_assign_x4!(BitOrAssign, bitor_assign);
fwd_binop_assign_x4!(BitXorAssign, bitxor_assign);
impl<W> ArithOps for x4<W> where W: ArithOps {}
fwd_binop_x4!(Add, add);
fwd_binop_assign_x4!(AddAssign, add_assign);
impl<W: Not + Copy> Not for x4<W> {
type Output = x4<W::Output>;
#[inline(always)]
fn not(self) -> Self::Output {
x4([
self.0[0].not(),
self.0[1].not(),
self.0[2].not(),
self.0[3].not(),
])
}
}
impl<W> UnsafeFrom<[W; 4]> for x4<W> {
#[inline(always)]
unsafe fn unsafe_from(xs: [W; 4]) -> Self {
x4(xs)
}
}
impl<W: Copy> Vec4<W> for x4<W> {
#[inline(always)]
fn extract(self, i: u32) -> W {
self.0[i as usize]
}
#[inline(always)]
fn insert(mut self, w: W, i: u32) -> Self {
self.0[i as usize] = w;
self
}
}
impl<W: Copy> Vec4Ext<W> for x4<W> {
#[inline(always)]
fn transpose4(a: Self, b: Self, c: Self, d: Self) -> (Self, Self, Self, Self)
where
Self: Sized,
{
(
x4([a.0[0], b.0[0], c.0[0], d.0[0]]),
x4([a.0[1], b.0[1], c.0[1], d.0[1]]),
x4([a.0[2], b.0[2], c.0[2], d.0[2]]),
x4([a.0[3], b.0[3], c.0[3], d.0[3]]),
)
}
}
impl<W: Copy + Store<vec128_storage>> Store<vec512_storage> for x4<W> {
#[inline(always)]
unsafe fn unpack(p: vec512_storage) -> Self {
let p = p.split128();
x4([
W::unpack(p[0]),
W::unpack(p[1]),
W::unpack(p[2]),
W::unpack(p[3]),
])
}
}
impl<W> From<x4<W>> for vec512_storage
where
W: Copy,
vec128_storage: From<W>,
{
#[inline(always)]
fn from(x: x4<W>) -> Self {
vec512_storage::new128([x.0[0].into(), x.0[1].into(), x.0[2].into(), x.0[3].into()])
}
}
impl<W> Swap64 for x4<W>
where
W: Swap64 + Copy,
{
fwd_unop_x4!(swap1);
fwd_unop_x4!(swap2);
fwd_unop_x4!(swap4);
fwd_unop_x4!(swap8);
fwd_unop_x4!(swap16);
fwd_unop_x4!(swap32);
fwd_unop_x4!(swap64);
}
impl<W: Copy> MultiLane<[W; 4]> for x4<W> {
#[inline(always)]
fn to_lanes(self) -> [W; 4] {
self.0
}
#[inline(always)]
fn from_lanes(lanes: [W; 4]) -> Self {
x4(lanes)
}
}
impl<W: BSwap + Copy> BSwap for x4<W> {
#[inline(always)]
fn bswap(self) -> Self {
x4([
self.0[0].bswap(),
self.0[1].bswap(),
self.0[2].bswap(),
self.0[3].bswap(),
])
}
}
impl<W: StoreBytes + BSwap + Copy> StoreBytes for x4<W> {
#[inline(always)]
unsafe fn unsafe_read_le(input: &[u8]) -> Self {
let n = input.len() / 4;
x4([
W::unsafe_read_le(&input[..n]),
W::unsafe_read_le(&input[n..n * 2]),
W::unsafe_read_le(&input[n * 2..n * 3]),
W::unsafe_read_le(&input[n * 3..]),
])
}
#[inline(always)]
unsafe fn unsafe_read_be(input: &[u8]) -> Self {
let n = input.len() / 4;
x4([
W::unsafe_read_be(&input[..n]),
W::unsafe_read_be(&input[n..n * 2]),
W::unsafe_read_be(&input[n * 2..n * 3]),
W::unsafe_read_be(&input[n * 3..]),
])
}
#[inline(always)]
fn write_le(self, out: &mut [u8]) {
let n = out.len() / 4;
self.0[0].write_le(&mut out[..n]);
self.0[1].write_le(&mut out[n..n * 2]);
self.0[2].write_le(&mut out[n * 2..n * 3]);
self.0[3].write_le(&mut out[n * 3..]);
}
#[inline(always)]
fn write_be(self, out: &mut [u8]) {
let n = out.len() / 4;
self.0[0].write_be(&mut out[..n]);
self.0[1].write_be(&mut out[n..n * 2]);
self.0[2].write_be(&mut out[n * 2..n * 3]);
self.0[3].write_be(&mut out[n * 3..]);
}
}
impl<W: Copy + LaneWords4> LaneWords4 for x4<W> {
#[inline(always)]
fn shuffle_lane_words2301(self) -> Self {
x4([
self.0[0].shuffle_lane_words2301(),
self.0[1].shuffle_lane_words2301(),
self.0[2].shuffle_lane_words2301(),
self.0[3].shuffle_lane_words2301(),
])
}
#[inline(always)]
fn shuffle_lane_words1230(self) -> Self {
x4([
self.0[0].shuffle_lane_words1230(),
self.0[1].shuffle_lane_words1230(),
self.0[2].shuffle_lane_words1230(),
self.0[3].shuffle_lane_words1230(),
])
}
#[inline(always)]
fn shuffle_lane_words3012(self) -> Self {
x4([
self.0[0].shuffle_lane_words3012(),
self.0[1].shuffle_lane_words3012(),
self.0[2].shuffle_lane_words3012(),
self.0[3].shuffle_lane_words3012(),
])
}
}

298
zeroidc/vendor/ppv-lite86/src/types.rs vendored Normal file
View File

@@ -0,0 +1,298 @@
#![allow(non_camel_case_types)]
use core::ops::{Add, AddAssign, BitAnd, BitOr, BitXor, BitXorAssign, Not};
pub trait AndNot {
type Output;
fn andnot(self, rhs: Self) -> Self::Output;
}
pub trait BSwap {
fn bswap(self) -> Self;
}
/// Ops that depend on word size
pub trait ArithOps: Add<Output = Self> + AddAssign + Sized + Copy + Clone + BSwap {}
/// Ops that are independent of word size and endian
pub trait BitOps0:
BitAnd<Output = Self>
+ BitOr<Output = Self>
+ BitXor<Output = Self>
+ BitXorAssign
+ Not<Output = Self>
+ AndNot<Output = Self>
+ Sized
+ Copy
+ Clone
{
}
pub trait BitOps32: BitOps0 + RotateEachWord32 {}
pub trait BitOps64: BitOps32 + RotateEachWord64 {}
pub trait BitOps128: BitOps64 + RotateEachWord128 {}
pub trait RotateEachWord32 {
fn rotate_each_word_right7(self) -> Self;
fn rotate_each_word_right8(self) -> Self;
fn rotate_each_word_right11(self) -> Self;
fn rotate_each_word_right12(self) -> Self;
fn rotate_each_word_right16(self) -> Self;
fn rotate_each_word_right20(self) -> Self;
fn rotate_each_word_right24(self) -> Self;
fn rotate_each_word_right25(self) -> Self;
}
pub trait RotateEachWord64 {
fn rotate_each_word_right32(self) -> Self;
}
pub trait RotateEachWord128 {}
// Vector type naming scheme:
// uN[xP]xL
// Unsigned; N-bit words * P bits per lane * L lanes
//
// A lane is always 128-bits, chosen because common SIMD architectures treat 128-bit units of
// wide vectors specially (supporting e.g. intra-lane shuffles), and tend to have limited and
// slow inter-lane operations.
use crate::arch::{vec128_storage, vec256_storage, vec512_storage};
#[allow(clippy::missing_safety_doc)]
pub trait UnsafeFrom<T> {
unsafe fn unsafe_from(t: T) -> Self;
}
/// A vector composed of two elements, which may be words or themselves vectors.
pub trait Vec2<W> {
fn extract(self, i: u32) -> W;
fn insert(self, w: W, i: u32) -> Self;
}
/// A vector composed of four elements, which may be words or themselves vectors.
pub trait Vec4<W> {
fn extract(self, i: u32) -> W;
fn insert(self, w: W, i: u32) -> Self;
}
/// Vec4 functions which may not be implemented yet for all Vec4 types.
/// NOTE: functions in this trait may be moved to Vec4 in any patch release. To avoid breakage,
/// import Vec4Ext only together with Vec4, and don't qualify its methods.
pub trait Vec4Ext<W> {
fn transpose4(a: Self, b: Self, c: Self, d: Self) -> (Self, Self, Self, Self)
where
Self: Sized;
}
pub trait Vector<T> {
fn to_scalars(self) -> T;
}
// TODO: multiples of 4 should inherit this
/// A vector composed of four words; depending on their size, operations may cross lanes.
pub trait Words4 {
fn shuffle1230(self) -> Self;
fn shuffle2301(self) -> Self;
fn shuffle3012(self) -> Self;
}
/// A vector composed one or more lanes each composed of four words.
pub trait LaneWords4 {
fn shuffle_lane_words1230(self) -> Self;
fn shuffle_lane_words2301(self) -> Self;
fn shuffle_lane_words3012(self) -> Self;
}
// TODO: make this a part of BitOps
/// Exchange neigboring ranges of bits of the specified size
pub trait Swap64 {
fn swap1(self) -> Self;
fn swap2(self) -> Self;
fn swap4(self) -> Self;
fn swap8(self) -> Self;
fn swap16(self) -> Self;
fn swap32(self) -> Self;
fn swap64(self) -> Self;
}
pub trait u32x4<M: Machine>:
BitOps32
+ Store<vec128_storage>
+ ArithOps
+ Vec4<u32>
+ Words4
+ LaneWords4
+ StoreBytes
+ MultiLane<[u32; 4]>
+ Into<vec128_storage>
{
}
pub trait u64x2<M: Machine>:
BitOps64 + Store<vec128_storage> + ArithOps + Vec2<u64> + MultiLane<[u64; 2]> + Into<vec128_storage>
{
}
pub trait u128x1<M: Machine>:
BitOps128 + Store<vec128_storage> + Swap64 + MultiLane<[u128; 1]> + Into<vec128_storage>
{
}
pub trait u32x4x2<M: Machine>:
BitOps32
+ Store<vec256_storage>
+ Vec2<M::u32x4>
+ MultiLane<[M::u32x4; 2]>
+ ArithOps
+ Into<vec256_storage>
+ StoreBytes
{
}
pub trait u64x2x2<M: Machine>:
BitOps64
+ Store<vec256_storage>
+ Vec2<M::u64x2>
+ MultiLane<[M::u64x2; 2]>
+ ArithOps
+ StoreBytes
+ Into<vec256_storage>
{
}
pub trait u64x4<M: Machine>:
BitOps64
+ Store<vec256_storage>
+ Vec4<u64>
+ MultiLane<[u64; 4]>
+ ArithOps
+ Words4
+ StoreBytes
+ Into<vec256_storage>
{
}
pub trait u128x2<M: Machine>:
BitOps128
+ Store<vec256_storage>
+ Vec2<M::u128x1>
+ MultiLane<[M::u128x1; 2]>
+ Swap64
+ Into<vec256_storage>
{
}
pub trait u32x4x4<M: Machine>:
BitOps32
+ Store<vec512_storage>
+ Vec4<M::u32x4>
+ Vec4Ext<M::u32x4>
+ Vector<[u32; 16]>
+ MultiLane<[M::u32x4; 4]>
+ ArithOps
+ LaneWords4
+ Into<vec512_storage>
+ StoreBytes
{
}
pub trait u64x2x4<M: Machine>:
BitOps64
+ Store<vec512_storage>
+ Vec4<M::u64x2>
+ MultiLane<[M::u64x2; 4]>
+ ArithOps
+ Into<vec512_storage>
{
}
// TODO: Words4
pub trait u128x4<M: Machine>:
BitOps128
+ Store<vec512_storage>
+ Vec4<M::u128x1>
+ MultiLane<[M::u128x1; 4]>
+ Swap64
+ Into<vec512_storage>
{
}
/// A vector composed of multiple 128-bit lanes.
pub trait MultiLane<Lanes> {
/// Split a multi-lane vector into single-lane vectors.
fn to_lanes(self) -> Lanes;
/// Build a multi-lane vector from individual lanes.
fn from_lanes(lanes: Lanes) -> Self;
}
/// Combine single vectors into a multi-lane vector.
pub trait VZip<V> {
fn vzip(self) -> V;
}
impl<V, T> VZip<V> for T
where
V: MultiLane<T>,
{
#[inline(always)]
fn vzip(self) -> V {
V::from_lanes(self)
}
}
pub trait Machine: Sized + Copy {
type u32x4: u32x4<Self>;
type u64x2: u64x2<Self>;
type u128x1: u128x1<Self>;
type u32x4x2: u32x4x2<Self>;
type u64x2x2: u64x2x2<Self>;
type u64x4: u64x4<Self>;
type u128x2: u128x2<Self>;
type u32x4x4: u32x4x4<Self>;
type u64x2x4: u64x2x4<Self>;
type u128x4: u128x4<Self>;
#[inline(always)]
fn unpack<S, V: Store<S>>(self, s: S) -> V {
unsafe { V::unpack(s) }
}
#[inline(always)]
fn vec<V, A>(self, a: A) -> V
where
V: MultiLane<A>,
{
V::from_lanes(a)
}
#[inline(always)]
fn read_le<V>(self, input: &[u8]) -> V
where
V: StoreBytes,
{
unsafe { V::unsafe_read_le(input) }
}
#[inline(always)]
fn read_be<V>(self, input: &[u8]) -> V
where
V: StoreBytes,
{
unsafe { V::unsafe_read_be(input) }
}
/// # Safety
/// Caller must ensure the type of Self is appropriate for the hardware of the execution
/// environment.
unsafe fn instance() -> Self;
}
pub trait Store<S> {
/// # Safety
/// Caller must ensure the type of Self is appropriate for the hardware of the execution
/// environment.
unsafe fn unpack(p: S) -> Self;
}
pub trait StoreBytes {
/// # Safety
/// Caller must ensure the type of Self is appropriate for the hardware of the execution
/// environment.
unsafe fn unsafe_read_le(input: &[u8]) -> Self;
/// # Safety
/// Caller must ensure the type of Self is appropriate for the hardware of the execution
/// environment.
unsafe fn unsafe_read_be(input: &[u8]) -> Self;
fn write_le(self, out: &mut [u8]);
fn write_be(self, out: &mut [u8]);
}

View File

@@ -0,0 +1,437 @@
// crate minimums: sse2, x86_64
use crate::types::*;
use core::arch::x86_64::{__m128i, __m256i};
mod sse2;
#[derive(Copy, Clone)]
pub struct YesS3;
#[derive(Copy, Clone)]
pub struct NoS3;
#[derive(Copy, Clone)]
pub struct YesS4;
#[derive(Copy, Clone)]
pub struct NoS4;
#[derive(Copy, Clone)]
pub struct YesA1;
#[derive(Copy, Clone)]
pub struct NoA1;
#[derive(Copy, Clone)]
pub struct YesA2;
#[derive(Copy, Clone)]
pub struct NoA2;
#[derive(Copy, Clone)]
pub struct YesNI;
#[derive(Copy, Clone)]
pub struct NoNI;
use core::marker::PhantomData;
#[derive(Copy, Clone)]
pub struct SseMachine<S3, S4, NI>(PhantomData<(S3, S4, NI)>);
impl<S3: Copy, S4: Copy, NI: Copy> Machine for SseMachine<S3, S4, NI>
where
sse2::u128x1_sse2<S3, S4, NI>: Swap64,
sse2::u64x2_sse2<S3, S4, NI>: BSwap + RotateEachWord32 + MultiLane<[u64; 2]> + Vec2<u64>,
sse2::u32x4_sse2<S3, S4, NI>: BSwap + RotateEachWord32 + MultiLane<[u32; 4]> + Vec4<u32>,
sse2::u64x4_sse2<S3, S4, NI>: BSwap + Words4,
sse2::u128x1_sse2<S3, S4, NI>: BSwap,
sse2::u128x2_sse2<S3, S4, NI>: Into<sse2::u64x2x2_sse2<S3, S4, NI>>,
sse2::u128x2_sse2<S3, S4, NI>: Into<sse2::u64x4_sse2<S3, S4, NI>>,
sse2::u128x2_sse2<S3, S4, NI>: Into<sse2::u32x4x2_sse2<S3, S4, NI>>,
sse2::u128x4_sse2<S3, S4, NI>: Into<sse2::u64x2x4_sse2<S3, S4, NI>>,
sse2::u128x4_sse2<S3, S4, NI>: Into<sse2::u32x4x4_sse2<S3, S4, NI>>,
{
type u32x4 = sse2::u32x4_sse2<S3, S4, NI>;
type u64x2 = sse2::u64x2_sse2<S3, S4, NI>;
type u128x1 = sse2::u128x1_sse2<S3, S4, NI>;
type u32x4x2 = sse2::u32x4x2_sse2<S3, S4, NI>;
type u64x2x2 = sse2::u64x2x2_sse2<S3, S4, NI>;
type u64x4 = sse2::u64x4_sse2<S3, S4, NI>;
type u128x2 = sse2::u128x2_sse2<S3, S4, NI>;
type u32x4x4 = sse2::u32x4x4_sse2<S3, S4, NI>;
type u64x2x4 = sse2::u64x2x4_sse2<S3, S4, NI>;
type u128x4 = sse2::u128x4_sse2<S3, S4, NI>;
#[inline(always)]
unsafe fn instance() -> Self {
SseMachine(PhantomData)
}
}
#[derive(Copy, Clone)]
pub struct Avx2Machine<NI>(PhantomData<NI>);
impl<NI: Copy> Machine for Avx2Machine<NI>
where
sse2::u128x1_sse2<YesS3, YesS4, NI>: BSwap + Swap64,
sse2::u64x2_sse2<YesS3, YesS4, NI>: BSwap + RotateEachWord32 + MultiLane<[u64; 2]> + Vec2<u64>,
sse2::u32x4_sse2<YesS3, YesS4, NI>: BSwap + RotateEachWord32 + MultiLane<[u32; 4]> + Vec4<u32>,
sse2::u64x4_sse2<YesS3, YesS4, NI>: BSwap + Words4,
{
type u32x4 = sse2::u32x4_sse2<YesS3, YesS4, NI>;
type u64x2 = sse2::u64x2_sse2<YesS3, YesS4, NI>;
type u128x1 = sse2::u128x1_sse2<YesS3, YesS4, NI>;
type u32x4x2 = sse2::avx2::u32x4x2_avx2<NI>;
type u64x2x2 = sse2::u64x2x2_sse2<YesS3, YesS4, NI>;
type u64x4 = sse2::u64x4_sse2<YesS3, YesS4, NI>;
type u128x2 = sse2::u128x2_sse2<YesS3, YesS4, NI>;
type u32x4x4 = sse2::avx2::u32x4x4_avx2<NI>;
type u64x2x4 = sse2::u64x2x4_sse2<YesS3, YesS4, NI>;
type u128x4 = sse2::u128x4_sse2<YesS3, YesS4, NI>;
#[inline(always)]
unsafe fn instance() -> Self {
Avx2Machine(PhantomData)
}
}
pub type SSE2 = SseMachine<NoS3, NoS4, NoNI>;
pub type SSSE3 = SseMachine<YesS3, NoS4, NoNI>;
pub type SSE41 = SseMachine<YesS3, YesS4, NoNI>;
/// AVX but not AVX2: only 128-bit integer operations, but use VEX versions of everything
/// to avoid expensive SSE/VEX conflicts.
pub type AVX = SseMachine<YesS3, YesS4, NoNI>;
pub type AVX2 = Avx2Machine<NoNI>;
/// Generic wrapper for unparameterized storage of any of the possible impls.
/// Converting into and out of this type should be essentially free, although it may be more
/// aligned than a particular impl requires.
#[allow(non_camel_case_types)]
#[derive(Copy, Clone)]
pub union vec128_storage {
u32x4: [u32; 4],
u64x2: [u64; 2],
u128x1: [u128; 1],
sse2: __m128i,
}
impl Store<vec128_storage> for vec128_storage {
#[inline(always)]
unsafe fn unpack(p: vec128_storage) -> Self {
p
}
}
impl<'a> From<&'a vec128_storage> for &'a [u32; 4] {
#[inline(always)]
fn from(x: &'a vec128_storage) -> Self {
unsafe { &x.u32x4 }
}
}
impl From<[u32; 4]> for vec128_storage {
#[inline(always)]
fn from(u32x4: [u32; 4]) -> Self {
vec128_storage { u32x4 }
}
}
impl Default for vec128_storage {
#[inline(always)]
fn default() -> Self {
vec128_storage { u128x1: [0] }
}
}
impl Eq for vec128_storage {}
impl PartialEq for vec128_storage {
#[inline(always)]
fn eq(&self, rhs: &Self) -> bool {
unsafe { self.u128x1 == rhs.u128x1 }
}
}
#[allow(non_camel_case_types)]
#[derive(Copy, Clone)]
pub union vec256_storage {
u32x8: [u32; 8],
u64x4: [u64; 4],
u128x2: [u128; 2],
sse2: [vec128_storage; 2],
avx: __m256i,
}
impl From<[u64; 4]> for vec256_storage {
#[inline(always)]
fn from(u64x4: [u64; 4]) -> Self {
vec256_storage { u64x4 }
}
}
impl Default for vec256_storage {
#[inline(always)]
fn default() -> Self {
vec256_storage { u128x2: [0, 0] }
}
}
impl vec256_storage {
#[inline(always)]
pub fn new128(xs: [vec128_storage; 2]) -> Self {
Self { sse2: xs }
}
#[inline(always)]
pub fn split128(self) -> [vec128_storage; 2] {
unsafe { self.sse2 }
}
}
impl Eq for vec256_storage {}
impl PartialEq for vec256_storage {
#[inline(always)]
fn eq(&self, rhs: &Self) -> bool {
unsafe { self.sse2 == rhs.sse2 }
}
}
#[allow(non_camel_case_types)]
#[derive(Copy, Clone)]
pub union vec512_storage {
u32x16: [u32; 16],
u64x8: [u64; 8],
u128x4: [u128; 4],
sse2: [vec128_storage; 4],
avx: [vec256_storage; 2],
}
impl Default for vec512_storage {
#[inline(always)]
fn default() -> Self {
vec512_storage {
u128x4: [0, 0, 0, 0],
}
}
}
impl vec512_storage {
#[inline(always)]
pub fn new128(xs: [vec128_storage; 4]) -> Self {
Self { sse2: xs }
}
#[inline(always)]
pub fn split128(self) -> [vec128_storage; 4] {
unsafe { self.sse2 }
}
}
impl Eq for vec512_storage {}
impl PartialEq for vec512_storage {
#[inline(always)]
fn eq(&self, rhs: &Self) -> bool {
unsafe { self.avx == rhs.avx }
}
}
macro_rules! impl_into {
($storage:ident, $array:ty, $name:ident) => {
impl From<$storage> for $array {
#[inline(always)]
fn from(vec: $storage) -> Self {
unsafe { vec.$name }
}
}
};
}
impl_into!(vec128_storage, [u32; 4], u32x4);
impl_into!(vec128_storage, [u64; 2], u64x2);
impl_into!(vec128_storage, [u128; 1], u128x1);
impl_into!(vec256_storage, [u32; 8], u32x8);
impl_into!(vec256_storage, [u64; 4], u64x4);
impl_into!(vec256_storage, [u128; 2], u128x2);
impl_into!(vec512_storage, [u32; 16], u32x16);
impl_into!(vec512_storage, [u64; 8], u64x8);
impl_into!(vec512_storage, [u128; 4], u128x4);
/// Generate the full set of optimized implementations to take advantage of the most important
/// hardware feature sets.
///
/// This dispatcher is suitable for maximizing throughput.
#[macro_export]
macro_rules! dispatch {
($mach:ident, $MTy:ident, { $([$pub:tt$(($krate:tt))*])* fn $name:ident($($arg:ident: $argty:ty),* $(,)*) -> $ret:ty $body:block }) => {
#[cfg(feature = "std")]
$($pub$(($krate))*)* fn $name($($arg: $argty),*) -> $ret {
#[inline(always)]
fn fn_impl<$MTy: $crate::Machine>($mach: $MTy, $($arg: $argty),*) -> $ret $body
use std::arch::x86_64::*;
#[target_feature(enable = "avx2")]
unsafe fn impl_avx2($($arg: $argty),*) -> $ret {
let ret = fn_impl($crate::x86_64::AVX2::instance(), $($arg),*);
_mm256_zeroupper();
ret
}
#[target_feature(enable = "avx")]
#[target_feature(enable = "sse4.1")]
#[target_feature(enable = "ssse3")]
unsafe fn impl_avx($($arg: $argty),*) -> $ret {
let ret = fn_impl($crate::x86_64::AVX::instance(), $($arg),*);
_mm256_zeroupper();
ret
}
#[target_feature(enable = "sse4.1")]
#[target_feature(enable = "ssse3")]
unsafe fn impl_sse41($($arg: $argty),*) -> $ret {
fn_impl($crate::x86_64::SSE41::instance(), $($arg),*)
}
#[target_feature(enable = "ssse3")]
unsafe fn impl_ssse3($($arg: $argty),*) -> $ret {
fn_impl($crate::x86_64::SSSE3::instance(), $($arg),*)
}
#[target_feature(enable = "sse2")]
unsafe fn impl_sse2($($arg: $argty),*) -> $ret {
fn_impl($crate::x86_64::SSE2::instance(), $($arg),*)
}
unsafe {
if is_x86_feature_detected!("avx2") {
impl_avx2($($arg),*)
} else if is_x86_feature_detected!("avx") {
impl_avx($($arg),*)
} else if is_x86_feature_detected!("sse4.1") {
impl_sse41($($arg),*)
} else if is_x86_feature_detected!("ssse3") {
impl_ssse3($($arg),*)
} else if is_x86_feature_detected!("sse2") {
impl_sse2($($arg),*)
} else {
unimplemented!()
}
}
}
#[cfg(not(feature = "std"))]
#[inline(always)]
$($pub$(($krate))*)* fn $name($($arg: $argty),*) -> $ret {
unsafe fn fn_impl<$MTy: $crate::Machine>($mach: $MTy, $($arg: $argty),*) -> $ret $body
unsafe {
if cfg!(target_feature = "avx2") {
fn_impl($crate::x86_64::AVX2::instance(), $($arg),*)
} else if cfg!(target_feature = "avx") {
fn_impl($crate::x86_64::AVX::instance(), $($arg),*)
} else if cfg!(target_feature = "sse4.1") {
fn_impl($crate::x86_64::SSE41::instance(), $($arg),*)
} else if cfg!(target_feature = "ssse3") {
fn_impl($crate::x86_64::SSSE3::instance(), $($arg),*)
} else {
fn_impl($crate::x86_64::SSE2::instance(), $($arg),*)
}
}
}
};
($mach:ident, $MTy:ident, { $([$pub:tt $(($krate:tt))*])* fn $name:ident($($arg:ident: $argty:ty),* $(,)*) $body:block }) => {
dispatch!($mach, $MTy, {
$([$pub $(($krate))*])* fn $name($($arg: $argty),*) -> () $body
});
}
}
/// Generate only the basic implementations necessary to be able to operate efficiently on 128-bit
/// vectors on this platfrom. For x86-64, that would mean SSE2 and AVX.
///
/// This dispatcher is suitable for vector operations that do not benefit from advanced hardware
/// features (e.g. because they are done infrequently), so minimizing their contribution to code
/// size is more important.
#[macro_export]
macro_rules! dispatch_light128 {
($mach:ident, $MTy:ident, { $([$pub:tt$(($krate:tt))*])* fn $name:ident($($arg:ident: $argty:ty),* $(,)*) -> $ret:ty $body:block }) => {
#[cfg(feature = "std")]
$($pub $(($krate))*)* fn $name($($arg: $argty),*) -> $ret {
#[inline(always)]
fn fn_impl<$MTy: $crate::Machine>($mach: $MTy, $($arg: $argty),*) -> $ret $body
use std::arch::x86_64::*;
#[target_feature(enable = "avx")]
unsafe fn impl_avx($($arg: $argty),*) -> $ret {
fn_impl($crate::x86_64::AVX::instance(), $($arg),*)
}
#[target_feature(enable = "sse2")]
unsafe fn impl_sse2($($arg: $argty),*) -> $ret {
fn_impl($crate::x86_64::SSE2::instance(), $($arg),*)
}
unsafe {
if is_x86_feature_detected!("avx") {
impl_avx($($arg),*)
} else if is_x86_feature_detected!("sse2") {
impl_sse2($($arg),*)
} else {
unimplemented!()
}
}
}
#[cfg(not(feature = "std"))]
#[inline(always)]
$($pub$(($krate))*)* fn $name($($arg: $argty),*) -> $ret {
unsafe fn fn_impl<$MTy: $crate::Machine>($mach: $MTy, $($arg: $argty),*) -> $ret $body
unsafe {
if cfg!(target_feature = "avx2") {
fn_impl($crate::x86_64::AVX2::instance(), $($arg),*)
} else if cfg!(target_feature = "avx") {
fn_impl($crate::x86_64::AVX::instance(), $($arg),*)
} else if cfg!(target_feature = "sse4.1") {
fn_impl($crate::x86_64::SSE41::instance(), $($arg),*)
} else if cfg!(target_feature = "ssse3") {
fn_impl($crate::x86_64::SSSE3::instance(), $($arg),*)
} else {
fn_impl($crate::x86_64::SSE2::instance(), $($arg),*)
}
}
}
};
($mach:ident, $MTy:ident, { $([$pub:tt$(($krate:tt))*])* fn $name:ident($($arg:ident: $argty:ty),* $(,)*) $body:block }) => {
dispatch_light128!($mach, $MTy, {
$([$pub $(($krate))*])* fn $name($($arg: $argty),*) -> () $body
});
}
}
/// Generate only the basic implementations necessary to be able to operate efficiently on 256-bit
/// vectors on this platfrom. For x86-64, that would mean SSE2, AVX, and AVX2.
///
/// This dispatcher is suitable for vector operations that do not benefit from advanced hardware
/// features (e.g. because they are done infrequently), so minimizing their contribution to code
/// size is more important.
#[macro_export]
macro_rules! dispatch_light256 {
($mach:ident, $MTy:ident, { $([$pub:tt$(($krate:tt))*])* fn $name:ident($($arg:ident: $argty:ty),* $(,)*) -> $ret:ty $body:block }) => {
#[cfg(feature = "std")]
$([$pub $(($krate))*])* fn $name($($arg: $argty),*) -> $ret {
#[inline(always)]
fn fn_impl<$MTy: $crate::Machine>($mach: $MTy, $($arg: $argty),*) -> $ret $body
use std::arch::x86_64::*;
#[target_feature(enable = "avx")]
unsafe fn impl_avx($($arg: $argty),*) -> $ret {
fn_impl($crate::x86_64::AVX::instance(), $($arg),*)
}
#[target_feature(enable = "sse2")]
unsafe fn impl_sse2($($arg: $argty),*) -> $ret {
fn_impl($crate::x86_64::SSE2::instance(), $($arg),*)
}
unsafe {
if is_x86_feature_detected!("avx") {
impl_avx($($arg),*)
} else if is_x86_feature_detected!("sse2") {
impl_sse2($($arg),*)
} else {
unimplemented!()
}
}
}
#[cfg(not(feature = "std"))]
#[inline(always)]
$($pub$(($krate))*)* fn $name($($arg: $argty),*) -> $ret {
unsafe fn fn_impl<$MTy: $crate::Machine>($mach: $MTy, $($arg: $argty),*) -> $ret $body
unsafe {
if cfg!(target_feature = "avx2") {
fn_impl($crate::x86_64::AVX2::instance(), $($arg),*)
} else if cfg!(target_feature = "avx") {
fn_impl($crate::x86_64::AVX::instance(), $($arg),*)
} else if cfg!(target_feature = "sse4.1") {
fn_impl($crate::x86_64::SSE41::instance(), $($arg),*)
} else if cfg!(target_feature = "ssse3") {
fn_impl($crate::x86_64::SSSE3::instance(), $($arg),*)
} else {
fn_impl($crate::x86_64::SSE2::instance(), $($arg),*)
}
}
}
};
($mach:ident, $MTy:ident, { $([$pub:tt$(($krate:tt))*])* fn $name:ident($($arg:ident: $argty:ty),* $(,)*) $body:block }) => {
dispatch_light256!($mach, $MTy, {
$([$pub $(($krate))*])* fn $name($($arg: $argty),*) -> () $body
});
}
}

File diff suppressed because it is too large Load Diff