RPM build fix (reverted CI changes which will need to be un-reverted or made conditional) and vendor Rust dependencies to make builds much faster in any CI system.

This commit is contained in:
Adam Ierymenko
2022-06-08 07:32:16 -04:00
parent 373ca30269
commit d5ca4e5f52
12611 changed files with 2898014 additions and 284 deletions

View File

@@ -0,0 +1,237 @@
use std::fmt;
use std::iter::FusedIterator;
use crate::size_hint;
pub struct CoalesceBy<I, F, T>
where
I: Iterator,
{
iter: I,
last: Option<T>,
f: F,
}
impl<I: Clone, F: Clone, T: Clone> Clone for CoalesceBy<I, F, T>
where
I: Iterator,
{
clone_fields!(last, iter, f);
}
impl<I, F, T> fmt::Debug for CoalesceBy<I, F, T>
where
I: Iterator + fmt::Debug,
T: fmt::Debug,
{
debug_fmt_fields!(CoalesceBy, iter);
}
pub trait CoalescePredicate<Item, T> {
fn coalesce_pair(&mut self, t: T, item: Item) -> Result<T, (T, T)>;
}
impl<I, F, T> Iterator for CoalesceBy<I, F, T>
where
I: Iterator,
F: CoalescePredicate<I::Item, T>,
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
// this fuses the iterator
let last = self.last.take()?;
let self_last = &mut self.last;
let self_f = &mut self.f;
Some(
self.iter
.try_fold(last, |last, next| match self_f.coalesce_pair(last, next) {
Ok(joined) => Ok(joined),
Err((last_, next_)) => {
*self_last = Some(next_);
Err(last_)
}
})
.unwrap_or_else(|x| x),
)
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (low, hi) = size_hint::add_scalar(self.iter.size_hint(), self.last.is_some() as usize);
((low > 0) as usize, hi)
}
fn fold<Acc, FnAcc>(self, acc: Acc, mut fn_acc: FnAcc) -> Acc
where
FnAcc: FnMut(Acc, Self::Item) -> Acc,
{
if let Some(last) = self.last {
let mut f = self.f;
let (last, acc) = self.iter.fold((last, acc), |(last, acc), elt| {
match f.coalesce_pair(last, elt) {
Ok(joined) => (joined, acc),
Err((last_, next_)) => (next_, fn_acc(acc, last_)),
}
});
fn_acc(acc, last)
} else {
acc
}
}
}
impl<I: Iterator, F: CoalescePredicate<I::Item, T>, T> FusedIterator for CoalesceBy<I, F, T> {}
/// An iterator adaptor that may join together adjacent elements.
///
/// See [`.coalesce()`](crate::Itertools::coalesce) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub type Coalesce<I, F> = CoalesceBy<I, F, <I as Iterator>::Item>;
impl<F, Item, T> CoalescePredicate<Item, T> for F
where
F: FnMut(T, Item) -> Result<T, (T, T)>,
{
fn coalesce_pair(&mut self, t: T, item: Item) -> Result<T, (T, T)> {
self(t, item)
}
}
/// Create a new `Coalesce`.
pub fn coalesce<I, F>(mut iter: I, f: F) -> Coalesce<I, F>
where
I: Iterator,
{
Coalesce {
last: iter.next(),
iter,
f,
}
}
/// An iterator adaptor that removes repeated duplicates, determining equality using a comparison function.
///
/// See [`.dedup_by()`](crate::Itertools::dedup_by) or [`.dedup()`](crate::Itertools::dedup) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub type DedupBy<I, Pred> = CoalesceBy<I, DedupPred2CoalescePred<Pred>, <I as Iterator>::Item>;
#[derive(Clone)]
pub struct DedupPred2CoalescePred<DP>(DP);
impl<DP> fmt::Debug for DedupPred2CoalescePred<DP> {
debug_fmt_fields!(DedupPred2CoalescePred,);
}
pub trait DedupPredicate<T> {
// TODO replace by Fn(&T, &T)->bool once Rust supports it
fn dedup_pair(&mut self, a: &T, b: &T) -> bool;
}
impl<DP, T> CoalescePredicate<T, T> for DedupPred2CoalescePred<DP>
where
DP: DedupPredicate<T>,
{
fn coalesce_pair(&mut self, t: T, item: T) -> Result<T, (T, T)> {
if self.0.dedup_pair(&t, &item) {
Ok(t)
} else {
Err((t, item))
}
}
}
#[derive(Clone, Debug)]
pub struct DedupEq;
impl<T: PartialEq> DedupPredicate<T> for DedupEq {
fn dedup_pair(&mut self, a: &T, b: &T) -> bool {
a == b
}
}
impl<T, F: FnMut(&T, &T) -> bool> DedupPredicate<T> for F {
fn dedup_pair(&mut self, a: &T, b: &T) -> bool {
self(a, b)
}
}
/// Create a new `DedupBy`.
pub fn dedup_by<I, Pred>(mut iter: I, dedup_pred: Pred) -> DedupBy<I, Pred>
where
I: Iterator,
{
DedupBy {
last: iter.next(),
iter,
f: DedupPred2CoalescePred(dedup_pred),
}
}
/// An iterator adaptor that removes repeated duplicates.
///
/// See [`.dedup()`](crate::Itertools::dedup) for more information.
pub type Dedup<I> = DedupBy<I, DedupEq>;
/// Create a new `Dedup`.
pub fn dedup<I>(iter: I) -> Dedup<I>
where
I: Iterator,
{
dedup_by(iter, DedupEq)
}
/// An iterator adaptor that removes repeated duplicates, while keeping a count of how many
/// repeated elements were present. This will determine equality using a comparison function.
///
/// See [`.dedup_by_with_count()`](crate::Itertools::dedup_by_with_count) or
/// [`.dedup_with_count()`](crate::Itertools::dedup_with_count) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub type DedupByWithCount<I, Pred> =
CoalesceBy<I, DedupPredWithCount2CoalescePred<Pred>, (usize, <I as Iterator>::Item)>;
#[derive(Clone, Debug)]
pub struct DedupPredWithCount2CoalescePred<DP>(DP);
impl<DP, T> CoalescePredicate<T, (usize, T)> for DedupPredWithCount2CoalescePred<DP>
where
DP: DedupPredicate<T>,
{
fn coalesce_pair(
&mut self,
(c, t): (usize, T),
item: T,
) -> Result<(usize, T), ((usize, T), (usize, T))> {
if self.0.dedup_pair(&t, &item) {
Ok((c + 1, t))
} else {
Err(((c, t), (1, item)))
}
}
}
/// An iterator adaptor that removes repeated duplicates, while keeping a count of how many
/// repeated elements were present.
///
/// See [`.dedup_with_count()`](crate::Itertools::dedup_with_count) for more information.
pub type DedupWithCount<I> = DedupByWithCount<I, DedupEq>;
/// Create a new `DedupByWithCount`.
pub fn dedup_by_with_count<I, Pred>(mut iter: I, dedup_pred: Pred) -> DedupByWithCount<I, Pred>
where
I: Iterator,
{
DedupByWithCount {
last: iter.next().map(|v| (1, v)),
iter,
f: DedupPredWithCount2CoalescePred(dedup_pred),
}
}
/// Create a new `DedupWithCount`.
pub fn dedup_with_count<I>(iter: I) -> DedupWithCount<I>
where
I: Iterator,
{
dedup_by_with_count(iter, DedupEq)
}

View File

@@ -0,0 +1,124 @@
use std::iter::FromIterator;
use std::marker::PhantomData;
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct MapSpecialCase<I, F> {
iter: I,
f: F,
}
pub trait MapSpecialCaseFn<T> {
type Out;
fn call(&mut self, t: T) -> Self::Out;
}
impl<I, R> Iterator for MapSpecialCase<I, R>
where
I: Iterator,
R: MapSpecialCaseFn<I::Item>,
{
type Item = R::Out;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|i| self.f.call(i))
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
fn fold<Acc, Fold>(self, init: Acc, mut fold_f: Fold) -> Acc
where
Fold: FnMut(Acc, Self::Item) -> Acc,
{
let mut f = self.f;
self.iter.fold(init, move |acc, v| fold_f(acc, f.call(v)))
}
fn collect<C>(self) -> C
where
C: FromIterator<Self::Item>,
{
let mut f = self.f;
self.iter.map(move |v| f.call(v)).collect()
}
}
impl<I, R> DoubleEndedIterator for MapSpecialCase<I, R>
where
I: DoubleEndedIterator,
R: MapSpecialCaseFn<I::Item>,
{
fn next_back(&mut self) -> Option<Self::Item> {
self.iter.next_back().map(|i| self.f.call(i))
}
}
impl<I, R> ExactSizeIterator for MapSpecialCase<I, R>
where
I: ExactSizeIterator,
R: MapSpecialCaseFn<I::Item>,
{
}
/// An iterator adapter to apply a transformation within a nested `Result::Ok`.
///
/// See [`.map_ok()`](crate::Itertools::map_ok) for more information.
pub type MapOk<I, F> = MapSpecialCase<I, MapSpecialCaseFnOk<F>>;
/// See [`MapOk`].
#[deprecated(note = "Use MapOk instead", since = "0.10.0")]
pub type MapResults<I, F> = MapOk<I, F>;
impl<F, T, U, E> MapSpecialCaseFn<Result<T, E>> for MapSpecialCaseFnOk<F>
where
F: FnMut(T) -> U,
{
type Out = Result<U, E>;
fn call(&mut self, t: Result<T, E>) -> Self::Out {
t.map(|v| self.0(v))
}
}
#[derive(Clone)]
pub struct MapSpecialCaseFnOk<F>(F);
impl<F> std::fmt::Debug for MapSpecialCaseFnOk<F> {
debug_fmt_fields!(MapSpecialCaseFnOk,);
}
/// Create a new `MapOk` iterator.
pub fn map_ok<I, F, T, U, E>(iter: I, f: F) -> MapOk<I, F>
where
I: Iterator<Item = Result<T, E>>,
F: FnMut(T) -> U,
{
MapSpecialCase {
iter,
f: MapSpecialCaseFnOk(f),
}
}
/// An iterator adapter to apply `Into` conversion to each element.
///
/// See [`.map_into()`](crate::Itertools::map_into) for more information.
pub type MapInto<I, R> = MapSpecialCase<I, MapSpecialCaseFnInto<R>>;
impl<T: Into<U>, U> MapSpecialCaseFn<T> for MapSpecialCaseFnInto<U> {
type Out = U;
fn call(&mut self, t: T) -> Self::Out {
t.into()
}
}
#[derive(Clone, Debug)]
pub struct MapSpecialCaseFnInto<U>(PhantomData<U>);
/// Create a new [`MapInto`] iterator.
pub fn map_into<I, R>(iter: I) -> MapInto<I, R> {
MapSpecialCase {
iter,
f: MapSpecialCaseFnInto(PhantomData),
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,230 @@
#![cfg(feature = "use_alloc")]
use crate::size_hint;
use crate::Itertools;
use alloc::vec::Vec;
#[derive(Clone)]
/// An iterator adaptor that iterates over the cartesian product of
/// multiple iterators of type `I`.
///
/// An iterator element type is `Vec<I>`.
///
/// See [`.multi_cartesian_product()`](crate::Itertools::multi_cartesian_product)
/// for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct MultiProduct<I>(Vec<MultiProductIter<I>>)
where I: Iterator + Clone,
I::Item: Clone;
impl<I> std::fmt::Debug for MultiProduct<I>
where
I: Iterator + Clone + std::fmt::Debug,
I::Item: Clone + std::fmt::Debug,
{
debug_fmt_fields!(CoalesceBy, 0);
}
/// Create a new cartesian product iterator over an arbitrary number
/// of iterators of the same type.
///
/// Iterator element is of type `Vec<H::Item::Item>`.
pub fn multi_cartesian_product<H>(iters: H) -> MultiProduct<<H::Item as IntoIterator>::IntoIter>
where H: Iterator,
H::Item: IntoIterator,
<H::Item as IntoIterator>::IntoIter: Clone,
<H::Item as IntoIterator>::Item: Clone
{
MultiProduct(iters.map(|i| MultiProductIter::new(i.into_iter())).collect())
}
#[derive(Clone, Debug)]
/// Holds the state of a single iterator within a MultiProduct.
struct MultiProductIter<I>
where I: Iterator + Clone,
I::Item: Clone
{
cur: Option<I::Item>,
iter: I,
iter_orig: I,
}
/// Holds the current state during an iteration of a MultiProduct.
#[derive(Debug)]
enum MultiProductIterState {
StartOfIter,
MidIter { on_first_iter: bool },
}
impl<I> MultiProduct<I>
where I: Iterator + Clone,
I::Item: Clone
{
/// Iterates the rightmost iterator, then recursively iterates iterators
/// to the left if necessary.
///
/// Returns true if the iteration succeeded, else false.
fn iterate_last(
multi_iters: &mut [MultiProductIter<I>],
mut state: MultiProductIterState
) -> bool {
use self::MultiProductIterState::*;
if let Some((last, rest)) = multi_iters.split_last_mut() {
let on_first_iter = match state {
StartOfIter => {
let on_first_iter = !last.in_progress();
state = MidIter { on_first_iter };
on_first_iter
},
MidIter { on_first_iter } => on_first_iter
};
if !on_first_iter {
last.iterate();
}
if last.in_progress() {
true
} else if MultiProduct::iterate_last(rest, state) {
last.reset();
last.iterate();
// If iterator is None twice consecutively, then iterator is
// empty; whole product is empty.
last.in_progress()
} else {
false
}
} else {
// Reached end of iterator list. On initialisation, return true.
// At end of iteration (final iterator finishes), finish.
match state {
StartOfIter => false,
MidIter { on_first_iter } => on_first_iter
}
}
}
/// Returns the unwrapped value of the next iteration.
fn curr_iterator(&self) -> Vec<I::Item> {
self.0.iter().map(|multi_iter| {
multi_iter.cur.clone().unwrap()
}).collect()
}
/// Returns true if iteration has started and has not yet finished; false
/// otherwise.
fn in_progress(&self) -> bool {
if let Some(last) = self.0.last() {
last.in_progress()
} else {
false
}
}
}
impl<I> MultiProductIter<I>
where I: Iterator + Clone,
I::Item: Clone
{
fn new(iter: I) -> Self {
MultiProductIter {
cur: None,
iter: iter.clone(),
iter_orig: iter
}
}
/// Iterate the managed iterator.
fn iterate(&mut self) {
self.cur = self.iter.next();
}
/// Reset the managed iterator.
fn reset(&mut self) {
self.iter = self.iter_orig.clone();
}
/// Returns true if the current iterator has been started and has not yet
/// finished; false otherwise.
fn in_progress(&self) -> bool {
self.cur.is_some()
}
}
impl<I> Iterator for MultiProduct<I>
where I: Iterator + Clone,
I::Item: Clone
{
type Item = Vec<I::Item>;
fn next(&mut self) -> Option<Self::Item> {
if MultiProduct::iterate_last(
&mut self.0,
MultiProductIterState::StartOfIter
) {
Some(self.curr_iterator())
} else {
None
}
}
fn count(self) -> usize {
if self.0.is_empty() {
return 0;
}
if !self.in_progress() {
return self.0.into_iter().fold(1, |acc, multi_iter| {
acc * multi_iter.iter.count()
});
}
self.0.into_iter().fold(
0,
|acc, MultiProductIter { iter, iter_orig, cur: _ }| {
let total_count = iter_orig.count();
let cur_count = iter.count();
acc * total_count + cur_count
}
)
}
fn size_hint(&self) -> (usize, Option<usize>) {
// Not ExactSizeIterator because size may be larger than usize
if self.0.is_empty() {
return (0, Some(0));
}
if !self.in_progress() {
return self.0.iter().fold((1, Some(1)), |acc, multi_iter| {
size_hint::mul(acc, multi_iter.iter.size_hint())
});
}
self.0.iter().fold(
(0, Some(0)),
|acc, &MultiProductIter { ref iter, ref iter_orig, cur: _ }| {
let cur_size = iter.size_hint();
let total_size = iter_orig.size_hint();
size_hint::add(size_hint::mul(acc, total_size), cur_size)
}
)
}
fn last(self) -> Option<Self::Item> {
let iter_count = self.0.len();
let lasts: Self::Item = self.0.into_iter()
.map(|multi_iter| multi_iter.iter.last())
.while_some()
.collect();
if lasts.len() == iter_count {
Some(lasts)
} else {
None
}
}
}

View File

@@ -0,0 +1,128 @@
use std::fmt;
use std::iter::FusedIterator;
use super::lazy_buffer::LazyBuffer;
use alloc::vec::Vec;
/// An iterator to iterate through all the `k`-length combinations in an iterator.
///
/// See [`.combinations()`](crate::Itertools::combinations) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Combinations<I: Iterator> {
indices: Vec<usize>,
pool: LazyBuffer<I>,
first: bool,
}
impl<I> Clone for Combinations<I>
where I: Clone + Iterator,
I::Item: Clone,
{
clone_fields!(indices, pool, first);
}
impl<I> fmt::Debug for Combinations<I>
where I: Iterator + fmt::Debug,
I::Item: fmt::Debug,
{
debug_fmt_fields!(Combinations, indices, pool, first);
}
/// Create a new `Combinations` from a clonable iterator.
pub fn combinations<I>(iter: I, k: usize) -> Combinations<I>
where I: Iterator
{
let mut pool = LazyBuffer::new(iter);
pool.prefill(k);
Combinations {
indices: (0..k).collect(),
pool,
first: true,
}
}
impl<I: Iterator> Combinations<I> {
/// Returns the length of a combination produced by this iterator.
#[inline]
pub fn k(&self) -> usize { self.indices.len() }
/// Returns the (current) length of the pool from which combination elements are
/// selected. This value can change between invocations of [`next`](Combinations::next).
#[inline]
pub fn n(&self) -> usize { self.pool.len() }
/// Returns a reference to the source iterator.
#[inline]
pub(crate) fn src(&self) -> &I { &self.pool.it }
/// Resets this `Combinations` back to an initial state for combinations of length
/// `k` over the same pool data source. If `k` is larger than the current length
/// of the data pool an attempt is made to prefill the pool so that it holds `k`
/// elements.
pub(crate) fn reset(&mut self, k: usize) {
self.first = true;
if k < self.indices.len() {
self.indices.truncate(k);
for i in 0..k {
self.indices[i] = i;
}
} else {
for i in 0..self.indices.len() {
self.indices[i] = i;
}
self.indices.extend(self.indices.len()..k);
self.pool.prefill(k);
}
}
}
impl<I> Iterator for Combinations<I>
where I: Iterator,
I::Item: Clone
{
type Item = Vec<I::Item>;
fn next(&mut self) -> Option<Self::Item> {
if self.first {
if self.k() > self.n() {
return None;
}
self.first = false;
} else if self.indices.is_empty() {
return None;
} else {
// Scan from the end, looking for an index to increment
let mut i: usize = self.indices.len() - 1;
// Check if we need to consume more from the iterator
if self.indices[i] == self.pool.len() - 1 {
self.pool.get_next(); // may change pool size
}
while self.indices[i] == i + self.pool.len() - self.indices.len() {
if i > 0 {
i -= 1;
} else {
// Reached the last combination
return None;
}
}
// Increment index, and reset the ones to its right
self.indices[i] += 1;
for j in i+1..self.indices.len() {
self.indices[j] = self.indices[j - 1] + 1;
}
}
// Create result vector based on the indices
Some(self.indices.iter().map(|i| self.pool[*i].clone()).collect())
}
}
impl<I> FusedIterator for Combinations<I>
where I: Iterator,
I::Item: Clone
{}

View File

@@ -0,0 +1,109 @@
use alloc::vec::Vec;
use std::fmt;
use std::iter::FusedIterator;
use super::lazy_buffer::LazyBuffer;
/// An iterator to iterate through all the `n`-length combinations in an iterator, with replacement.
///
/// See [`.combinations_with_replacement()`](crate::Itertools::combinations_with_replacement)
/// for more information.
#[derive(Clone)]
pub struct CombinationsWithReplacement<I>
where
I: Iterator,
I::Item: Clone,
{
indices: Vec<usize>,
pool: LazyBuffer<I>,
first: bool,
}
impl<I> fmt::Debug for CombinationsWithReplacement<I>
where
I: Iterator + fmt::Debug,
I::Item: fmt::Debug + Clone,
{
debug_fmt_fields!(Combinations, indices, pool, first);
}
impl<I> CombinationsWithReplacement<I>
where
I: Iterator,
I::Item: Clone,
{
/// Map the current mask over the pool to get an output combination
fn current(&self) -> Vec<I::Item> {
self.indices.iter().map(|i| self.pool[*i].clone()).collect()
}
}
/// Create a new `CombinationsWithReplacement` from a clonable iterator.
pub fn combinations_with_replacement<I>(iter: I, k: usize) -> CombinationsWithReplacement<I>
where
I: Iterator,
I::Item: Clone,
{
let indices: Vec<usize> = alloc::vec![0; k];
let pool: LazyBuffer<I> = LazyBuffer::new(iter);
CombinationsWithReplacement {
indices,
pool,
first: true,
}
}
impl<I> Iterator for CombinationsWithReplacement<I>
where
I: Iterator,
I::Item: Clone,
{
type Item = Vec<I::Item>;
fn next(&mut self) -> Option<Self::Item> {
// If this is the first iteration, return early
if self.first {
// In empty edge cases, stop iterating immediately
return if self.indices.len() != 0 && !self.pool.get_next() {
None
// Otherwise, yield the initial state
} else {
self.first = false;
Some(self.current())
};
}
// Check if we need to consume more from the iterator
// This will run while we increment our first index digit
self.pool.get_next();
// Work out where we need to update our indices
let mut increment: Option<(usize, usize)> = None;
for (i, indices_int) in self.indices.iter().enumerate().rev() {
if *indices_int < self.pool.len()-1 {
increment = Some((i, indices_int + 1));
break;
}
}
match increment {
// If we can update the indices further
Some((increment_from, increment_value)) => {
// We need to update the rightmost non-max value
// and all those to the right
for indices_index in increment_from..self.indices.len() {
self.indices[indices_index] = increment_value
}
Some(self.current())
}
// Otherwise, we're done
None => None,
}
}
}
impl<I> FusedIterator for CombinationsWithReplacement<I>
where
I: Iterator,
I::Item: Clone,
{}

View File

@@ -0,0 +1,22 @@
use crate::Itertools;
/// Combine all an iterator's elements into one element by using [`Extend`].
///
/// [`IntoIterator`]-enabled version of [`Itertools::concat`].
///
/// This combinator will extend the first item with each of the rest of the
/// items of the iterator. If the iterator is empty, the default value of
/// `I::Item` is returned.
///
/// ```rust
/// use itertools::concat;
///
/// let input = vec![vec![1], vec![2, 3], vec![4, 5, 6]];
/// assert_eq!(concat(input), vec![1, 2, 3, 4, 5, 6]);
/// ```
pub fn concat<I>(iterable: I) -> I::Item
where I: IntoIterator,
I::Item: Extend<<<I as IntoIterator>::Item as IntoIterator>::Item> + IntoIterator + Default
{
iterable.into_iter().fold1(|mut a, b| { a.extend(b); a }).unwrap_or_else(<_>::default)
}

View File

@@ -0,0 +1,64 @@
macro_rules! impl_cons_iter(
($_A:ident, $_B:ident, ) => (); // stop
($A:ident, $($B:ident,)*) => (
impl_cons_iter!($($B,)*);
#[allow(non_snake_case)]
impl<X, Iter, $($B),*> Iterator for ConsTuples<Iter, (($($B,)*), X)>
where Iter: Iterator<Item = (($($B,)*), X)>,
{
type Item = ($($B,)* X, );
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|(($($B,)*), x)| ($($B,)* x, ))
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
fn fold<Acc, Fold>(self, accum: Acc, mut f: Fold) -> Acc
where Fold: FnMut(Acc, Self::Item) -> Acc,
{
self.iter.fold(accum, move |acc, (($($B,)*), x)| f(acc, ($($B,)* x, )))
}
}
#[allow(non_snake_case)]
impl<X, Iter, $($B),*> DoubleEndedIterator for ConsTuples<Iter, (($($B,)*), X)>
where Iter: DoubleEndedIterator<Item = (($($B,)*), X)>,
{
fn next_back(&mut self) -> Option<Self::Item> {
self.iter.next().map(|(($($B,)*), x)| ($($B,)* x, ))
}
}
);
);
impl_cons_iter!(A, B, C, D, E, F, G, H, I, J, K, L,);
/// An iterator that maps an iterator of tuples like
/// `((A, B), C)` to an iterator of `(A, B, C)`.
///
/// Used by the `iproduct!()` macro.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[derive(Debug)]
pub struct ConsTuples<I, J>
where I: Iterator<Item=J>,
{
iter: I,
}
impl<I, J> Clone for ConsTuples<I, J>
where I: Clone + Iterator<Item=J>,
{
clone_fields!(iter);
}
/// Create an iterator that maps for example iterators of
/// `((A, B), C)` to `(A, B, C)`.
pub fn cons_tuples<I, J>(iterable: I) -> ConsTuples<I::IntoIter, J>
where I: IntoIterator<Item=J>
{
ConsTuples { iter: iterable.into_iter() }
}

61
zeroidc/vendor/itertools/src/diff.rs vendored Normal file
View File

@@ -0,0 +1,61 @@
//! "Diff"ing iterators for caching elements to sequential collections without requiring the new
//! elements' iterator to be `Clone`.
//!
//! - [`Diff`] (produced by the [`diff_with`] function)
//! describes the difference between two non-`Clone` iterators `I` and `J` after breaking ASAP from
//! a lock-step comparison.
use crate::free::put_back;
use crate::structs::PutBack;
/// A type returned by the [`diff_with`] function.
///
/// `Diff` represents the way in which the elements yielded by the iterator `I` differ to some
/// iterator `J`.
pub enum Diff<I, J>
where I: Iterator,
J: Iterator
{
/// The index of the first non-matching element along with both iterator's remaining elements
/// starting with the first mis-match.
FirstMismatch(usize, PutBack<I>, PutBack<J>),
/// The total number of elements that were in `J` along with the remaining elements of `I`.
Shorter(usize, PutBack<I>),
/// The total number of elements that were in `I` along with the remaining elements of `J`.
Longer(usize, PutBack<J>),
}
/// Compares every element yielded by both `i` and `j` with the given function in lock-step and
/// returns a [`Diff`] which describes how `j` differs from `i`.
///
/// If the number of elements yielded by `j` is less than the number of elements yielded by `i`,
/// the number of `j` elements yielded will be returned along with `i`'s remaining elements as
/// `Diff::Shorter`.
///
/// If the two elements of a step differ, the index of those elements along with the remaining
/// elements of both `i` and `j` are returned as `Diff::FirstMismatch`.
///
/// If `i` becomes exhausted before `j` becomes exhausted, the number of elements in `i` along with
/// the remaining `j` elements will be returned as `Diff::Longer`.
pub fn diff_with<I, J, F>(i: I, j: J, is_equal: F)
-> Option<Diff<I::IntoIter, J::IntoIter>>
where I: IntoIterator,
J: IntoIterator,
F: Fn(&I::Item, &J::Item) -> bool
{
let mut i = i.into_iter();
let mut j = j.into_iter();
let mut idx = 0;
while let Some(i_elem) = i.next() {
match j.next() {
None => return Some(Diff::Shorter(idx, put_back(i).with_value(i_elem))),
Some(j_elem) => if !is_equal(&i_elem, &j_elem) {
let remaining_i = put_back(i).with_value(i_elem);
let remaining_j = put_back(j).with_value(j_elem);
return Some(Diff::FirstMismatch(idx, remaining_i, remaining_j));
},
}
idx += 1;
}
j.next().map(|j_elem| Diff::Longer(idx, put_back(j).with_value(j_elem)))
}

View File

@@ -0,0 +1,217 @@
use std::hash::Hash;
mod private {
use std::collections::HashMap;
use std::hash::Hash;
use std::fmt;
#[derive(Clone)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct DuplicatesBy<I: Iterator, Key, F> {
pub(crate) iter: I,
pub(crate) meta: Meta<Key, F>,
}
impl<I, V, F> fmt::Debug for DuplicatesBy<I, V, F>
where
I: Iterator + fmt::Debug,
V: fmt::Debug + Hash + Eq,
{
debug_fmt_fields!(DuplicatesBy, iter, meta.used);
}
impl<I: Iterator, Key: Eq + Hash, F> DuplicatesBy<I, Key, F> {
pub(crate) fn new(iter: I, key_method: F) -> Self {
DuplicatesBy {
iter,
meta: Meta {
used: HashMap::new(),
pending: 0,
key_method,
},
}
}
}
#[derive(Clone)]
pub struct Meta<Key, F> {
used: HashMap<Key, bool>,
pending: usize,
key_method: F,
}
impl<Key, F> Meta<Key, F>
where
Key: Eq + Hash,
{
/// Takes an item and returns it back to the caller if it's the second time we see it.
/// Otherwise the item is consumed and None is returned
#[inline(always)]
fn filter<I>(&mut self, item: I) -> Option<I>
where
F: KeyMethod<Key, I>,
{
let kv = self.key_method.make(item);
match self.used.get_mut(kv.key_ref()) {
None => {
self.used.insert(kv.key(), false);
self.pending += 1;
None
}
Some(true) => None,
Some(produced) => {
*produced = true;
self.pending -= 1;
Some(kv.value())
}
}
}
}
impl<I, Key, F> Iterator for DuplicatesBy<I, Key, F>
where
I: Iterator,
Key: Eq + Hash,
F: KeyMethod<Key, I::Item>,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
let DuplicatesBy { iter, meta } = self;
iter.find_map(|v| meta.filter(v))
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (_, hi) = self.iter.size_hint();
let hi = hi.map(|hi| {
if hi <= self.meta.pending {
// fewer or equally many iter-remaining elements than pending elements
// => at most, each iter-remaining element is matched
hi
} else {
// fewer pending elements than iter-remaining elements
// => at most:
// * each pending element is matched
// * the other iter-remaining elements come in pairs
self.meta.pending + (hi - self.meta.pending) / 2
}
});
// The lower bound is always 0 since we might only get unique items from now on
(0, hi)
}
}
impl<I, Key, F> DoubleEndedIterator for DuplicatesBy<I, Key, F>
where
I: DoubleEndedIterator,
Key: Eq + Hash,
F: KeyMethod<Key, I::Item>,
{
fn next_back(&mut self) -> Option<Self::Item> {
let DuplicatesBy { iter, meta } = self;
iter.rev().find_map(|v| meta.filter(v))
}
}
/// A keying method for use with `DuplicatesBy`
pub trait KeyMethod<K, V> {
type Container: KeyXorValue<K, V>;
fn make(&mut self, value: V) -> Self::Container;
}
/// Apply the identity function to elements before checking them for equality.
#[derive(Debug)]
pub struct ById;
impl<V> KeyMethod<V, V> for ById {
type Container = JustValue<V>;
fn make(&mut self, v: V) -> Self::Container {
JustValue(v)
}
}
/// Apply a user-supplied function to elements before checking them for equality.
pub struct ByFn<F>(pub(crate) F);
impl<F> fmt::Debug for ByFn<F> {
debug_fmt_fields!(ByFn,);
}
impl<K, V, F> KeyMethod<K, V> for ByFn<F>
where
F: FnMut(&V) -> K,
{
type Container = KeyValue<K, V>;
fn make(&mut self, v: V) -> Self::Container {
KeyValue((self.0)(&v), v)
}
}
// Implementors of this trait can hold onto a key and a value but only give access to one of them
// at a time. This allows the key and the value to be the same value internally
pub trait KeyXorValue<K, V> {
fn key_ref(&self) -> &K;
fn key(self) -> K;
fn value(self) -> V;
}
#[derive(Debug)]
pub struct KeyValue<K, V>(K, V);
impl<K, V> KeyXorValue<K, V> for KeyValue<K, V> {
fn key_ref(&self) -> &K {
&self.0
}
fn key(self) -> K {
self.0
}
fn value(self) -> V {
self.1
}
}
#[derive(Debug)]
pub struct JustValue<V>(V);
impl<V> KeyXorValue<V, V> for JustValue<V> {
fn key_ref(&self) -> &V {
&self.0
}
fn key(self) -> V {
self.0
}
fn value(self) -> V {
self.0
}
}
}
/// An iterator adapter to filter for duplicate elements.
///
/// See [`.duplicates_by()`](crate::Itertools::duplicates_by) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub type DuplicatesBy<I, V, F> = private::DuplicatesBy<I, V, private::ByFn<F>>;
/// Create a new `DuplicatesBy` iterator.
pub fn duplicates_by<I, Key, F>(iter: I, f: F) -> DuplicatesBy<I, Key, F>
where
Key: Eq + Hash,
F: FnMut(&I::Item) -> Key,
I: Iterator,
{
DuplicatesBy::new(iter, private::ByFn(f))
}
/// An iterator adapter to filter out duplicate elements.
///
/// See [`.duplicates()`](crate::Itertools::duplicates) for more information.
pub type Duplicates<I> = private::DuplicatesBy<I, <I as Iterator>::Item, private::ById>;
/// Create a new `Duplicates` iterator.
pub fn duplicates<I>(iter: I) -> Duplicates<I>
where
I: Iterator,
I::Item: Eq + Hash,
{
Duplicates::new(iter, private::ById)
}

View File

@@ -0,0 +1,205 @@
use crate::EitherOrBoth::*;
use either::Either;
/// Value that either holds a single A or B, or both.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum EitherOrBoth<A, B> {
/// Both values are present.
Both(A, B),
/// Only the left value of type `A` is present.
Left(A),
/// Only the right value of type `B` is present.
Right(B),
}
impl<A, B> EitherOrBoth<A, B> {
/// If `Left`, or `Both`, return true, otherwise, return false.
pub fn has_left(&self) -> bool {
self.as_ref().left().is_some()
}
/// If `Right`, or `Both`, return true, otherwise, return false.
pub fn has_right(&self) -> bool {
self.as_ref().right().is_some()
}
/// If Left, return true otherwise, return false.
/// Exclusive version of [`has_left`](EitherOrBoth::has_left).
pub fn is_left(&self) -> bool {
match *self {
Left(_) => true,
_ => false,
}
}
/// If Right, return true otherwise, return false.
/// Exclusive version of [`has_right`](EitherOrBoth::has_right).
pub fn is_right(&self) -> bool {
match *self {
Right(_) => true,
_ => false,
}
}
/// If Right, return true otherwise, return false.
/// Equivalent to `self.as_ref().both().is_some()`.
pub fn is_both(&self) -> bool {
self.as_ref().both().is_some()
}
/// If `Left`, or `Both`, return `Some` with the left value, otherwise, return `None`.
pub fn left(self) -> Option<A> {
match self {
Left(left) | Both(left, _) => Some(left),
_ => None,
}
}
/// If `Right`, or `Both`, return `Some` with the right value, otherwise, return `None`.
pub fn right(self) -> Option<B> {
match self {
Right(right) | Both(_, right) => Some(right),
_ => None,
}
}
/// If Both, return `Some` tuple containing left and right.
pub fn both(self) -> Option<(A, B)> {
match self {
Both(a, b) => Some((a, b)),
_ => None,
}
}
/// Converts from `&EitherOrBoth<A, B>` to `EitherOrBoth<&A, &B>`.
pub fn as_ref(&self) -> EitherOrBoth<&A, &B> {
match *self {
Left(ref left) => Left(left),
Right(ref right) => Right(right),
Both(ref left, ref right) => Both(left, right),
}
}
/// Converts from `&mut EitherOrBoth<A, B>` to `EitherOrBoth<&mut A, &mut B>`.
pub fn as_mut(&mut self) -> EitherOrBoth<&mut A, &mut B> {
match *self {
Left(ref mut left) => Left(left),
Right(ref mut right) => Right(right),
Both(ref mut left, ref mut right) => Both(left, right),
}
}
/// Convert `EitherOrBoth<A, B>` to `EitherOrBoth<B, A>`.
pub fn flip(self) -> EitherOrBoth<B, A> {
match self {
Left(a) => Right(a),
Right(b) => Left(b),
Both(a, b) => Both(b, a),
}
}
/// Apply the function `f` on the value `a` in `Left(a)` or `Both(a, b)` variants. If it is
/// present rewrapping the result in `self`'s original variant.
pub fn map_left<F, M>(self, f: F) -> EitherOrBoth<M, B>
where
F: FnOnce(A) -> M,
{
match self {
Both(a, b) => Both(f(a), b),
Left(a) => Left(f(a)),
Right(b) => Right(b),
}
}
/// Apply the function `f` on the value `b` in `Right(b)` or `Both(a, b)` variants.
/// If it is present rewrapping the result in `self`'s original variant.
pub fn map_right<F, M>(self, f: F) -> EitherOrBoth<A, M>
where
F: FnOnce(B) -> M,
{
match self {
Left(a) => Left(a),
Right(b) => Right(f(b)),
Both(a, b) => Both(a, f(b)),
}
}
/// Apply the functions `f` and `g` on the value `a` and `b` respectively;
/// found in `Left(a)`, `Right(b)`, or `Both(a, b)` variants.
/// The Result is rewrapped `self`'s original variant.
pub fn map_any<F, L, G, R>(self, f: F, g: G) -> EitherOrBoth<L, R>
where
F: FnOnce(A) -> L,
G: FnOnce(B) -> R,
{
match self {
Left(a) => Left(f(a)),
Right(b) => Right(g(b)),
Both(a, b) => Both(f(a), g(b)),
}
}
/// Apply the function `f` on the value `a` in `Left(a)` or `Both(a, _)` variants if it is
/// present.
pub fn left_and_then<F, L>(self, f: F) -> EitherOrBoth<L, B>
where
F: FnOnce(A) -> EitherOrBoth<L, B>,
{
match self {
Left(a) | Both(a, _) => f(a),
Right(b) => Right(b),
}
}
/// Apply the function `f` on the value `b`
/// in `Right(b)` or `Both(_, b)` variants if it is present.
pub fn right_and_then<F, R>(self, f: F) -> EitherOrBoth<A, R>
where
F: FnOnce(B) -> EitherOrBoth<A, R>,
{
match self {
Left(a) => Left(a),
Right(b) | Both(_, b) => f(b),
}
}
/// Returns a tuple consisting of the `l` and `r` in `Both(l, r)`, if present.
/// Otherwise, returns the wrapped value for the present element, and the [`default`](Default::default)
/// for the other.
pub fn or_default(self) -> (A, B)
where
A: Default,
B: Default,
{
match self {
EitherOrBoth::Left(l) => (l, B::default()),
EitherOrBoth::Right(r) => (A::default(), r),
EitherOrBoth::Both(l, r) => (l, r),
}
}
}
impl<T> EitherOrBoth<T, T> {
/// Return either value of left, right, or the product of `f` applied where `Both` are present.
pub fn reduce<F>(self, f: F) -> T
where
F: FnOnce(T, T) -> T,
{
match self {
Left(a) => a,
Right(b) => b,
Both(a, b) => f(a, b),
}
}
}
impl<A, B> Into<Option<Either<A, B>>> for EitherOrBoth<A, B> {
fn into(self) -> Option<Either<A, B>> {
match self {
EitherOrBoth::Left(l) => Some(Either::Left(l)),
EitherOrBoth::Right(r) => Some(Either::Right(r)),
_ => None,
}
}
}

View File

@@ -0,0 +1,110 @@
#[cfg(feature = "use_std")]
use std::error::Error;
use std::fmt::{Debug, Display, Formatter, Result as FmtResult};
use std::iter::ExactSizeIterator;
use either::Either;
use crate::size_hint;
/// Iterator returned for the error case of `IterTools::exactly_one()`
/// This iterator yields exactly the same elements as the input iterator.
///
/// During the execution of exactly_one the iterator must be mutated. This wrapper
/// effectively "restores" the state of the input iterator when it's handed back.
///
/// This is very similar to PutBackN except this iterator only supports 0-2 elements and does not
/// use a `Vec`.
#[derive(Clone)]
pub struct ExactlyOneError<I>
where
I: Iterator,
{
first_two: Option<Either<[I::Item; 2], I::Item>>,
inner: I,
}
impl<I> ExactlyOneError<I>
where
I: Iterator,
{
/// Creates a new `ExactlyOneErr` iterator.
pub(crate) fn new(first_two: Option<Either<[I::Item; 2], I::Item>>, inner: I) -> Self {
Self { first_two, inner }
}
fn additional_len(&self) -> usize {
match self.first_two {
Some(Either::Left(_)) => 2,
Some(Either::Right(_)) => 1,
None => 0,
}
}
}
impl<I> Iterator for ExactlyOneError<I>
where
I: Iterator,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
match self.first_two.take() {
Some(Either::Left([first, second])) => {
self.first_two = Some(Either::Right(second));
Some(first)
},
Some(Either::Right(second)) => {
Some(second)
}
None => {
self.inner.next()
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
size_hint::add_scalar(self.inner.size_hint(), self.additional_len())
}
}
impl<I> ExactSizeIterator for ExactlyOneError<I> where I: ExactSizeIterator {}
impl<I> Display for ExactlyOneError<I>
where I: Iterator,
{
fn fmt(&self, f: &mut Formatter) -> FmtResult {
let additional = self.additional_len();
if additional > 0 {
write!(f, "got at least 2 elements when exactly one was expected")
} else {
write!(f, "got zero elements when exactly one was expected")
}
}
}
impl<I> Debug for ExactlyOneError<I>
where I: Iterator + Debug,
I::Item: Debug,
{
fn fmt(&self, f: &mut Formatter) -> FmtResult {
match &self.first_two {
Some(Either::Left([first, second])) => {
write!(f, "ExactlyOneError[First: {:?}, Second: {:?}, RemainingIter: {:?}]", first, second, self.inner)
},
Some(Either::Right(second)) => {
write!(f, "ExactlyOneError[Second: {:?}, RemainingIter: {:?}]", second, self.inner)
}
None => {
write!(f, "ExactlyOneError[RemainingIter: {:?}]", self.inner)
}
}
}
}
#[cfg(feature = "use_std")]
impl<I> Error for ExactlyOneError<I> where I: Iterator + Debug, I::Item: Debug, {}

View File

@@ -0,0 +1,166 @@
use crate::size_hint;
use std::{
fmt,
iter::{DoubleEndedIterator, FusedIterator},
};
pub fn flatten_ok<I, T, E>(iter: I) -> FlattenOk<I, T, E>
where
I: Iterator<Item = Result<T, E>>,
T: IntoIterator,
{
FlattenOk {
iter,
inner_front: None,
inner_back: None,
}
}
/// An iterator adaptor that flattens `Result::Ok` values and
/// allows `Result::Err` values through unchanged.
///
/// See [`.flatten_ok()`](crate::Itertools::flatten_ok) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct FlattenOk<I, T, E>
where
I: Iterator<Item = Result<T, E>>,
T: IntoIterator,
{
iter: I,
inner_front: Option<T::IntoIter>,
inner_back: Option<T::IntoIter>,
}
impl<I, T, E> Iterator for FlattenOk<I, T, E>
where
I: Iterator<Item = Result<T, E>>,
T: IntoIterator,
{
type Item = Result<T::Item, E>;
fn next(&mut self) -> Option<Self::Item> {
loop {
// Handle the front inner iterator.
if let Some(inner) = &mut self.inner_front {
if let Some(item) = inner.next() {
return Some(Ok(item));
} else {
// This is necessary for the iterator to implement `FusedIterator`
// with only the orginal iterator being fused.
self.inner_front = None;
}
}
match self.iter.next() {
Some(Ok(ok)) => self.inner_front = Some(ok.into_iter()),
Some(Err(e)) => return Some(Err(e)),
None => {
// Handle the back inner iterator.
if let Some(inner) = &mut self.inner_back {
if let Some(item) = inner.next() {
return Some(Ok(item));
} else {
// This is necessary for the iterator to implement `FusedIterator`
// with only the orginal iterator being fused.
self.inner_back = None;
}
} else {
return None;
}
}
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let inner_hint = |inner: &Option<T::IntoIter>| {
inner
.as_ref()
.map(Iterator::size_hint)
.unwrap_or((0, Some(0)))
};
let inner_front = inner_hint(&self.inner_front);
let inner_back = inner_hint(&self.inner_back);
// The outer iterator `Ok` case could be (0, None) as we don't know its size_hint yet.
let outer = match self.iter.size_hint() {
(0, Some(0)) => (0, Some(0)),
_ => (0, None),
};
size_hint::add(size_hint::add(inner_front, inner_back), outer)
}
}
impl<I, T, E> DoubleEndedIterator for FlattenOk<I, T, E>
where
I: DoubleEndedIterator<Item = Result<T, E>>,
T: IntoIterator,
T::IntoIter: DoubleEndedIterator,
{
fn next_back(&mut self) -> Option<Self::Item> {
loop {
// Handle the back inner iterator.
if let Some(inner) = &mut self.inner_back {
if let Some(item) = inner.next_back() {
return Some(Ok(item));
} else {
// This is necessary for the iterator to implement `FusedIterator`
// with only the orginal iterator being fused.
self.inner_back = None;
}
}
match self.iter.next_back() {
Some(Ok(ok)) => self.inner_back = Some(ok.into_iter()),
Some(Err(e)) => return Some(Err(e)),
None => {
// Handle the front inner iterator.
if let Some(inner) = &mut self.inner_front {
if let Some(item) = inner.next_back() {
return Some(Ok(item));
} else {
// This is necessary for the iterator to implement `FusedIterator`
// with only the orginal iterator being fused.
self.inner_front = None;
}
} else {
return None;
}
}
}
}
}
}
impl<I, T, E> Clone for FlattenOk<I, T, E>
where
I: Iterator<Item = Result<T, E>> + Clone,
T: IntoIterator,
T::IntoIter: Clone,
{
#[inline]
clone_fields!(iter, inner_front, inner_back);
}
impl<I, T, E> fmt::Debug for FlattenOk<I, T, E>
where
I: Iterator<Item = Result<T, E>> + fmt::Debug,
T: IntoIterator,
T::IntoIter: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("FlattenOk")
.field("iter", &self.iter)
.field("inner_front", &self.inner_front)
.field("inner_back", &self.inner_back)
.finish()
}
}
/// Only the iterator being flattened needs to implement [`FusedIterator`].
impl<I, T, E> FusedIterator for FlattenOk<I, T, E>
where
I: FusedIterator<Item = Result<T, E>>,
T: IntoIterator,
{
}

113
zeroidc/vendor/itertools/src/format.rs vendored Normal file
View File

@@ -0,0 +1,113 @@
use std::fmt;
use std::cell::RefCell;
/// Format all iterator elements lazily, separated by `sep`.
///
/// The format value can only be formatted once, after that the iterator is
/// exhausted.
///
/// See [`.format_with()`](crate::Itertools::format_with) for more information.
#[derive(Clone)]
pub struct FormatWith<'a, I, F> {
sep: &'a str,
/// FormatWith uses interior mutability because Display::fmt takes &self.
inner: RefCell<Option<(I, F)>>,
}
/// Format all iterator elements lazily, separated by `sep`.
///
/// The format value can only be formatted once, after that the iterator is
/// exhausted.
///
/// See [`.format()`](crate::Itertools::format)
/// for more information.
#[derive(Clone)]
pub struct Format<'a, I> {
sep: &'a str,
/// Format uses interior mutability because Display::fmt takes &self.
inner: RefCell<Option<I>>,
}
pub fn new_format<I, F>(iter: I, separator: &str, f: F) -> FormatWith<'_, I, F>
where I: Iterator,
F: FnMut(I::Item, &mut dyn FnMut(&dyn fmt::Display) -> fmt::Result) -> fmt::Result
{
FormatWith {
sep: separator,
inner: RefCell::new(Some((iter, f))),
}
}
pub fn new_format_default<I>(iter: I, separator: &str) -> Format<'_, I>
where I: Iterator,
{
Format {
sep: separator,
inner: RefCell::new(Some(iter)),
}
}
impl<'a, I, F> fmt::Display for FormatWith<'a, I, F>
where I: Iterator,
F: FnMut(I::Item, &mut dyn FnMut(&dyn fmt::Display) -> fmt::Result) -> fmt::Result
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let (mut iter, mut format) = match self.inner.borrow_mut().take() {
Some(t) => t,
None => panic!("FormatWith: was already formatted once"),
};
if let Some(fst) = iter.next() {
format(fst, &mut |disp: &dyn fmt::Display| disp.fmt(f))?;
iter.try_for_each(|elt| {
if !self.sep.is_empty() {
f.write_str(self.sep)?;
}
format(elt, &mut |disp: &dyn fmt::Display| disp.fmt(f))
})?;
}
Ok(())
}
}
impl<'a, I> Format<'a, I>
where I: Iterator,
{
fn format<F>(&self, f: &mut fmt::Formatter, mut cb: F) -> fmt::Result
where F: FnMut(&I::Item, &mut fmt::Formatter) -> fmt::Result,
{
let mut iter = match self.inner.borrow_mut().take() {
Some(t) => t,
None => panic!("Format: was already formatted once"),
};
if let Some(fst) = iter.next() {
cb(&fst, f)?;
iter.try_for_each(|elt| {
if !self.sep.is_empty() {
f.write_str(self.sep)?;
}
cb(&elt, f)
})?;
}
Ok(())
}
}
macro_rules! impl_format {
($($fmt_trait:ident)*) => {
$(
impl<'a, I> fmt::$fmt_trait for Format<'a, I>
where I: Iterator,
I::Item: fmt::$fmt_trait,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.format(f, fmt::$fmt_trait::fmt)
}
}
)*
}
}
impl_format!{Display Debug
UpperExp LowerExp UpperHex LowerHex Octal Binary Pointer}

276
zeroidc/vendor/itertools/src/free.rs vendored Normal file
View File

@@ -0,0 +1,276 @@
//! Free functions that create iterator adaptors or call iterator methods.
//!
//! The benefit of free functions is that they accept any [`IntoIterator`] as
//! argument, so the resulting code may be easier to read.
#[cfg(feature = "use_alloc")]
use std::fmt::Display;
use std::iter::{self, Zip};
#[cfg(feature = "use_alloc")]
type VecIntoIter<T> = alloc::vec::IntoIter<T>;
#[cfg(feature = "use_alloc")]
use alloc::{
string::String,
};
use crate::Itertools;
use crate::intersperse::{Intersperse, IntersperseWith};
pub use crate::adaptors::{
interleave,
merge,
put_back,
};
#[cfg(feature = "use_alloc")]
pub use crate::put_back_n_impl::put_back_n;
#[cfg(feature = "use_alloc")]
pub use crate::multipeek_impl::multipeek;
#[cfg(feature = "use_alloc")]
pub use crate::peek_nth::peek_nth;
#[cfg(feature = "use_alloc")]
pub use crate::kmerge_impl::kmerge;
pub use crate::zip_eq_impl::zip_eq;
pub use crate::merge_join::merge_join_by;
#[cfg(feature = "use_alloc")]
pub use crate::rciter_impl::rciter;
/// Iterate `iterable` with a particular value inserted between each element.
///
/// [`IntoIterator`] enabled version of [`Iterator::intersperse`].
///
/// ```
/// use itertools::intersperse;
///
/// itertools::assert_equal(intersperse((0..3), 8), vec![0, 8, 1, 8, 2]);
/// ```
pub fn intersperse<I>(iterable: I, element: I::Item) -> Intersperse<I::IntoIter>
where I: IntoIterator,
<I as IntoIterator>::Item: Clone
{
Itertools::intersperse(iterable.into_iter(), element)
}
/// Iterate `iterable` with a particular value created by a function inserted
/// between each element.
///
/// [`IntoIterator`] enabled version of [`Iterator::intersperse_with`].
///
/// ```
/// use itertools::intersperse_with;
///
/// let mut i = 10;
/// itertools::assert_equal(intersperse_with((0..3), || { i -= 1; i }), vec![0, 9, 1, 8, 2]);
/// assert_eq!(i, 8);
/// ```
pub fn intersperse_with<I, F>(iterable: I, element: F) -> IntersperseWith<I::IntoIter, F>
where I: IntoIterator,
F: FnMut() -> I::Item
{
Itertools::intersperse_with(iterable.into_iter(), element)
}
/// Iterate `iterable` with a running index.
///
/// [`IntoIterator`] enabled version of [`Iterator::enumerate`].
///
/// ```
/// use itertools::enumerate;
///
/// for (i, elt) in enumerate(&[1, 2, 3]) {
/// /* loop body */
/// }
/// ```
pub fn enumerate<I>(iterable: I) -> iter::Enumerate<I::IntoIter>
where I: IntoIterator
{
iterable.into_iter().enumerate()
}
/// Iterate `iterable` in reverse.
///
/// [`IntoIterator`] enabled version of [`Iterator::rev`].
///
/// ```
/// use itertools::rev;
///
/// for elt in rev(&[1, 2, 3]) {
/// /* loop body */
/// }
/// ```
pub fn rev<I>(iterable: I) -> iter::Rev<I::IntoIter>
where I: IntoIterator,
I::IntoIter: DoubleEndedIterator
{
iterable.into_iter().rev()
}
/// Iterate `i` and `j` in lock step.
///
/// [`IntoIterator`] enabled version of [`Iterator::zip`].
///
/// ```
/// use itertools::zip;
///
/// let data = [1, 2, 3, 4, 5];
/// for (a, b) in zip(&data, &data[1..]) {
/// /* loop body */
/// }
/// ```
pub fn zip<I, J>(i: I, j: J) -> Zip<I::IntoIter, J::IntoIter>
where I: IntoIterator,
J: IntoIterator
{
i.into_iter().zip(j)
}
/// Create an iterator that first iterates `i` and then `j`.
///
/// [`IntoIterator`] enabled version of [`Iterator::chain`].
///
/// ```
/// use itertools::chain;
///
/// for elt in chain(&[1, 2, 3], &[4]) {
/// /* loop body */
/// }
/// ```
pub fn chain<I, J>(i: I, j: J) -> iter::Chain<<I as IntoIterator>::IntoIter, <J as IntoIterator>::IntoIter>
where I: IntoIterator,
J: IntoIterator<Item = I::Item>
{
i.into_iter().chain(j)
}
/// Create an iterator that clones each element from &T to T
///
/// [`IntoIterator`] enabled version of [`Iterator::cloned`].
///
/// ```
/// use itertools::cloned;
///
/// assert_eq!(cloned(b"abc").next(), Some(b'a'));
/// ```
pub fn cloned<'a, I, T: 'a>(iterable: I) -> iter::Cloned<I::IntoIter>
where I: IntoIterator<Item=&'a T>,
T: Clone,
{
iterable.into_iter().cloned()
}
/// Perform a fold operation over the iterable.
///
/// [`IntoIterator`] enabled version of [`Iterator::fold`].
///
/// ```
/// use itertools::fold;
///
/// assert_eq!(fold(&[1., 2., 3.], 0., |a, &b| f32::max(a, b)), 3.);
/// ```
pub fn fold<I, B, F>(iterable: I, init: B, f: F) -> B
where I: IntoIterator,
F: FnMut(B, I::Item) -> B
{
iterable.into_iter().fold(init, f)
}
/// Test whether the predicate holds for all elements in the iterable.
///
/// [`IntoIterator`] enabled version of [`Iterator::all`].
///
/// ```
/// use itertools::all;
///
/// assert!(all(&[1, 2, 3], |elt| *elt > 0));
/// ```
pub fn all<I, F>(iterable: I, f: F) -> bool
where I: IntoIterator,
F: FnMut(I::Item) -> bool
{
iterable.into_iter().all(f)
}
/// Test whether the predicate holds for any elements in the iterable.
///
/// [`IntoIterator`] enabled version of [`Iterator::any`].
///
/// ```
/// use itertools::any;
///
/// assert!(any(&[0, -1, 2], |elt| *elt > 0));
/// ```
pub fn any<I, F>(iterable: I, f: F) -> bool
where I: IntoIterator,
F: FnMut(I::Item) -> bool
{
iterable.into_iter().any(f)
}
/// Return the maximum value of the iterable.
///
/// [`IntoIterator`] enabled version of [`Iterator::max`].
///
/// ```
/// use itertools::max;
///
/// assert_eq!(max(0..10), Some(9));
/// ```
pub fn max<I>(iterable: I) -> Option<I::Item>
where I: IntoIterator,
I::Item: Ord
{
iterable.into_iter().max()
}
/// Return the minimum value of the iterable.
///
/// [`IntoIterator`] enabled version of [`Iterator::min`].
///
/// ```
/// use itertools::min;
///
/// assert_eq!(min(0..10), Some(0));
/// ```
pub fn min<I>(iterable: I) -> Option<I::Item>
where I: IntoIterator,
I::Item: Ord
{
iterable.into_iter().min()
}
/// Combine all iterator elements into one String, seperated by `sep`.
///
/// [`IntoIterator`] enabled version of [`Itertools::join`].
///
/// ```
/// use itertools::join;
///
/// assert_eq!(join(&[1, 2, 3], ", "), "1, 2, 3");
/// ```
#[cfg(feature = "use_alloc")]
pub fn join<I>(iterable: I, sep: &str) -> String
where I: IntoIterator,
I::Item: Display
{
iterable.into_iter().join(sep)
}
/// Sort all iterator elements into a new iterator in ascending order.
///
/// [`IntoIterator`] enabled version of [`Itertools::sorted`].
///
/// ```
/// use itertools::sorted;
/// use itertools::assert_equal;
///
/// assert_equal(sorted("rust".chars()), "rstu".chars());
/// ```
#[cfg(feature = "use_alloc")]
pub fn sorted<I>(iterable: I) -> VecIntoIter<I::Item>
where I: IntoIterator,
I::Item: Ord
{
iterable.into_iter().sorted()
}

View File

@@ -0,0 +1,32 @@
#![cfg(feature = "use_std")]
use std::collections::HashMap;
use std::hash::Hash;
use std::iter::Iterator;
/// Return a `HashMap` of keys mapped to a list of their corresponding values.
///
/// See [`.into_group_map()`](crate::Itertools::into_group_map)
/// for more information.
pub fn into_group_map<I, K, V>(iter: I) -> HashMap<K, Vec<V>>
where I: Iterator<Item=(K, V)>,
K: Hash + Eq,
{
let mut lookup = HashMap::new();
iter.for_each(|(key, val)| {
lookup.entry(key).or_insert_with(Vec::new).push(val);
});
lookup
}
pub fn into_group_map_by<I, K, V>(iter: I, f: impl Fn(&V) -> K) -> HashMap<K, Vec<V>>
where
I: Iterator<Item=V>,
K: Hash + Eq,
{
into_group_map(
iter.map(|v| (f(&v), v))
)
}

View File

@@ -0,0 +1,571 @@
use std::cell::{Cell, RefCell};
use alloc::vec::{self, Vec};
/// A trait to unify FnMut for GroupBy with the chunk key in IntoChunks
trait KeyFunction<A> {
type Key;
fn call_mut(&mut self, arg: A) -> Self::Key;
}
impl<'a, A, K, F: ?Sized> KeyFunction<A> for F
where F: FnMut(A) -> K
{
type Key = K;
#[inline]
fn call_mut(&mut self, arg: A) -> Self::Key {
(*self)(arg)
}
}
/// ChunkIndex acts like the grouping key function for IntoChunks
#[derive(Debug)]
struct ChunkIndex {
size: usize,
index: usize,
key: usize,
}
impl ChunkIndex {
#[inline(always)]
fn new(size: usize) -> Self {
ChunkIndex {
size,
index: 0,
key: 0,
}
}
}
impl<'a, A> KeyFunction<A> for ChunkIndex {
type Key = usize;
#[inline(always)]
fn call_mut(&mut self, _arg: A) -> Self::Key {
if self.index == self.size {
self.key += 1;
self.index = 0;
}
self.index += 1;
self.key
}
}
struct GroupInner<K, I, F>
where I: Iterator
{
key: F,
iter: I,
current_key: Option<K>,
current_elt: Option<I::Item>,
/// flag set if iterator is exhausted
done: bool,
/// Index of group we are currently buffering or visiting
top_group: usize,
/// Least index for which we still have elements buffered
oldest_buffered_group: usize,
/// Group index for `buffer[0]` -- the slots
/// bottom_group..oldest_buffered_group are unused and will be erased when
/// that range is large enough.
bottom_group: usize,
/// Buffered groups, from `bottom_group` (index 0) to `top_group`.
buffer: Vec<vec::IntoIter<I::Item>>,
/// index of last group iter that was dropped, usize::MAX == none
dropped_group: usize,
}
impl<K, I, F> GroupInner<K, I, F>
where I: Iterator,
F: for<'a> KeyFunction<&'a I::Item, Key=K>,
K: PartialEq,
{
/// `client`: Index of group that requests next element
#[inline(always)]
fn step(&mut self, client: usize) -> Option<I::Item> {
/*
println!("client={}, bottom_group={}, oldest_buffered_group={}, top_group={}, buffers=[{}]",
client, self.bottom_group, self.oldest_buffered_group,
self.top_group,
self.buffer.iter().map(|elt| elt.len()).format(", "));
*/
if client < self.oldest_buffered_group {
None
} else if client < self.top_group ||
(client == self.top_group &&
self.buffer.len() > self.top_group - self.bottom_group)
{
self.lookup_buffer(client)
} else if self.done {
None
} else if self.top_group == client {
self.step_current()
} else {
self.step_buffering(client)
}
}
#[inline(never)]
fn lookup_buffer(&mut self, client: usize) -> Option<I::Item> {
// if `bufidx` doesn't exist in self.buffer, it might be empty
let bufidx = client - self.bottom_group;
if client < self.oldest_buffered_group {
return None;
}
let elt = self.buffer.get_mut(bufidx).and_then(|queue| queue.next());
if elt.is_none() && client == self.oldest_buffered_group {
// FIXME: VecDeque is unfortunately not zero allocation when empty,
// so we do this job manually.
// `bottom_group..oldest_buffered_group` is unused, and if it's large enough, erase it.
self.oldest_buffered_group += 1;
// skip forward further empty queues too
while self.buffer.get(self.oldest_buffered_group - self.bottom_group)
.map_or(false, |buf| buf.len() == 0)
{
self.oldest_buffered_group += 1;
}
let nclear = self.oldest_buffered_group - self.bottom_group;
if nclear > 0 && nclear >= self.buffer.len() / 2 {
let mut i = 0;
self.buffer.retain(|buf| {
i += 1;
debug_assert!(buf.len() == 0 || i > nclear);
i > nclear
});
self.bottom_group = self.oldest_buffered_group;
}
}
elt
}
/// Take the next element from the iterator, and set the done
/// flag if exhausted. Must not be called after done.
#[inline(always)]
fn next_element(&mut self) -> Option<I::Item> {
debug_assert!(!self.done);
match self.iter.next() {
None => { self.done = true; None }
otherwise => otherwise,
}
}
#[inline(never)]
fn step_buffering(&mut self, client: usize) -> Option<I::Item> {
// requested a later group -- walk through the current group up to
// the requested group index, and buffer the elements (unless
// the group is marked as dropped).
// Because the `Groups` iterator is always the first to request
// each group index, client is the next index efter top_group.
debug_assert!(self.top_group + 1 == client);
let mut group = Vec::new();
if let Some(elt) = self.current_elt.take() {
if self.top_group != self.dropped_group {
group.push(elt);
}
}
let mut first_elt = None; // first element of the next group
while let Some(elt) = self.next_element() {
let key = self.key.call_mut(&elt);
match self.current_key.take() {
None => {}
Some(old_key) => if old_key != key {
self.current_key = Some(key);
first_elt = Some(elt);
break;
},
}
self.current_key = Some(key);
if self.top_group != self.dropped_group {
group.push(elt);
}
}
if self.top_group != self.dropped_group {
self.push_next_group(group);
}
if first_elt.is_some() {
self.top_group += 1;
debug_assert!(self.top_group == client);
}
first_elt
}
fn push_next_group(&mut self, group: Vec<I::Item>) {
// When we add a new buffered group, fill up slots between oldest_buffered_group and top_group
while self.top_group - self.bottom_group > self.buffer.len() {
if self.buffer.is_empty() {
self.bottom_group += 1;
self.oldest_buffered_group += 1;
} else {
self.buffer.push(Vec::new().into_iter());
}
}
self.buffer.push(group.into_iter());
debug_assert!(self.top_group + 1 - self.bottom_group == self.buffer.len());
}
/// This is the immediate case, where we use no buffering
#[inline]
fn step_current(&mut self) -> Option<I::Item> {
debug_assert!(!self.done);
if let elt @ Some(..) = self.current_elt.take() {
return elt;
}
match self.next_element() {
None => None,
Some(elt) => {
let key = self.key.call_mut(&elt);
match self.current_key.take() {
None => {}
Some(old_key) => if old_key != key {
self.current_key = Some(key);
self.current_elt = Some(elt);
self.top_group += 1;
return None;
},
}
self.current_key = Some(key);
Some(elt)
}
}
}
/// Request the just started groups' key.
///
/// `client`: Index of group
///
/// **Panics** if no group key is available.
fn group_key(&mut self, client: usize) -> K {
// This can only be called after we have just returned the first
// element of a group.
// Perform this by simply buffering one more element, grabbing the
// next key.
debug_assert!(!self.done);
debug_assert!(client == self.top_group);
debug_assert!(self.current_key.is_some());
debug_assert!(self.current_elt.is_none());
let old_key = self.current_key.take().unwrap();
if let Some(elt) = self.next_element() {
let key = self.key.call_mut(&elt);
if old_key != key {
self.top_group += 1;
}
self.current_key = Some(key);
self.current_elt = Some(elt);
}
old_key
}
}
impl<K, I, F> GroupInner<K, I, F>
where I: Iterator,
{
/// Called when a group is dropped
fn drop_group(&mut self, client: usize) {
// It's only useful to track the maximal index
if self.dropped_group == !0 || client > self.dropped_group {
self.dropped_group = client;
}
}
}
/// `GroupBy` is the storage for the lazy grouping operation.
///
/// If the groups are consumed in their original order, or if each
/// group is dropped without keeping it around, then `GroupBy` uses
/// no allocations. It needs allocations only if several group iterators
/// are alive at the same time.
///
/// This type implements [`IntoIterator`] (it is **not** an iterator
/// itself), because the group iterators need to borrow from this
/// value. It should be stored in a local variable or temporary and
/// iterated.
///
/// See [`.group_by()`](crate::Itertools::group_by) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct GroupBy<K, I, F>
where I: Iterator,
{
inner: RefCell<GroupInner<K, I, F>>,
// the group iterator's current index. Keep this in the main value
// so that simultaneous iterators all use the same state.
index: Cell<usize>,
}
/// Create a new
pub fn new<K, J, F>(iter: J, f: F) -> GroupBy<K, J::IntoIter, F>
where J: IntoIterator,
F: FnMut(&J::Item) -> K,
{
GroupBy {
inner: RefCell::new(GroupInner {
key: f,
iter: iter.into_iter(),
current_key: None,
current_elt: None,
done: false,
top_group: 0,
oldest_buffered_group: 0,
bottom_group: 0,
buffer: Vec::new(),
dropped_group: !0,
}),
index: Cell::new(0),
}
}
impl<K, I, F> GroupBy<K, I, F>
where I: Iterator,
{
/// `client`: Index of group that requests next element
fn step(&self, client: usize) -> Option<I::Item>
where F: FnMut(&I::Item) -> K,
K: PartialEq,
{
self.inner.borrow_mut().step(client)
}
/// `client`: Index of group
fn drop_group(&self, client: usize) {
self.inner.borrow_mut().drop_group(client)
}
}
impl<'a, K, I, F> IntoIterator for &'a GroupBy<K, I, F>
where I: Iterator,
I::Item: 'a,
F: FnMut(&I::Item) -> K,
K: PartialEq
{
type Item = (K, Group<'a, K, I, F>);
type IntoIter = Groups<'a, K, I, F>;
fn into_iter(self) -> Self::IntoIter {
Groups { parent: self }
}
}
/// An iterator that yields the Group iterators.
///
/// Iterator element type is `(K, Group)`:
/// the group's key `K` and the group's iterator.
///
/// See [`.group_by()`](crate::Itertools::group_by) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Groups<'a, K: 'a, I: 'a, F: 'a>
where I: Iterator,
I::Item: 'a
{
parent: &'a GroupBy<K, I, F>,
}
impl<'a, K, I, F> Iterator for Groups<'a, K, I, F>
where I: Iterator,
I::Item: 'a,
F: FnMut(&I::Item) -> K,
K: PartialEq
{
type Item = (K, Group<'a, K, I, F>);
#[inline]
fn next(&mut self) -> Option<Self::Item> {
let index = self.parent.index.get();
self.parent.index.set(index + 1);
let inner = &mut *self.parent.inner.borrow_mut();
inner.step(index).map(|elt| {
let key = inner.group_key(index);
(key, Group {
parent: self.parent,
index,
first: Some(elt),
})
})
}
}
/// An iterator for the elements in a single group.
///
/// Iterator element type is `I::Item`.
pub struct Group<'a, K: 'a, I: 'a, F: 'a>
where I: Iterator,
I::Item: 'a,
{
parent: &'a GroupBy<K, I, F>,
index: usize,
first: Option<I::Item>,
}
impl<'a, K, I, F> Drop for Group<'a, K, I, F>
where I: Iterator,
I::Item: 'a,
{
fn drop(&mut self) {
self.parent.drop_group(self.index);
}
}
impl<'a, K, I, F> Iterator for Group<'a, K, I, F>
where I: Iterator,
I::Item: 'a,
F: FnMut(&I::Item) -> K,
K: PartialEq,
{
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if let elt @ Some(..) = self.first.take() {
return elt;
}
self.parent.step(self.index)
}
}
///// IntoChunks /////
/// Create a new
pub fn new_chunks<J>(iter: J, size: usize) -> IntoChunks<J::IntoIter>
where J: IntoIterator,
{
IntoChunks {
inner: RefCell::new(GroupInner {
key: ChunkIndex::new(size),
iter: iter.into_iter(),
current_key: None,
current_elt: None,
done: false,
top_group: 0,
oldest_buffered_group: 0,
bottom_group: 0,
buffer: Vec::new(),
dropped_group: !0,
}),
index: Cell::new(0),
}
}
/// `ChunkLazy` is the storage for a lazy chunking operation.
///
/// `IntoChunks` behaves just like `GroupBy`: it is iterable, and
/// it only buffers if several chunk iterators are alive at the same time.
///
/// This type implements [`IntoIterator`] (it is **not** an iterator
/// itself), because the chunk iterators need to borrow from this
/// value. It should be stored in a local variable or temporary and
/// iterated.
///
/// Iterator element type is `Chunk`, each chunk's iterator.
///
/// See [`.chunks()`](crate::Itertools::chunks) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct IntoChunks<I>
where I: Iterator,
{
inner: RefCell<GroupInner<usize, I, ChunkIndex>>,
// the chunk iterator's current index. Keep this in the main value
// so that simultaneous iterators all use the same state.
index: Cell<usize>,
}
impl<I> IntoChunks<I>
where I: Iterator,
{
/// `client`: Index of chunk that requests next element
fn step(&self, client: usize) -> Option<I::Item> {
self.inner.borrow_mut().step(client)
}
/// `client`: Index of chunk
fn drop_group(&self, client: usize) {
self.inner.borrow_mut().drop_group(client)
}
}
impl<'a, I> IntoIterator for &'a IntoChunks<I>
where I: Iterator,
I::Item: 'a,
{
type Item = Chunk<'a, I>;
type IntoIter = Chunks<'a, I>;
fn into_iter(self) -> Self::IntoIter {
Chunks {
parent: self,
}
}
}
/// An iterator that yields the Chunk iterators.
///
/// Iterator element type is `Chunk`.
///
/// See [`.chunks()`](crate::Itertools::chunks) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Chunks<'a, I: 'a>
where I: Iterator,
I::Item: 'a,
{
parent: &'a IntoChunks<I>,
}
impl<'a, I> Iterator for Chunks<'a, I>
where I: Iterator,
I::Item: 'a,
{
type Item = Chunk<'a, I>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
let index = self.parent.index.get();
self.parent.index.set(index + 1);
let inner = &mut *self.parent.inner.borrow_mut();
inner.step(index).map(|elt| {
Chunk {
parent: self.parent,
index,
first: Some(elt),
}
})
}
}
/// An iterator for the elements in a single chunk.
///
/// Iterator element type is `I::Item`.
pub struct Chunk<'a, I: 'a>
where I: Iterator,
I::Item: 'a,
{
parent: &'a IntoChunks<I>,
index: usize,
first: Option<I::Item>,
}
impl<'a, I> Drop for Chunk<'a, I>
where I: Iterator,
I::Item: 'a,
{
fn drop(&mut self) {
self.parent.drop_group(self.index);
}
}
impl<'a, I> Iterator for Chunk<'a, I>
where I: Iterator,
I::Item: 'a,
{
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if let elt @ Some(..) = self.first.take() {
return elt;
}
self.parent.step(self.index)
}
}

View File

@@ -0,0 +1,536 @@
#![cfg(feature = "use_std")]
use crate::MinMaxResult;
use std::collections::HashMap;
use std::cmp::Ordering;
use std::hash::Hash;
use std::iter::Iterator;
use std::ops::{Add, Mul};
/// A wrapper to allow for an easy [`into_grouping_map_by`](crate::Itertools::into_grouping_map_by)
#[derive(Clone, Debug)]
pub struct MapForGrouping<I, F>(I, F);
impl<I, F> MapForGrouping<I, F> {
pub(crate) fn new(iter: I, key_mapper: F) -> Self {
Self(iter, key_mapper)
}
}
impl<K, V, I, F> Iterator for MapForGrouping<I, F>
where I: Iterator<Item = V>,
K: Hash + Eq,
F: FnMut(&V) -> K,
{
type Item = (K, V);
fn next(&mut self) -> Option<Self::Item> {
self.0.next().map(|val| ((self.1)(&val), val))
}
}
/// Creates a new `GroupingMap` from `iter`
pub fn new<I, K, V>(iter: I) -> GroupingMap<I>
where I: Iterator<Item = (K, V)>,
K: Hash + Eq,
{
GroupingMap { iter }
}
/// `GroupingMapBy` is an intermediate struct for efficient group-and-fold operations.
///
/// See [`GroupingMap`] for more informations.
#[must_use = "GroupingMapBy is lazy and do nothing unless consumed"]
pub type GroupingMapBy<I, F> = GroupingMap<MapForGrouping<I, F>>;
/// `GroupingMap` is an intermediate struct for efficient group-and-fold operations.
/// It groups elements by their key and at the same time fold each group
/// using some aggregating operation.
///
/// No method on this struct performs temporary allocations.
#[derive(Clone, Debug)]
#[must_use = "GroupingMap is lazy and do nothing unless consumed"]
pub struct GroupingMap<I> {
iter: I,
}
impl<I, K, V> GroupingMap<I>
where I: Iterator<Item = (K, V)>,
K: Hash + Eq,
{
/// This is the generic way to perform any operation on a `GroupingMap`.
/// It's suggested to use this method only to implement custom operations
/// when the already provided ones are not enough.
///
/// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements
/// of each group sequentially, passing the previously accumulated value, a reference to the key
/// and the current element as arguments, and stores the results in an `HashMap`.
///
/// The `operation` function is invoked on each element with the following parameters:
/// - the current value of the accumulator of the group if there is currently one;
/// - a reference to the key of the group this element belongs to;
/// - the element from the source being aggregated;
///
/// If `operation` returns `Some(element)` then the accumulator is updated with `element`,
/// otherwise the previous accumulation is discarded.
///
/// Return a `HashMap` associating the key of each group with the result of aggregation of
/// that group's elements. If the aggregation of the last element of a group discards the
/// accumulator then there won't be an entry associated to that group's key.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![2, 8, 5, 7, 9, 0, 4, 10];
/// let lookup = data.into_iter()
/// .into_grouping_map_by(|&n| n % 4)
/// .aggregate(|acc, _key, val| {
/// if val == 0 || val == 10 {
/// None
/// } else {
/// Some(acc.unwrap_or(0) + val)
/// }
/// });
///
/// assert_eq!(lookup[&0], 4); // 0 resets the accumulator so only 4 is summed
/// assert_eq!(lookup[&1], 5 + 9);
/// assert_eq!(lookup.get(&2), None); // 10 resets the accumulator and nothing is summed afterward
/// assert_eq!(lookup[&3], 7);
/// assert_eq!(lookup.len(), 3); // The final keys are only 0, 1 and 2
/// ```
pub fn aggregate<FO, R>(self, mut operation: FO) -> HashMap<K, R>
where FO: FnMut(Option<R>, &K, V) -> Option<R>,
{
let mut destination_map = HashMap::new();
self.iter.for_each(|(key, val)| {
let acc = destination_map.remove(&key);
if let Some(op_res) = operation(acc, &key, val) {
destination_map.insert(key, op_res);
}
});
destination_map
}
/// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements
/// of each group sequentially, passing the previously accumulated value, a reference to the key
/// and the current element as arguments, and stores the results in a new map.
///
/// `init` is the value from which will be cloned the initial value of each accumulator.
///
/// `operation` is a function that is invoked on each element with the following parameters:
/// - the current value of the accumulator of the group;
/// - a reference to the key of the group this element belongs to;
/// - the element from the source being accumulated.
///
/// Return a `HashMap` associating the key of each group with the result of folding that group's elements.
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = (1..=7)
/// .into_grouping_map_by(|&n| n % 3)
/// .fold(0, |acc, _key, val| acc + val);
///
/// assert_eq!(lookup[&0], 3 + 6);
/// assert_eq!(lookup[&1], 1 + 4 + 7);
/// assert_eq!(lookup[&2], 2 + 5);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn fold<FO, R>(self, init: R, mut operation: FO) -> HashMap<K, R>
where R: Clone,
FO: FnMut(R, &K, V) -> R,
{
self.aggregate(|acc, key, val| {
let acc = acc.unwrap_or_else(|| init.clone());
Some(operation(acc, key, val))
})
}
/// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements
/// of each group sequentially, passing the previously accumulated value, a reference to the key
/// and the current element as arguments, and stores the results in a new map.
///
/// This is similar to [`fold`] but the initial value of the accumulator is the first element of the group.
///
/// `operation` is a function that is invoked on each element with the following parameters:
/// - the current value of the accumulator of the group;
/// - a reference to the key of the group this element belongs to;
/// - the element from the source being accumulated.
///
/// Return a `HashMap` associating the key of each group with the result of folding that group's elements.
///
/// [`fold`]: GroupingMap::fold
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = (1..=7)
/// .into_grouping_map_by(|&n| n % 3)
/// .fold_first(|acc, _key, val| acc + val);
///
/// assert_eq!(lookup[&0], 3 + 6);
/// assert_eq!(lookup[&1], 1 + 4 + 7);
/// assert_eq!(lookup[&2], 2 + 5);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn fold_first<FO>(self, mut operation: FO) -> HashMap<K, V>
where FO: FnMut(V, &K, V) -> V,
{
self.aggregate(|acc, key, val| {
Some(match acc {
Some(acc) => operation(acc, key, val),
None => val,
})
})
}
/// Groups elements from the `GroupingMap` source by key and collects the elements of each group in
/// an instance of `C`. The iteration order is preserved when inserting elements.
///
/// Return a `HashMap` associating the key of each group with the collection containing that group's elements.
///
/// ```
/// use itertools::Itertools;
/// use std::collections::HashSet;
///
/// let lookup = vec![0, 1, 2, 3, 4, 5, 6, 2, 3, 6].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .collect::<HashSet<_>>();
///
/// assert_eq!(lookup[&0], vec![0, 3, 6].into_iter().collect::<HashSet<_>>());
/// assert_eq!(lookup[&1], vec![1, 4].into_iter().collect::<HashSet<_>>());
/// assert_eq!(lookup[&2], vec![2, 5].into_iter().collect::<HashSet<_>>());
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn collect<C>(self) -> HashMap<K, C>
where C: Default + Extend<V>,
{
let mut destination_map = HashMap::new();
self.iter.for_each(|(key, val)| {
destination_map.entry(key).or_insert_with(C::default).extend(Some(val));
});
destination_map
}
/// Groups elements from the `GroupingMap` source by key and finds the maximum of each group.
///
/// If several elements are equally maximum, the last element is picked.
///
/// Returns a `HashMap` associating the key of each group with the maximum of that group's elements.
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .max();
///
/// assert_eq!(lookup[&0], 12);
/// assert_eq!(lookup[&1], 7);
/// assert_eq!(lookup[&2], 8);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn max(self) -> HashMap<K, V>
where V: Ord,
{
self.max_by(|_, v1, v2| V::cmp(v1, v2))
}
/// Groups elements from the `GroupingMap` source by key and finds the maximum of each group
/// with respect to the specified comparison function.
///
/// If several elements are equally maximum, the last element is picked.
///
/// Returns a `HashMap` associating the key of each group with the maximum of that group's elements.
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .max_by(|_key, x, y| y.cmp(x));
///
/// assert_eq!(lookup[&0], 3);
/// assert_eq!(lookup[&1], 1);
/// assert_eq!(lookup[&2], 5);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn max_by<F>(self, mut compare: F) -> HashMap<K, V>
where F: FnMut(&K, &V, &V) -> Ordering,
{
self.fold_first(|acc, key, val| match compare(key, &acc, &val) {
Ordering::Less | Ordering::Equal => val,
Ordering::Greater => acc
})
}
/// Groups elements from the `GroupingMap` source by key and finds the element of each group
/// that gives the maximum from the specified function.
///
/// If several elements are equally maximum, the last element is picked.
///
/// Returns a `HashMap` associating the key of each group with the maximum of that group's elements.
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .max_by_key(|_key, &val| val % 4);
///
/// assert_eq!(lookup[&0], 3);
/// assert_eq!(lookup[&1], 7);
/// assert_eq!(lookup[&2], 5);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn max_by_key<F, CK>(self, mut f: F) -> HashMap<K, V>
where F: FnMut(&K, &V) -> CK,
CK: Ord,
{
self.max_by(|key, v1, v2| f(key, &v1).cmp(&f(key, &v2)))
}
/// Groups elements from the `GroupingMap` source by key and finds the minimum of each group.
///
/// If several elements are equally minimum, the first element is picked.
///
/// Returns a `HashMap` associating the key of each group with the minimum of that group's elements.
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .min();
///
/// assert_eq!(lookup[&0], 3);
/// assert_eq!(lookup[&1], 1);
/// assert_eq!(lookup[&2], 5);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn min(self) -> HashMap<K, V>
where V: Ord,
{
self.min_by(|_, v1, v2| V::cmp(v1, v2))
}
/// Groups elements from the `GroupingMap` source by key and finds the minimum of each group
/// with respect to the specified comparison function.
///
/// If several elements are equally minimum, the first element is picked.
///
/// Returns a `HashMap` associating the key of each group with the minimum of that group's elements.
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .min_by(|_key, x, y| y.cmp(x));
///
/// assert_eq!(lookup[&0], 12);
/// assert_eq!(lookup[&1], 7);
/// assert_eq!(lookup[&2], 8);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn min_by<F>(self, mut compare: F) -> HashMap<K, V>
where F: FnMut(&K, &V, &V) -> Ordering,
{
self.fold_first(|acc, key, val| match compare(key, &acc, &val) {
Ordering::Less | Ordering::Equal => acc,
Ordering::Greater => val
})
}
/// Groups elements from the `GroupingMap` source by key and finds the element of each group
/// that gives the minimum from the specified function.
///
/// If several elements are equally minimum, the first element is picked.
///
/// Returns a `HashMap` associating the key of each group with the minimum of that group's elements.
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .min_by_key(|_key, &val| val % 4);
///
/// assert_eq!(lookup[&0], 12);
/// assert_eq!(lookup[&1], 4);
/// assert_eq!(lookup[&2], 8);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn min_by_key<F, CK>(self, mut f: F) -> HashMap<K, V>
where F: FnMut(&K, &V) -> CK,
CK: Ord,
{
self.min_by(|key, v1, v2| f(key, &v1).cmp(&f(key, &v2)))
}
/// Groups elements from the `GroupingMap` source by key and find the maximum and minimum of
/// each group.
///
/// If several elements are equally maximum, the last element is picked.
/// If several elements are equally minimum, the first element is picked.
///
/// See [.minmax()](crate::Itertools::minmax) for the non-grouping version.
///
/// Differences from the non grouping version:
/// - It never produces a `MinMaxResult::NoElements`
/// - It doesn't have any speedup
///
/// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements.
///
/// ```
/// use itertools::Itertools;
/// use itertools::MinMaxResult::{OneElement, MinMax};
///
/// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .minmax();
///
/// assert_eq!(lookup[&0], MinMax(3, 12));
/// assert_eq!(lookup[&1], MinMax(1, 7));
/// assert_eq!(lookup[&2], OneElement(5));
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn minmax(self) -> HashMap<K, MinMaxResult<V>>
where V: Ord,
{
self.minmax_by(|_, v1, v2| V::cmp(v1, v2))
}
/// Groups elements from the `GroupingMap` source by key and find the maximum and minimum of
/// each group with respect to the specified comparison function.
///
/// If several elements are equally maximum, the last element is picked.
/// If several elements are equally minimum, the first element is picked.
///
/// It has the same differences from the non-grouping version as `minmax`.
///
/// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements.
///
/// ```
/// use itertools::Itertools;
/// use itertools::MinMaxResult::{OneElement, MinMax};
///
/// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .minmax_by(|_key, x, y| y.cmp(x));
///
/// assert_eq!(lookup[&0], MinMax(12, 3));
/// assert_eq!(lookup[&1], MinMax(7, 1));
/// assert_eq!(lookup[&2], OneElement(5));
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn minmax_by<F>(self, mut compare: F) -> HashMap<K, MinMaxResult<V>>
where F: FnMut(&K, &V, &V) -> Ordering,
{
self.aggregate(|acc, key, val| {
Some(match acc {
Some(MinMaxResult::OneElement(e)) => {
if compare(key, &val, &e) == Ordering::Less {
MinMaxResult::MinMax(val, e)
} else {
MinMaxResult::MinMax(e, val)
}
}
Some(MinMaxResult::MinMax(min, max)) => {
if compare(key, &val, &min) == Ordering::Less {
MinMaxResult::MinMax(val, max)
} else if compare(key, &val, &max) != Ordering::Less {
MinMaxResult::MinMax(min, val)
} else {
MinMaxResult::MinMax(min, max)
}
}
None => MinMaxResult::OneElement(val),
Some(MinMaxResult::NoElements) => unreachable!(),
})
})
}
/// Groups elements from the `GroupingMap` source by key and find the elements of each group
/// that gives the minimum and maximum from the specified function.
///
/// If several elements are equally maximum, the last element is picked.
/// If several elements are equally minimum, the first element is picked.
///
/// It has the same differences from the non-grouping version as `minmax`.
///
/// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements.
///
/// ```
/// use itertools::Itertools;
/// use itertools::MinMaxResult::{OneElement, MinMax};
///
/// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .minmax_by_key(|_key, &val| val % 4);
///
/// assert_eq!(lookup[&0], MinMax(12, 3));
/// assert_eq!(lookup[&1], MinMax(4, 7));
/// assert_eq!(lookup[&2], OneElement(5));
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn minmax_by_key<F, CK>(self, mut f: F) -> HashMap<K, MinMaxResult<V>>
where F: FnMut(&K, &V) -> CK,
CK: Ord,
{
self.minmax_by(|key, v1, v2| f(key, &v1).cmp(&f(key, &v2)))
}
/// Groups elements from the `GroupingMap` source by key and sums them.
///
/// This is just a shorthand for `self.fold_first(|acc, _, val| acc + val)`.
/// It is more limited than `Iterator::sum` since it doesn't use the `Sum` trait.
///
/// Returns a `HashMap` associating the key of each group with the sum of that group's elements.
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .sum();
///
/// assert_eq!(lookup[&0], 3 + 9 + 12);
/// assert_eq!(lookup[&1], 1 + 4 + 7);
/// assert_eq!(lookup[&2], 5 + 8);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn sum(self) -> HashMap<K, V>
where V: Add<V, Output = V>
{
self.fold_first(|acc, _, val| acc + val)
}
/// Groups elements from the `GroupingMap` source by key and multiply them.
///
/// This is just a shorthand for `self.fold_first(|acc, _, val| acc * val)`.
/// It is more limited than `Iterator::product` since it doesn't use the `Product` trait.
///
/// Returns a `HashMap` associating the key of each group with the product of that group's elements.
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .product();
///
/// assert_eq!(lookup[&0], 3 * 9 * 12);
/// assert_eq!(lookup[&1], 1 * 4 * 7);
/// assert_eq!(lookup[&2], 5 * 8);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn product(self) -> HashMap<K, V>
where V: Mul<V, Output = V>,
{
self.fold_first(|acc, _, val| acc * val)
}
}

View File

@@ -0,0 +1,28 @@
//!
//! Implementation's internal macros
macro_rules! debug_fmt_fields {
($tyname:ident, $($($field:tt/*TODO ideally we would accept ident or tuple element here*/).+),*) => {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
f.debug_struct(stringify!($tyname))
$(
.field(stringify!($($field).+), &self.$($field).+)
)*
.finish()
}
}
}
macro_rules! clone_fields {
($($field:ident),*) => {
fn clone(&self) -> Self {
Self {
$($field: self.$field.clone(),)*
}
}
}
}
macro_rules! ignore_ident{
($id:ident, $($t:tt)*) => {$($t)*};
}

View File

@@ -0,0 +1,119 @@
use std::iter::{Fuse, FusedIterator};
use super::size_hint;
pub trait IntersperseElement<Item> {
fn generate(&mut self) -> Item;
}
#[derive(Debug, Clone)]
pub struct IntersperseElementSimple<Item>(Item);
impl<Item: Clone> IntersperseElement<Item> for IntersperseElementSimple<Item> {
fn generate(&mut self) -> Item {
self.0.clone()
}
}
/// An iterator adaptor to insert a particular value
/// between each element of the adapted iterator.
///
/// Iterator element type is `I::Item`
///
/// This iterator is *fused*.
///
/// See [`.intersperse()`](crate::Itertools::intersperse) for more information.
pub type Intersperse<I> = IntersperseWith<I, IntersperseElementSimple<<I as Iterator>::Item>>;
/// Create a new Intersperse iterator
pub fn intersperse<I>(iter: I, elt: I::Item) -> Intersperse<I>
where I: Iterator,
{
intersperse_with(iter, IntersperseElementSimple(elt))
}
impl<Item, F: FnMut()->Item> IntersperseElement<Item> for F {
fn generate(&mut self) -> Item {
self()
}
}
/// An iterator adaptor to insert a particular value created by a function
/// between each element of the adapted iterator.
///
/// Iterator element type is `I::Item`
///
/// This iterator is *fused*.
///
/// See [`.intersperse_with()`](crate::Itertools::intersperse_with) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[derive(Clone, Debug)]
pub struct IntersperseWith<I, ElemF>
where I: Iterator,
{
element: ElemF,
iter: Fuse<I>,
peek: Option<I::Item>,
}
/// Create a new IntersperseWith iterator
pub fn intersperse_with<I, ElemF>(iter: I, elt: ElemF) -> IntersperseWith<I, ElemF>
where I: Iterator,
{
let mut iter = iter.fuse();
IntersperseWith {
peek: iter.next(),
iter,
element: elt,
}
}
impl<I, ElemF> Iterator for IntersperseWith<I, ElemF>
where I: Iterator,
ElemF: IntersperseElement<I::Item>
{
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.peek.is_some() {
self.peek.take()
} else {
self.peek = self.iter.next();
if self.peek.is_some() {
Some(self.element.generate())
} else {
None
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
// 2 * SH + { 1 or 0 }
let has_peek = self.peek.is_some() as usize;
let sh = self.iter.size_hint();
size_hint::add_scalar(size_hint::add(sh, sh), has_peek)
}
fn fold<B, F>(mut self, init: B, mut f: F) -> B where
Self: Sized, F: FnMut(B, Self::Item) -> B,
{
let mut accum = init;
if let Some(x) = self.peek.take() {
accum = f(accum, x);
}
let element = &mut self.element;
self.iter.fold(accum,
|accum, x| {
let accum = f(accum, element.generate());
let accum = f(accum, x);
accum
})
}
}
impl<I, ElemF> FusedIterator for IntersperseWith<I, ElemF>
where I: Iterator,
ElemF: IntersperseElement<I::Item>
{}

View File

@@ -0,0 +1,20 @@
use alloc::collections::BinaryHeap;
use core::cmp::Ord;
pub(crate) fn k_smallest<T: Ord, I: Iterator<Item = T>>(mut iter: I, k: usize) -> BinaryHeap<T> {
if k == 0 { return BinaryHeap::new(); }
let mut heap = iter.by_ref().take(k).collect::<BinaryHeap<_>>();
iter.for_each(|i| {
debug_assert_eq!(heap.len(), k);
// Equivalent to heap.push(min(i, heap.pop())) but more efficient.
// This should be done with a single `.peek_mut().unwrap()` but
// `PeekMut` sifts-down unconditionally on Rust 1.46.0 and prior.
if *heap.peek().unwrap() > i {
*heap.peek_mut().unwrap() = i;
}
});
heap
}

View File

@@ -0,0 +1,227 @@
use crate::size_hint;
use crate::Itertools;
use alloc::vec::Vec;
use std::iter::FusedIterator;
use std::mem::replace;
use std::fmt;
/// Head element and Tail iterator pair
///
/// `PartialEq`, `Eq`, `PartialOrd` and `Ord` are implemented by comparing sequences based on
/// first items (which are guaranteed to exist).
///
/// The meanings of `PartialOrd` and `Ord` are reversed so as to turn the heap used in
/// `KMerge` into a min-heap.
#[derive(Debug)]
struct HeadTail<I>
where I: Iterator
{
head: I::Item,
tail: I,
}
impl<I> HeadTail<I>
where I: Iterator
{
/// Constructs a `HeadTail` from an `Iterator`. Returns `None` if the `Iterator` is empty.
fn new(mut it: I) -> Option<HeadTail<I>> {
let head = it.next();
head.map(|h| {
HeadTail {
head: h,
tail: it,
}
})
}
/// Get the next element and update `head`, returning the old head in `Some`.
///
/// Returns `None` when the tail is exhausted (only `head` then remains).
fn next(&mut self) -> Option<I::Item> {
if let Some(next) = self.tail.next() {
Some(replace(&mut self.head, next))
} else {
None
}
}
/// Hints at the size of the sequence, same as the `Iterator` method.
fn size_hint(&self) -> (usize, Option<usize>) {
size_hint::add_scalar(self.tail.size_hint(), 1)
}
}
impl<I> Clone for HeadTail<I>
where I: Iterator + Clone,
I::Item: Clone
{
clone_fields!(head, tail);
}
/// Make `data` a heap (min-heap w.r.t the sorting).
fn heapify<T, S>(data: &mut [T], mut less_than: S)
where S: FnMut(&T, &T) -> bool
{
for i in (0..data.len() / 2).rev() {
sift_down(data, i, &mut less_than);
}
}
/// Sift down element at `index` (`heap` is a min-heap wrt the ordering)
fn sift_down<T, S>(heap: &mut [T], index: usize, mut less_than: S)
where S: FnMut(&T, &T) -> bool
{
debug_assert!(index <= heap.len());
let mut pos = index;
let mut child = 2 * pos + 1;
// Require the right child to be present
// This allows to find the index of the smallest child without a branch
// that wouldn't be predicted if present
while child + 1 < heap.len() {
// pick the smaller of the two children
// use aritmethic to avoid an unpredictable branch
child += less_than(&heap[child+1], &heap[child]) as usize;
// sift down is done if we are already in order
if !less_than(&heap[child], &heap[pos]) {
return;
}
heap.swap(pos, child);
pos = child;
child = 2 * pos + 1;
}
// Check if the last (left) child was an only child
// if it is then it has to be compared with the parent
if child + 1 == heap.len() && less_than(&heap[child], &heap[pos]) {
heap.swap(pos, child);
}
}
/// An iterator adaptor that merges an abitrary number of base iterators in ascending order.
/// If all base iterators are sorted (ascending), the result is sorted.
///
/// Iterator element type is `I::Item`.
///
/// See [`.kmerge()`](crate::Itertools::kmerge) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub type KMerge<I> = KMergeBy<I, KMergeByLt>;
pub trait KMergePredicate<T> {
fn kmerge_pred(&mut self, a: &T, b: &T) -> bool;
}
#[derive(Clone, Debug)]
pub struct KMergeByLt;
impl<T: PartialOrd> KMergePredicate<T> for KMergeByLt {
fn kmerge_pred(&mut self, a: &T, b: &T) -> bool {
a < b
}
}
impl<T, F: FnMut(&T, &T)->bool> KMergePredicate<T> for F {
fn kmerge_pred(&mut self, a: &T, b: &T) -> bool {
self(a, b)
}
}
/// Create an iterator that merges elements of the contained iterators using
/// the ordering function.
///
/// Equivalent to `iterable.into_iter().kmerge()`.
///
/// ```
/// use itertools::kmerge;
///
/// for elt in kmerge(vec![vec![0, 2, 4], vec![1, 3, 5], vec![6, 7]]) {
/// /* loop body */
/// }
/// ```
pub fn kmerge<I>(iterable: I) -> KMerge<<I::Item as IntoIterator>::IntoIter>
where I: IntoIterator,
I::Item: IntoIterator,
<<I as IntoIterator>::Item as IntoIterator>::Item: PartialOrd
{
kmerge_by(iterable, KMergeByLt)
}
/// An iterator adaptor that merges an abitrary number of base iterators
/// according to an ordering function.
///
/// Iterator element type is `I::Item`.
///
/// See [`.kmerge_by()`](crate::Itertools::kmerge_by) for more
/// information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct KMergeBy<I, F>
where I: Iterator,
{
heap: Vec<HeadTail<I>>,
less_than: F,
}
impl<I, F> fmt::Debug for KMergeBy<I, F>
where I: Iterator + fmt::Debug,
I::Item: fmt::Debug,
{
debug_fmt_fields!(KMergeBy, heap);
}
/// Create an iterator that merges elements of the contained iterators.
///
/// Equivalent to `iterable.into_iter().kmerge_by(less_than)`.
pub fn kmerge_by<I, F>(iterable: I, mut less_than: F)
-> KMergeBy<<I::Item as IntoIterator>::IntoIter, F>
where I: IntoIterator,
I::Item: IntoIterator,
F: KMergePredicate<<<I as IntoIterator>::Item as IntoIterator>::Item>,
{
let iter = iterable.into_iter();
let (lower, _) = iter.size_hint();
let mut heap: Vec<_> = Vec::with_capacity(lower);
heap.extend(iter.filter_map(|it| HeadTail::new(it.into_iter())));
heapify(&mut heap, |a, b| less_than.kmerge_pred(&a.head, &b.head));
KMergeBy { heap, less_than }
}
impl<I, F> Clone for KMergeBy<I, F>
where I: Iterator + Clone,
I::Item: Clone,
F: Clone,
{
clone_fields!(heap, less_than);
}
impl<I, F> Iterator for KMergeBy<I, F>
where I: Iterator,
F: KMergePredicate<I::Item>
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
if self.heap.is_empty() {
return None;
}
let result = if let Some(next) = self.heap[0].next() {
next
} else {
self.heap.swap_remove(0).head
};
let less_than = &mut self.less_than;
sift_down(&mut self.heap, 0, |a, b| less_than.kmerge_pred(&a.head, &b.head));
Some(result)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.heap.iter()
.map(|i| i.size_hint())
.fold1(size_hint::add)
.unwrap_or((0, Some(0)))
}
}
impl<I, F> FusedIterator for KMergeBy<I, F>
where I: Iterator,
F: KMergePredicate<I::Item>
{}

View File

@@ -0,0 +1,67 @@
use std::ops::Index;
use alloc::vec::Vec;
#[derive(Debug, Clone)]
pub struct LazyBuffer<I: Iterator> {
pub it: I,
done: bool,
buffer: Vec<I::Item>,
}
impl<I> LazyBuffer<I>
where
I: Iterator,
{
pub fn new(it: I) -> LazyBuffer<I> {
LazyBuffer {
it,
done: false,
buffer: Vec::new(),
}
}
pub fn len(&self) -> usize {
self.buffer.len()
}
pub fn get_next(&mut self) -> bool {
if self.done {
return false;
}
let next_item = self.it.next();
match next_item {
Some(x) => {
self.buffer.push(x);
true
}
None => {
self.done = true;
false
}
}
}
pub fn prefill(&mut self, len: usize) {
let buffer_len = self.buffer.len();
if !self.done && len > buffer_len {
let delta = len - buffer_len;
self.buffer.extend(self.it.by_ref().take(delta));
self.done = self.buffer.len() < len;
}
}
}
impl<I, J> Index<J> for LazyBuffer<I>
where
I: Iterator,
I::Item: Sized,
Vec<I::Item>: Index<J>
{
type Output = <Vec<I::Item> as Index<J>>::Output;
fn index(&self, _index: J) -> &Self::Output {
self.buffer.index(_index)
}
}

3608
zeroidc/vendor/itertools/src/lib.rs vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,167 @@
use std::cmp::Ordering;
use std::iter::Fuse;
use std::fmt;
use super::adaptors::{PutBack, put_back};
use crate::either_or_both::EitherOrBoth;
/// Return an iterator adaptor that merge-joins items from the two base iterators in ascending order.
///
/// See [`.merge_join_by()`](crate::Itertools::merge_join_by) for more information.
pub fn merge_join_by<I, J, F>(left: I, right: J, cmp_fn: F)
-> MergeJoinBy<I::IntoIter, J::IntoIter, F>
where I: IntoIterator,
J: IntoIterator,
F: FnMut(&I::Item, &J::Item) -> Ordering
{
MergeJoinBy {
left: put_back(left.into_iter().fuse()),
right: put_back(right.into_iter().fuse()),
cmp_fn,
}
}
/// An iterator adaptor that merge-joins items from the two base iterators in ascending order.
///
/// See [`.merge_join_by()`](crate::Itertools::merge_join_by) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct MergeJoinBy<I: Iterator, J: Iterator, F> {
left: PutBack<Fuse<I>>,
right: PutBack<Fuse<J>>,
cmp_fn: F
}
impl<I, J, F> Clone for MergeJoinBy<I, J, F>
where I: Iterator,
J: Iterator,
PutBack<Fuse<I>>: Clone,
PutBack<Fuse<J>>: Clone,
F: Clone,
{
clone_fields!(left, right, cmp_fn);
}
impl<I, J, F> fmt::Debug for MergeJoinBy<I, J, F>
where I: Iterator + fmt::Debug,
I::Item: fmt::Debug,
J: Iterator + fmt::Debug,
J::Item: fmt::Debug,
{
debug_fmt_fields!(MergeJoinBy, left, right);
}
impl<I, J, F> Iterator for MergeJoinBy<I, J, F>
where I: Iterator,
J: Iterator,
F: FnMut(&I::Item, &J::Item) -> Ordering
{
type Item = EitherOrBoth<I::Item, J::Item>;
fn next(&mut self) -> Option<Self::Item> {
match (self.left.next(), self.right.next()) {
(None, None) => None,
(Some(left), None) =>
Some(EitherOrBoth::Left(left)),
(None, Some(right)) =>
Some(EitherOrBoth::Right(right)),
(Some(left), Some(right)) => {
match (self.cmp_fn)(&left, &right) {
Ordering::Equal =>
Some(EitherOrBoth::Both(left, right)),
Ordering::Less => {
self.right.put_back(right);
Some(EitherOrBoth::Left(left))
},
Ordering::Greater => {
self.left.put_back(left);
Some(EitherOrBoth::Right(right))
}
}
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (a_lower, a_upper) = self.left.size_hint();
let (b_lower, b_upper) = self.right.size_hint();
let lower = ::std::cmp::max(a_lower, b_lower);
let upper = match (a_upper, b_upper) {
(Some(x), Some(y)) => x.checked_add(y),
_ => None,
};
(lower, upper)
}
fn count(mut self) -> usize {
let mut count = 0;
loop {
match (self.left.next(), self.right.next()) {
(None, None) => break count,
(Some(_left), None) => break count + 1 + self.left.into_parts().1.count(),
(None, Some(_right)) => break count + 1 + self.right.into_parts().1.count(),
(Some(left), Some(right)) => {
count += 1;
match (self.cmp_fn)(&left, &right) {
Ordering::Equal => {}
Ordering::Less => self.right.put_back(right),
Ordering::Greater => self.left.put_back(left),
}
}
}
}
}
fn last(mut self) -> Option<Self::Item> {
let mut previous_element = None;
loop {
match (self.left.next(), self.right.next()) {
(None, None) => break previous_element,
(Some(left), None) => {
break Some(EitherOrBoth::Left(
self.left.into_parts().1.last().unwrap_or(left),
))
}
(None, Some(right)) => {
break Some(EitherOrBoth::Right(
self.right.into_parts().1.last().unwrap_or(right),
))
}
(Some(left), Some(right)) => {
previous_element = match (self.cmp_fn)(&left, &right) {
Ordering::Equal => Some(EitherOrBoth::Both(left, right)),
Ordering::Less => {
self.right.put_back(right);
Some(EitherOrBoth::Left(left))
}
Ordering::Greater => {
self.left.put_back(left);
Some(EitherOrBoth::Right(right))
}
}
}
}
}
}
fn nth(&mut self, mut n: usize) -> Option<Self::Item> {
loop {
if n == 0 {
break self.next();
}
n -= 1;
match (self.left.next(), self.right.next()) {
(None, None) => break None,
(Some(_left), None) => break self.left.nth(n).map(EitherOrBoth::Left),
(None, Some(_right)) => break self.right.nth(n).map(EitherOrBoth::Right),
(Some(left), Some(right)) => match (self.cmp_fn)(&left, &right) {
Ordering::Equal => {}
Ordering::Less => self.right.put_back(right),
Ordering::Greater => self.left.put_back(left),
},
}
}
}
}

115
zeroidc/vendor/itertools/src/minmax.rs vendored Normal file
View File

@@ -0,0 +1,115 @@
/// `MinMaxResult` is an enum returned by `minmax`.
///
/// See [`.minmax()`](crate::Itertools::minmax) for more detail.
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum MinMaxResult<T> {
/// Empty iterator
NoElements,
/// Iterator with one element, so the minimum and maximum are the same
OneElement(T),
/// More than one element in the iterator, the first element is not larger
/// than the second
MinMax(T, T)
}
impl<T: Clone> MinMaxResult<T> {
/// `into_option` creates an `Option` of type `(T, T)`. The returned `Option`
/// has variant `None` if and only if the `MinMaxResult` has variant
/// `NoElements`. Otherwise `Some((x, y))` is returned where `x <= y`.
/// If the `MinMaxResult` has variant `OneElement(x)`, performing this
/// operation will make one clone of `x`.
///
/// # Examples
///
/// ```
/// use itertools::MinMaxResult::{self, NoElements, OneElement, MinMax};
///
/// let r: MinMaxResult<i32> = NoElements;
/// assert_eq!(r.into_option(), None);
///
/// let r = OneElement(1);
/// assert_eq!(r.into_option(), Some((1, 1)));
///
/// let r = MinMax(1, 2);
/// assert_eq!(r.into_option(), Some((1, 2)));
/// ```
pub fn into_option(self) -> Option<(T,T)> {
match self {
MinMaxResult::NoElements => None,
MinMaxResult::OneElement(x) => Some((x.clone(), x)),
MinMaxResult::MinMax(x, y) => Some((x, y))
}
}
}
/// Implementation guts for `minmax` and `minmax_by_key`.
pub fn minmax_impl<I, K, F, L>(mut it: I, mut key_for: F,
mut lt: L) -> MinMaxResult<I::Item>
where I: Iterator,
F: FnMut(&I::Item) -> K,
L: FnMut(&I::Item, &I::Item, &K, &K) -> bool,
{
let (mut min, mut max, mut min_key, mut max_key) = match it.next() {
None => return MinMaxResult::NoElements,
Some(x) => {
match it.next() {
None => return MinMaxResult::OneElement(x),
Some(y) => {
let xk = key_for(&x);
let yk = key_for(&y);
if !lt(&y, &x, &yk, &xk) {(x, y, xk, yk)} else {(y, x, yk, xk)}
}
}
}
};
loop {
// `first` and `second` are the two next elements we want to look
// at. We first compare `first` and `second` (#1). The smaller one
// is then compared to current minimum (#2). The larger one is
// compared to current maximum (#3). This way we do 3 comparisons
// for 2 elements.
let first = match it.next() {
None => break,
Some(x) => x
};
let second = match it.next() {
None => {
let first_key = key_for(&first);
if lt(&first, &min, &first_key, &min_key) {
min = first;
} else if !lt(&first, &max, &first_key, &max_key) {
max = first;
}
break;
}
Some(x) => x
};
let first_key = key_for(&first);
let second_key = key_for(&second);
if !lt(&second, &first, &second_key, &first_key) {
if lt(&first, &min, &first_key, &min_key) {
min = first;
min_key = first_key;
}
if !lt(&second, &max, &second_key, &max_key) {
max = second;
max_key = second_key;
}
} else {
if lt(&second, &min, &second_key, &min_key) {
min = second;
min_key = second_key;
}
if !lt(&first, &max, &first_key, &max_key) {
max = first;
max_key = first_key;
}
}
}
MinMaxResult::MinMax(min, max)
}

View File

@@ -0,0 +1,99 @@
use std::iter::Fuse;
use alloc::collections::VecDeque;
use crate::size_hint;
use crate::PeekingNext;
/// See [`multipeek()`] for more information.
#[derive(Clone, Debug)]
pub struct MultiPeek<I>
where I: Iterator
{
iter: Fuse<I>,
buf: VecDeque<I::Item>,
index: usize,
}
/// An iterator adaptor that allows the user to peek at multiple `.next()`
/// values without advancing the base iterator.
pub fn multipeek<I>(iterable: I) -> MultiPeek<I::IntoIter>
where I: IntoIterator
{
MultiPeek {
iter: iterable.into_iter().fuse(),
buf: VecDeque::new(),
index: 0,
}
}
impl<I> MultiPeek<I>
where I: Iterator
{
/// Reset the peeking “cursor”
pub fn reset_peek(&mut self) {
self.index = 0;
}
}
impl<I: Iterator> MultiPeek<I> {
/// Works exactly like `.next()` with the only difference that it doesn't
/// advance itself. `.peek()` can be called multiple times, to peek
/// further ahead.
/// When `.next()` is called, reset the peeking “cursor”.
pub fn peek(&mut self) -> Option<&I::Item> {
let ret = if self.index < self.buf.len() {
Some(&self.buf[self.index])
} else {
match self.iter.next() {
Some(x) => {
self.buf.push_back(x);
Some(&self.buf[self.index])
}
None => return None,
}
};
self.index += 1;
ret
}
}
impl<I> PeekingNext for MultiPeek<I>
where I: Iterator,
{
fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
where F: FnOnce(&Self::Item) -> bool
{
if self.buf.is_empty() {
if let Some(r) = self.peek() {
if !accept(r) { return None }
}
} else {
if let Some(r) = self.buf.get(0) {
if !accept(r) { return None }
}
}
self.next()
}
}
impl<I> Iterator for MultiPeek<I>
where I: Iterator
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
self.index = 0;
self.buf.pop_front().or_else(|| self.iter.next())
}
fn size_hint(&self) -> (usize, Option<usize>) {
size_hint::add_scalar(self.iter.size_hint(), self.buf.len())
}
}
// Same size
impl<I> ExactSizeIterator for MultiPeek<I>
where I: ExactSizeIterator
{}

View File

@@ -0,0 +1,96 @@
use std::iter::{Fuse, FusedIterator};
use crate::size_hint;
/// An iterator adaptor that pads a sequence to a minimum length by filling
/// missing elements using a closure.
///
/// Iterator element type is `I::Item`.
///
/// See [`.pad_using()`](crate::Itertools::pad_using) for more information.
#[derive(Clone)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct PadUsing<I, F> {
iter: Fuse<I>,
min: usize,
pos: usize,
filler: F,
}
impl<I, F> std::fmt::Debug for PadUsing<I, F>
where
I: std::fmt::Debug,
{
debug_fmt_fields!(PadUsing, iter, min, pos);
}
/// Create a new **PadUsing** iterator.
pub fn pad_using<I, F>(iter: I, min: usize, filler: F) -> PadUsing<I, F>
where I: Iterator,
F: FnMut(usize) -> I::Item
{
PadUsing {
iter: iter.fuse(),
min,
pos: 0,
filler,
}
}
impl<I, F> Iterator for PadUsing<I, F>
where I: Iterator,
F: FnMut(usize) -> I::Item
{
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
match self.iter.next() {
None => {
if self.pos < self.min {
let e = Some((self.filler)(self.pos));
self.pos += 1;
e
} else {
None
}
},
e => {
self.pos += 1;
e
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let tail = self.min.saturating_sub(self.pos);
size_hint::max(self.iter.size_hint(), (tail, Some(tail)))
}
}
impl<I, F> DoubleEndedIterator for PadUsing<I, F>
where I: DoubleEndedIterator + ExactSizeIterator,
F: FnMut(usize) -> I::Item
{
fn next_back(&mut self) -> Option<Self::Item> {
if self.min == 0 {
self.iter.next_back()
} else if self.iter.len() >= self.min {
self.min -= 1;
self.iter.next_back()
} else {
self.min -= 1;
Some((self.filler)(self.min))
}
}
}
impl<I, F> ExactSizeIterator for PadUsing<I, F>
where I: ExactSizeIterator,
F: FnMut(usize) -> I::Item
{}
impl<I, F> FusedIterator for PadUsing<I, F>
where I: FusedIterator,
F: FnMut(usize) -> I::Item
{}

102
zeroidc/vendor/itertools/src/peek_nth.rs vendored Normal file
View File

@@ -0,0 +1,102 @@
use crate::size_hint;
use crate::PeekingNext;
use alloc::collections::VecDeque;
use std::iter::Fuse;
/// See [`peek_nth()`] for more information.
#[derive(Clone, Debug)]
pub struct PeekNth<I>
where
I: Iterator,
{
iter: Fuse<I>,
buf: VecDeque<I::Item>,
}
/// A drop-in replacement for [`std::iter::Peekable`] which adds a `peek_nth`
/// method allowing the user to `peek` at a value several iterations forward
/// without advancing the base iterator.
///
/// This differs from `multipeek` in that subsequent calls to `peek` or
/// `peek_nth` will always return the same value until `next` is called
/// (making `reset_peek` unnecessary).
pub fn peek_nth<I>(iterable: I) -> PeekNth<I::IntoIter>
where
I: IntoIterator,
{
PeekNth {
iter: iterable.into_iter().fuse(),
buf: VecDeque::new(),
}
}
impl<I> PeekNth<I>
where
I: Iterator,
{
/// Works exactly like the `peek` method in `std::iter::Peekable`
pub fn peek(&mut self) -> Option<&I::Item> {
self.peek_nth(0)
}
/// Returns a reference to the `nth` value without advancing the iterator.
///
/// # Examples
///
/// Basic usage:
///
/// ```rust
/// use itertools::peek_nth;
///
/// let xs = vec![1,2,3];
/// let mut iter = peek_nth(xs.iter());
///
/// assert_eq!(iter.peek_nth(0), Some(&&1));
/// assert_eq!(iter.next(), Some(&1));
///
/// // The iterator does not advance even if we call `peek_nth` multiple times
/// assert_eq!(iter.peek_nth(0), Some(&&2));
/// assert_eq!(iter.peek_nth(1), Some(&&3));
/// assert_eq!(iter.next(), Some(&2));
///
/// // Calling `peek_nth` past the end of the iterator will return `None`
/// assert_eq!(iter.peek_nth(1), None);
/// ```
pub fn peek_nth(&mut self, n: usize) -> Option<&I::Item> {
let unbuffered_items = (n + 1).saturating_sub(self.buf.len());
self.buf.extend(self.iter.by_ref().take(unbuffered_items));
self.buf.get(n)
}
}
impl<I> Iterator for PeekNth<I>
where
I: Iterator,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
self.buf.pop_front().or_else(|| self.iter.next())
}
fn size_hint(&self) -> (usize, Option<usize>) {
size_hint::add_scalar(self.iter.size_hint(), self.buf.len())
}
}
impl<I> ExactSizeIterator for PeekNth<I> where I: ExactSizeIterator {}
impl<I> PeekingNext for PeekNth<I>
where
I: Iterator,
{
fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
where
F: FnOnce(&Self::Item) -> bool,
{
self.peek().filter(|item| accept(item))?;
self.next()
}
}

View File

@@ -0,0 +1,154 @@
use std::iter::Peekable;
use crate::PutBack;
#[cfg(feature = "use_alloc")]
use crate::PutBackN;
/// An iterator that allows peeking at an element before deciding to accept it.
///
/// See [`.peeking_take_while()`](crate::Itertools::peeking_take_while)
/// for more information.
///
/// This is implemented by peeking adaptors like peekable and put back,
/// but also by a few iterators that can be peeked natively, like the slices
/// by reference iterator (`std::slice::Iter`).
pub trait PeekingNext : Iterator {
/// Pass a reference to the next iterator element to the closure `accept`;
/// if `accept` returns true, return it as the next element,
/// else None.
fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
where F: FnOnce(&Self::Item) -> bool;
}
impl<I> PeekingNext for Peekable<I>
where I: Iterator,
{
fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
where F: FnOnce(&Self::Item) -> bool
{
if let Some(r) = self.peek() {
if !accept(r) {
return None;
}
}
self.next()
}
}
impl<I> PeekingNext for PutBack<I>
where I: Iterator,
{
fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
where F: FnOnce(&Self::Item) -> bool
{
if let Some(r) = self.next() {
if !accept(&r) {
self.put_back(r);
return None;
}
Some(r)
} else {
None
}
}
}
#[cfg(feature = "use_alloc")]
impl<I> PeekingNext for PutBackN<I>
where I: Iterator,
{
fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
where F: FnOnce(&Self::Item) -> bool
{
if let Some(r) = self.next() {
if !accept(&r) {
self.put_back(r);
return None;
}
Some(r)
} else {
None
}
}
}
/// An iterator adaptor that takes items while a closure returns `true`.
///
/// See [`.peeking_take_while()`](crate::Itertools::peeking_take_while)
/// for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct PeekingTakeWhile<'a, I: 'a, F>
where I: Iterator,
{
iter: &'a mut I,
f: F,
}
impl<'a, I: 'a, F> std::fmt::Debug for PeekingTakeWhile<'a, I, F>
where
I: Iterator + std::fmt::Debug,
{
debug_fmt_fields!(PeekingTakeWhile, iter);
}
/// Create a PeekingTakeWhile
pub fn peeking_take_while<I, F>(iter: &mut I, f: F) -> PeekingTakeWhile<I, F>
where I: Iterator,
{
PeekingTakeWhile {
iter,
f,
}
}
impl<'a, I, F> Iterator for PeekingTakeWhile<'a, I, F>
where I: PeekingNext,
F: FnMut(&I::Item) -> bool,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
self.iter.peeking_next(&mut self.f)
}
fn size_hint(&self) -> (usize, Option<usize>) {
(0, self.iter.size_hint().1)
}
}
// Some iterators are so lightweight we can simply clone them to save their
// state and use that for peeking.
macro_rules! peeking_next_by_clone {
([$($typarm:tt)*] $type_:ty) => {
impl<$($typarm)*> PeekingNext for $type_ {
fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
where F: FnOnce(&Self::Item) -> bool
{
let saved_state = self.clone();
if let Some(r) = self.next() {
if !accept(&r) {
*self = saved_state;
} else {
return Some(r)
}
}
None
}
}
}
}
peeking_next_by_clone! { ['a, T] ::std::slice::Iter<'a, T> }
peeking_next_by_clone! { ['a] ::std::str::Chars<'a> }
peeking_next_by_clone! { ['a] ::std::str::CharIndices<'a> }
peeking_next_by_clone! { ['a] ::std::str::Bytes<'a> }
peeking_next_by_clone! { ['a, T] ::std::option::Iter<'a, T> }
peeking_next_by_clone! { ['a, T] ::std::result::Iter<'a, T> }
peeking_next_by_clone! { [T] ::std::iter::Empty<T> }
#[cfg(feature = "use_alloc")]
peeking_next_by_clone! { ['a, T] alloc::collections::linked_list::Iter<'a, T> }
#[cfg(feature = "use_alloc")]
peeking_next_by_clone! { ['a, T] alloc::collections::vec_deque::Iter<'a, T> }
// cloning a Rev has no extra overhead; peekable and put backs are never DEI.
peeking_next_by_clone! { [I: Clone + PeekingNext + DoubleEndedIterator]
::std::iter::Rev<I> }

View File

@@ -0,0 +1,280 @@
use alloc::vec::Vec;
use std::fmt;
use std::iter::once;
use super::lazy_buffer::LazyBuffer;
/// An iterator adaptor that iterates through all the `k`-permutations of the
/// elements from an iterator.
///
/// See [`.permutations()`](crate::Itertools::permutations) for
/// more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Permutations<I: Iterator> {
vals: LazyBuffer<I>,
state: PermutationState,
}
impl<I> Clone for Permutations<I>
where I: Clone + Iterator,
I::Item: Clone,
{
clone_fields!(vals, state);
}
#[derive(Clone, Debug)]
enum PermutationState {
StartUnknownLen {
k: usize,
},
OngoingUnknownLen {
k: usize,
min_n: usize,
},
Complete(CompleteState),
Empty,
}
#[derive(Clone, Debug)]
enum CompleteState {
Start {
n: usize,
k: usize,
},
Ongoing {
indices: Vec<usize>,
cycles: Vec<usize>,
}
}
enum CompleteStateRemaining {
Known(usize),
Overflow,
}
impl<I> fmt::Debug for Permutations<I>
where I: Iterator + fmt::Debug,
I::Item: fmt::Debug,
{
debug_fmt_fields!(Permutations, vals, state);
}
pub fn permutations<I: Iterator>(iter: I, k: usize) -> Permutations<I> {
let mut vals = LazyBuffer::new(iter);
if k == 0 {
// Special case, yields single empty vec; `n` is irrelevant
let state = PermutationState::Complete(CompleteState::Start { n: 0, k: 0 });
return Permutations {
vals,
state
};
}
let mut enough_vals = true;
while vals.len() < k {
if !vals.get_next() {
enough_vals = false;
break;
}
}
let state = if enough_vals {
PermutationState::StartUnknownLen { k }
} else {
PermutationState::Empty
};
Permutations {
vals,
state
}
}
impl<I> Iterator for Permutations<I>
where
I: Iterator,
I::Item: Clone
{
type Item = Vec<I::Item>;
fn next(&mut self) -> Option<Self::Item> {
self.advance();
let &mut Permutations { ref vals, ref state } = self;
match *state {
PermutationState::StartUnknownLen { .. } => panic!("unexpected iterator state"),
PermutationState::OngoingUnknownLen { k, min_n } => {
let latest_idx = min_n - 1;
let indices = (0..(k - 1)).chain(once(latest_idx));
Some(indices.map(|i| vals[i].clone()).collect())
}
PermutationState::Complete(CompleteState::Start { .. }) => None,
PermutationState::Complete(CompleteState::Ongoing { ref indices, ref cycles }) => {
let k = cycles.len();
Some(indices[0..k].iter().map(|&i| vals[i].clone()).collect())
},
PermutationState::Empty => None
}
}
fn count(self) -> usize {
let Permutations { vals, state } = self;
fn from_complete(complete_state: CompleteState) -> usize {
match complete_state.remaining() {
CompleteStateRemaining::Known(count) => count,
CompleteStateRemaining::Overflow => {
panic!("Iterator count greater than usize::MAX");
}
}
}
match state {
PermutationState::StartUnknownLen { k } => {
let n = vals.len() + vals.it.count();
let complete_state = CompleteState::Start { n, k };
from_complete(complete_state)
}
PermutationState::OngoingUnknownLen { k, min_n } => {
let prev_iteration_count = min_n - k + 1;
let n = vals.len() + vals.it.count();
let complete_state = CompleteState::Start { n, k };
from_complete(complete_state) - prev_iteration_count
},
PermutationState::Complete(state) => from_complete(state),
PermutationState::Empty => 0
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
match self.state {
PermutationState::StartUnknownLen { .. } |
PermutationState::OngoingUnknownLen { .. } => (0, None), // TODO can we improve this lower bound?
PermutationState::Complete(ref state) => match state.remaining() {
CompleteStateRemaining::Known(count) => (count, Some(count)),
CompleteStateRemaining::Overflow => (::std::usize::MAX, None)
}
PermutationState::Empty => (0, Some(0))
}
}
}
impl<I> Permutations<I>
where
I: Iterator,
I::Item: Clone
{
fn advance(&mut self) {
let &mut Permutations { ref mut vals, ref mut state } = self;
*state = match *state {
PermutationState::StartUnknownLen { k } => {
PermutationState::OngoingUnknownLen { k, min_n: k }
}
PermutationState::OngoingUnknownLen { k, min_n } => {
if vals.get_next() {
PermutationState::OngoingUnknownLen { k, min_n: min_n + 1 }
} else {
let n = min_n;
let prev_iteration_count = n - k + 1;
let mut complete_state = CompleteState::Start { n, k };
// Advance the complete-state iterator to the correct point
for _ in 0..(prev_iteration_count + 1) {
complete_state.advance();
}
PermutationState::Complete(complete_state)
}
}
PermutationState::Complete(ref mut state) => {
state.advance();
return;
}
PermutationState::Empty => { return; }
};
}
}
impl CompleteState {
fn advance(&mut self) {
*self = match *self {
CompleteState::Start { n, k } => {
let indices = (0..n).collect();
let cycles = ((n - k)..n).rev().collect();
CompleteState::Ongoing {
cycles,
indices
}
},
CompleteState::Ongoing { ref mut indices, ref mut cycles } => {
let n = indices.len();
let k = cycles.len();
for i in (0..k).rev() {
if cycles[i] == 0 {
cycles[i] = n - i - 1;
let to_push = indices.remove(i);
indices.push(to_push);
} else {
let swap_index = n - cycles[i];
indices.swap(i, swap_index);
cycles[i] -= 1;
return;
}
}
CompleteState::Start { n, k }
}
}
}
fn remaining(&self) -> CompleteStateRemaining {
use self::CompleteStateRemaining::{Known, Overflow};
match *self {
CompleteState::Start { n, k } => {
if n < k {
return Known(0);
}
let count: Option<usize> = (n - k + 1..n + 1).fold(Some(1), |acc, i| {
acc.and_then(|acc| acc.checked_mul(i))
});
match count {
Some(count) => Known(count),
None => Overflow
}
}
CompleteState::Ongoing { ref indices, ref cycles } => {
let mut count: usize = 0;
for (i, &c) in cycles.iter().enumerate() {
let radix = indices.len() - i;
let next_count = count.checked_mul(radix)
.and_then(|count| count.checked_add(c));
count = match next_count {
Some(count) => count,
None => { return Overflow; }
};
}
Known(count)
}
}
}
}

View File

@@ -0,0 +1,90 @@
use std::fmt;
use std::iter::FusedIterator;
use std::usize;
use alloc::vec::Vec;
use super::combinations::{Combinations, combinations};
use super::size_hint;
/// An iterator to iterate through the powerset of the elements from an iterator.
///
/// See [`.powerset()`](crate::Itertools::powerset) for more
/// information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Powerset<I: Iterator> {
combs: Combinations<I>,
// Iterator `position` (equal to count of yielded elements).
pos: usize,
}
impl<I> Clone for Powerset<I>
where I: Clone + Iterator,
I::Item: Clone,
{
clone_fields!(combs, pos);
}
impl<I> fmt::Debug for Powerset<I>
where I: Iterator + fmt::Debug,
I::Item: fmt::Debug,
{
debug_fmt_fields!(Powerset, combs, pos);
}
/// Create a new `Powerset` from a clonable iterator.
pub fn powerset<I>(src: I) -> Powerset<I>
where I: Iterator,
I::Item: Clone,
{
Powerset {
combs: combinations(src, 0),
pos: 0,
}
}
impl<I> Iterator for Powerset<I>
where
I: Iterator,
I::Item: Clone,
{
type Item = Vec<I::Item>;
fn next(&mut self) -> Option<Self::Item> {
if let Some(elt) = self.combs.next() {
self.pos = self.pos.saturating_add(1);
Some(elt)
} else if self.combs.k() < self.combs.n()
|| self.combs.k() == 0
{
self.combs.reset(self.combs.k() + 1);
self.combs.next().map(|elt| {
self.pos = self.pos.saturating_add(1);
elt
})
} else {
None
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
// Total bounds for source iterator.
let src_total = size_hint::add_scalar(self.combs.src().size_hint(), self.combs.n());
// Total bounds for self ( length(powerset(set) == 2 ^ length(set) )
let self_total = size_hint::pow_scalar_base(2, src_total);
if self.pos < usize::MAX {
// Subtract count of elements already yielded from total.
size_hint::sub_scalar(self_total, self.pos)
} else {
// Fallback: self.pos is saturated and no longer reliable.
(0, self_total.1)
}
}
}
impl<I> FusedIterator for Powerset<I>
where
I: Iterator,
I::Item: Clone,
{}

View File

@@ -0,0 +1,97 @@
/// An iterator that produces only the `T` values as long as the
/// inner iterator produces `Ok(T)`.
///
/// Used by [`process_results`](crate::process_results), see its docs
/// for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[derive(Debug)]
pub struct ProcessResults<'a, I, E: 'a> {
error: &'a mut Result<(), E>,
iter: I,
}
impl<'a, I, T, E> Iterator for ProcessResults<'a, I, E>
where I: Iterator<Item = Result<T, E>>
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
match self.iter.next() {
Some(Ok(x)) => Some(x),
Some(Err(e)) => {
*self.error = Err(e);
None
}
None => None,
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(0, self.iter.size_hint().1)
}
fn fold<B, F>(mut self, init: B, mut f: F) -> B
where
Self: Sized,
F: FnMut(B, Self::Item) -> B,
{
let error = self.error;
self.iter
.try_fold(init, |acc, opt| match opt {
Ok(x) => Ok(f(acc, x)),
Err(e) => {
*error = Err(e);
Err(acc)
}
})
.unwrap_or_else(|e| e)
}
}
/// “Lift” a function of the values of an iterator so that it can process
/// an iterator of `Result` values instead.
///
/// `iterable` is an iterator or iterable with `Result<T, E>` elements, where
/// `T` is the value type and `E` the error type.
///
/// `processor` is a closure that receives an adapted version of the iterable
/// as the only argument — the adapted iterator produces elements of type `T`,
/// as long as the original iterator produces `Ok` values.
///
/// If the original iterable produces an error at any point, the adapted
/// iterator ends and the `process_results` function will return the
/// error iself.
///
/// Otherwise, the return value from the closure is returned wrapped
/// inside `Ok`.
///
/// # Example
///
/// ```
/// use itertools::process_results;
///
/// type R = Result<i32, &'static str>;
///
/// let first_values: Vec<R> = vec![Ok(1), Ok(0), Ok(3)];
/// let second_values: Vec<R> = vec![Ok(2), Ok(1), Err("overflow")];
///
/// // “Lift” the iterator .max() method to work on the values in Results using process_results
///
/// let first_max = process_results(first_values, |iter| iter.max().unwrap_or(0));
/// let second_max = process_results(second_values, |iter| iter.max().unwrap_or(0));
///
/// assert_eq!(first_max, Ok(3));
/// assert!(second_max.is_err());
/// ```
pub fn process_results<I, F, T, E, R>(iterable: I, processor: F) -> Result<R, E>
where I: IntoIterator<Item = Result<T, E>>,
F: FnOnce(ProcessResults<I::IntoIter, E>) -> R
{
let iter = iterable.into_iter();
let mut error = Ok(());
let result = processor(ProcessResults { error: &mut error, iter });
error.map(|_| result)
}

View File

@@ -0,0 +1,61 @@
use alloc::vec::Vec;
use crate::size_hint;
/// An iterator adaptor that allows putting multiple
/// items in front of the iterator.
///
/// Iterator element type is `I::Item`.
#[derive(Debug, Clone)]
pub struct PutBackN<I: Iterator> {
top: Vec<I::Item>,
iter: I,
}
/// Create an iterator where you can put back multiple values to the front
/// of the iteration.
///
/// Iterator element type is `I::Item`.
pub fn put_back_n<I>(iterable: I) -> PutBackN<I::IntoIter>
where I: IntoIterator
{
PutBackN {
top: Vec::new(),
iter: iterable.into_iter(),
}
}
impl<I: Iterator> PutBackN<I> {
/// Puts x in front of the iterator.
/// The values are yielded in order of the most recently put back
/// values first.
///
/// ```rust
/// use itertools::put_back_n;
///
/// let mut it = put_back_n(1..5);
/// it.next();
/// it.put_back(1);
/// it.put_back(0);
///
/// assert!(itertools::equal(it, 0..5));
/// ```
#[inline]
pub fn put_back(&mut self, x: I::Item) {
self.top.push(x);
}
}
impl<I: Iterator> Iterator for PutBackN<I> {
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.top.pop().or_else(|| self.iter.next())
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
size_hint::add_scalar(self.iter.size_hint(), self.top.len())
}
}

View File

@@ -0,0 +1,100 @@
use std::iter::{FusedIterator, IntoIterator};
use alloc::rc::Rc;
use std::cell::RefCell;
/// A wrapper for `Rc<RefCell<I>>`, that implements the `Iterator` trait.
#[derive(Debug)]
pub struct RcIter<I> {
/// The boxed iterator.
pub rciter: Rc<RefCell<I>>,
}
/// Return an iterator inside a `Rc<RefCell<_>>` wrapper.
///
/// The returned `RcIter` can be cloned, and each clone will refer back to the
/// same original iterator.
///
/// `RcIter` allows doing interesting things like using `.zip()` on an iterator with
/// itself, at the cost of runtime borrow checking which may have a performance
/// penalty.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::rciter;
/// use itertools::zip;
///
/// // In this example a range iterator is created and we iterate it using
/// // three separate handles (two of them given to zip).
/// // We also use the IntoIterator implementation for `&RcIter`.
///
/// let mut iter = rciter(0..9);
/// let mut z = zip(&iter, &iter);
///
/// assert_eq!(z.next(), Some((0, 1)));
/// assert_eq!(z.next(), Some((2, 3)));
/// assert_eq!(z.next(), Some((4, 5)));
/// assert_eq!(iter.next(), Some(6));
/// assert_eq!(z.next(), Some((7, 8)));
/// assert_eq!(z.next(), None);
/// ```
///
/// **Panics** in iterator methods if a borrow error is encountered in the
/// iterator methods. It can only happen if the `RcIter` is reentered in
/// `.next()`, i.e. if it somehow participates in an “iterator knot”
/// where it is an adaptor of itself.
pub fn rciter<I>(iterable: I) -> RcIter<I::IntoIter>
where I: IntoIterator
{
RcIter { rciter: Rc::new(RefCell::new(iterable.into_iter())) }
}
impl<I> Clone for RcIter<I> {
#[inline]
clone_fields!(rciter);
}
impl<A, I> Iterator for RcIter<I>
where I: Iterator<Item = A>
{
type Item = A;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.rciter.borrow_mut().next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
// To work sanely with other API that assume they own an iterator,
// so it can't change in other places, we can't guarantee as much
// in our size_hint. Other clones may drain values under our feet.
(0, self.rciter.borrow().size_hint().1)
}
}
impl<I> DoubleEndedIterator for RcIter<I>
where I: DoubleEndedIterator
{
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
self.rciter.borrow_mut().next_back()
}
}
/// Return an iterator from `&RcIter<I>` (by simply cloning it).
impl<'a, I> IntoIterator for &'a RcIter<I>
where I: Iterator
{
type Item = I::Item;
type IntoIter = RcIter<I>;
fn into_iter(self) -> RcIter<I> {
self.clone()
}
}
impl<A, I> FusedIterator for RcIter<I>
where I: FusedIterator<Item = A>
{}

59
zeroidc/vendor/itertools/src/repeatn.rs vendored Normal file
View File

@@ -0,0 +1,59 @@
use std::iter::FusedIterator;
/// An iterator that produces *n* repetitions of an element.
///
/// See [`repeat_n()`](crate::repeat_n) for more information.
#[must_use = "iterators are lazy and do nothing unless consumed"]
#[derive(Clone, Debug)]
pub struct RepeatN<A> {
elt: Option<A>,
n: usize,
}
/// Create an iterator that produces `n` repetitions of `element`.
pub fn repeat_n<A>(element: A, n: usize) -> RepeatN<A>
where A: Clone,
{
if n == 0 {
RepeatN { elt: None, n, }
} else {
RepeatN { elt: Some(element), n, }
}
}
impl<A> Iterator for RepeatN<A>
where A: Clone
{
type Item = A;
fn next(&mut self) -> Option<Self::Item> {
if self.n > 1 {
self.n -= 1;
self.elt.as_ref().cloned()
} else {
self.n = 0;
self.elt.take()
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.n, Some(self.n))
}
}
impl<A> DoubleEndedIterator for RepeatN<A>
where A: Clone
{
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
self.next()
}
}
impl<A> ExactSizeIterator for RepeatN<A>
where A: Clone
{}
impl<A> FusedIterator for RepeatN<A>
where A: Clone
{}

View File

@@ -0,0 +1,119 @@
//! Arithmetic on **Iterator** *.size_hint()* values.
//!
use std::usize;
use std::cmp;
use std::u32;
/// **SizeHint** is the return type of **Iterator::size_hint()**.
pub type SizeHint = (usize, Option<usize>);
/// Add **SizeHint** correctly.
#[inline]
pub fn add(a: SizeHint, b: SizeHint) -> SizeHint {
let min = a.0.saturating_add(b.0);
let max = match (a.1, b.1) {
(Some(x), Some(y)) => x.checked_add(y),
_ => None,
};
(min, max)
}
/// Add **x** correctly to a **SizeHint**.
#[inline]
pub fn add_scalar(sh: SizeHint, x: usize) -> SizeHint {
let (mut low, mut hi) = sh;
low = low.saturating_add(x);
hi = hi.and_then(|elt| elt.checked_add(x));
(low, hi)
}
/// Sbb **x** correctly to a **SizeHint**.
#[inline]
#[allow(dead_code)]
pub fn sub_scalar(sh: SizeHint, x: usize) -> SizeHint {
let (mut low, mut hi) = sh;
low = low.saturating_sub(x);
hi = hi.map(|elt| elt.saturating_sub(x));
(low, hi)
}
/// Multiply **SizeHint** correctly
///
/// ```ignore
/// use std::usize;
/// use itertools::size_hint;
///
/// assert_eq!(size_hint::mul((3, Some(4)), (3, Some(4))),
/// (9, Some(16)));
///
/// assert_eq!(size_hint::mul((3, Some(4)), (usize::MAX, None)),
/// (usize::MAX, None));
///
/// assert_eq!(size_hint::mul((3, None), (0, Some(0))),
/// (0, Some(0)));
/// ```
#[inline]
pub fn mul(a: SizeHint, b: SizeHint) -> SizeHint {
let low = a.0.saturating_mul(b.0);
let hi = match (a.1, b.1) {
(Some(x), Some(y)) => x.checked_mul(y),
(Some(0), None) | (None, Some(0)) => Some(0),
_ => None,
};
(low, hi)
}
/// Multiply **x** correctly with a **SizeHint**.
#[inline]
pub fn mul_scalar(sh: SizeHint, x: usize) -> SizeHint {
let (mut low, mut hi) = sh;
low = low.saturating_mul(x);
hi = hi.and_then(|elt| elt.checked_mul(x));
(low, hi)
}
/// Raise `base` correctly by a **`SizeHint`** exponent.
#[inline]
pub fn pow_scalar_base(base: usize, exp: SizeHint) -> SizeHint {
let exp_low = cmp::min(exp.0, u32::MAX as usize) as u32;
let low = base.saturating_pow(exp_low);
let hi = exp.1.and_then(|exp| {
let exp_hi = cmp::min(exp, u32::MAX as usize) as u32;
base.checked_pow(exp_hi)
});
(low, hi)
}
/// Return the maximum
#[inline]
pub fn max(a: SizeHint, b: SizeHint) -> SizeHint {
let (a_lower, a_upper) = a;
let (b_lower, b_upper) = b;
let lower = cmp::max(a_lower, b_lower);
let upper = match (a_upper, b_upper) {
(Some(x), Some(y)) => Some(cmp::max(x, y)),
_ => None,
};
(lower, upper)
}
/// Return the minimum
#[inline]
pub fn min(a: SizeHint, b: SizeHint) -> SizeHint {
let (a_lower, a_upper) = a;
let (b_lower, b_upper) = b;
let lower = cmp::min(a_lower, b_lower);
let upper = match (a_upper, b_upper) {
(Some(u1), Some(u2)) => Some(cmp::min(u1, u2)),
_ => a_upper.or(b_upper),
};
(lower, upper)
}

183
zeroidc/vendor/itertools/src/sources.rs vendored Normal file
View File

@@ -0,0 +1,183 @@
//! Iterators that are sources (produce elements from parameters,
//! not from another iterator).
#![allow(deprecated)]
use std::fmt;
use std::mem;
/// See [`repeat_call`](crate::repeat_call) for more information.
#[derive(Clone)]
#[deprecated(note="Use std repeat_with() instead", since="0.8.0")]
pub struct RepeatCall<F> {
f: F,
}
impl<F> fmt::Debug for RepeatCall<F>
{
debug_fmt_fields!(RepeatCall, );
}
/// An iterator source that produces elements indefinitely by calling
/// a given closure.
///
/// Iterator element type is the return type of the closure.
///
/// ```
/// use itertools::repeat_call;
/// use itertools::Itertools;
/// use std::collections::BinaryHeap;
///
/// let mut heap = BinaryHeap::from(vec![2, 5, 3, 7, 8]);
///
/// // extract each element in sorted order
/// for element in repeat_call(|| heap.pop()).while_some() {
/// print!("{}", element);
/// }
///
/// itertools::assert_equal(
/// repeat_call(|| 1).take(5),
/// vec![1, 1, 1, 1, 1]
/// );
/// ```
#[deprecated(note="Use std repeat_with() instead", since="0.8.0")]
pub fn repeat_call<F, A>(function: F) -> RepeatCall<F>
where F: FnMut() -> A
{
RepeatCall { f: function }
}
impl<A, F> Iterator for RepeatCall<F>
where F: FnMut() -> A
{
type Item = A;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
Some((self.f)())
}
fn size_hint(&self) -> (usize, Option<usize>) {
(usize::max_value(), None)
}
}
/// Creates a new unfold source with the specified closure as the "iterator
/// function" and an initial state to eventually pass to the closure
///
/// `unfold` is a general iterator builder: it has a mutable state value,
/// and a closure with access to the state that produces the next value.
///
/// This more or less equivalent to a regular struct with an [`Iterator`]
/// implementation, and is useful for one-off iterators.
///
/// ```
/// // an iterator that yields sequential Fibonacci numbers,
/// // and stops at the maximum representable value.
///
/// use itertools::unfold;
///
/// let mut fibonacci = unfold((1u32, 1u32), |(x1, x2)| {
/// // Attempt to get the next Fibonacci number
/// let next = x1.saturating_add(*x2);
///
/// // Shift left: ret <- x1 <- x2 <- next
/// let ret = *x1;
/// *x1 = *x2;
/// *x2 = next;
///
/// // If addition has saturated at the maximum, we are finished
/// if ret == *x1 && ret > 1 {
/// None
/// } else {
/// Some(ret)
/// }
/// });
///
/// itertools::assert_equal(fibonacci.by_ref().take(8),
/// vec![1, 1, 2, 3, 5, 8, 13, 21]);
/// assert_eq!(fibonacci.last(), Some(2_971_215_073))
/// ```
pub fn unfold<A, St, F>(initial_state: St, f: F) -> Unfold<St, F>
where F: FnMut(&mut St) -> Option<A>
{
Unfold {
f,
state: initial_state,
}
}
impl<St, F> fmt::Debug for Unfold<St, F>
where St: fmt::Debug,
{
debug_fmt_fields!(Unfold, state);
}
/// See [`unfold`](crate::unfold) for more information.
#[derive(Clone)]
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct Unfold<St, F> {
f: F,
/// Internal state that will be passed to the closure on the next iteration
pub state: St,
}
impl<A, St, F> Iterator for Unfold<St, F>
where F: FnMut(&mut St) -> Option<A>
{
type Item = A;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
(self.f)(&mut self.state)
}
}
/// An iterator that infinitely applies function to value and yields results.
///
/// This `struct` is created by the [`iterate()`](crate::iterate) function.
/// See its documentation for more.
#[derive(Clone)]
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct Iterate<St, F> {
state: St,
f: F,
}
impl<St, F> fmt::Debug for Iterate<St, F>
where St: fmt::Debug,
{
debug_fmt_fields!(Iterate, state);
}
impl<St, F> Iterator for Iterate<St, F>
where F: FnMut(&St) -> St
{
type Item = St;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
let next_state = (self.f)(&self.state);
Some(mem::replace(&mut self.state, next_state))
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(usize::max_value(), None)
}
}
/// Creates a new iterator that infinitely applies function to value and yields results.
///
/// ```
/// use itertools::iterate;
///
/// itertools::assert_equal(iterate(1, |&i| i * 3).take(5), vec![1, 3, 9, 27, 81]);
/// ```
pub fn iterate<St, F>(initial_value: St, f: F) -> Iterate<St, F>
where F: FnMut(&St) -> St
{
Iterate {
state: initial_value,
f,
}
}

78
zeroidc/vendor/itertools/src/tee.rs vendored Normal file
View File

@@ -0,0 +1,78 @@
use super::size_hint;
use std::cell::RefCell;
use alloc::collections::VecDeque;
use alloc::rc::Rc;
/// Common buffer object for the two tee halves
#[derive(Debug)]
struct TeeBuffer<A, I> {
backlog: VecDeque<A>,
iter: I,
/// The owner field indicates which id should read from the backlog
owner: bool,
}
/// One half of an iterator pair where both return the same elements.
///
/// See [`.tee()`](crate::Itertools::tee) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[derive(Debug)]
pub struct Tee<I>
where I: Iterator
{
rcbuffer: Rc<RefCell<TeeBuffer<I::Item, I>>>,
id: bool,
}
pub fn new<I>(iter: I) -> (Tee<I>, Tee<I>)
where I: Iterator
{
let buffer = TeeBuffer{backlog: VecDeque::new(), iter, owner: false};
let t1 = Tee{rcbuffer: Rc::new(RefCell::new(buffer)), id: true};
let t2 = Tee{rcbuffer: t1.rcbuffer.clone(), id: false};
(t1, t2)
}
impl<I> Iterator for Tee<I>
where I: Iterator,
I::Item: Clone
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
// .borrow_mut may fail here -- but only if the user has tied some kind of weird
// knot where the iterator refers back to itself.
let mut buffer = self.rcbuffer.borrow_mut();
if buffer.owner == self.id {
match buffer.backlog.pop_front() {
None => {}
some_elt => return some_elt,
}
}
match buffer.iter.next() {
None => None,
Some(elt) => {
buffer.backlog.push_back(elt.clone());
buffer.owner = !self.id;
Some(elt)
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let buffer = self.rcbuffer.borrow();
let sh = buffer.iter.size_hint();
if buffer.owner == self.id {
let log_len = buffer.backlog.len();
size_hint::add_scalar(sh, log_len)
} else {
sh
}
}
}
impl<I> ExactSizeIterator for Tee<I>
where I: ExactSizeIterator,
I::Item: Clone
{}

View File

@@ -0,0 +1,331 @@
//! Some iterator that produces tuples
use std::iter::Fuse;
use std::iter::FusedIterator;
use std::iter::Take;
use std::iter::Cycle;
use std::marker::PhantomData;
// `HomogeneousTuple` is a public facade for `TupleCollect`, allowing
// tuple-related methods to be used by clients in generic contexts, while
// hiding the implementation details of `TupleCollect`.
// See https://github.com/rust-itertools/itertools/issues/387
/// Implemented for homogeneous tuples of size up to 12.
pub trait HomogeneousTuple
: TupleCollect
{}
impl<T: TupleCollect> HomogeneousTuple for T {}
/// An iterator over a incomplete tuple.
///
/// See [`.tuples()`](crate::Itertools::tuples) and
/// [`Tuples::into_buffer()`].
#[derive(Clone, Debug)]
pub struct TupleBuffer<T>
where T: HomogeneousTuple
{
cur: usize,
buf: T::Buffer,
}
impl<T> TupleBuffer<T>
where T: HomogeneousTuple
{
fn new(buf: T::Buffer) -> Self {
TupleBuffer {
cur: 0,
buf,
}
}
}
impl<T> Iterator for TupleBuffer<T>
where T: HomogeneousTuple
{
type Item = T::Item;
fn next(&mut self) -> Option<Self::Item> {
let s = self.buf.as_mut();
if let Some(ref mut item) = s.get_mut(self.cur) {
self.cur += 1;
item.take()
} else {
None
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let buffer = &self.buf.as_ref()[self.cur..];
let len = if buffer.is_empty() {
0
} else {
buffer.iter()
.position(|x| x.is_none())
.unwrap_or_else(|| buffer.len())
};
(len, Some(len))
}
}
impl<T> ExactSizeIterator for TupleBuffer<T>
where T: HomogeneousTuple
{
}
/// An iterator that groups the items in tuples of a specific size.
///
/// See [`.tuples()`](crate::Itertools::tuples) for more information.
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Tuples<I, T>
where I: Iterator<Item = T::Item>,
T: HomogeneousTuple
{
iter: Fuse<I>,
buf: T::Buffer,
}
/// Create a new tuples iterator.
pub fn tuples<I, T>(iter: I) -> Tuples<I, T>
where I: Iterator<Item = T::Item>,
T: HomogeneousTuple
{
Tuples {
iter: iter.fuse(),
buf: Default::default(),
}
}
impl<I, T> Iterator for Tuples<I, T>
where I: Iterator<Item = T::Item>,
T: HomogeneousTuple
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
T::collect_from_iter(&mut self.iter, &mut self.buf)
}
}
impl<I, T> Tuples<I, T>
where I: Iterator<Item = T::Item>,
T: HomogeneousTuple
{
/// Return a buffer with the produced items that was not enough to be grouped in a tuple.
///
/// ```
/// use itertools::Itertools;
///
/// let mut iter = (0..5).tuples();
/// assert_eq!(Some((0, 1, 2)), iter.next());
/// assert_eq!(None, iter.next());
/// itertools::assert_equal(vec![3, 4], iter.into_buffer());
/// ```
pub fn into_buffer(self) -> TupleBuffer<T> {
TupleBuffer::new(self.buf)
}
}
/// An iterator over all contiguous windows that produces tuples of a specific size.
///
/// See [`.tuple_windows()`](crate::Itertools::tuple_windows) for more
/// information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[derive(Clone, Debug)]
pub struct TupleWindows<I, T>
where I: Iterator<Item = T::Item>,
T: HomogeneousTuple
{
iter: I,
last: Option<T>,
}
/// Create a new tuple windows iterator.
pub fn tuple_windows<I, T>(mut iter: I) -> TupleWindows<I, T>
where I: Iterator<Item = T::Item>,
T: HomogeneousTuple,
T::Item: Clone
{
use std::iter::once;
let mut last = None;
if T::num_items() != 1 {
// put in a duplicate item in front of the tuple; this simplifies
// .next() function.
if let Some(item) = iter.next() {
let iter = once(item.clone()).chain(once(item)).chain(&mut iter);
last = T::collect_from_iter_no_buf(iter);
}
}
TupleWindows {
last,
iter,
}
}
impl<I, T> Iterator for TupleWindows<I, T>
where I: Iterator<Item = T::Item>,
T: HomogeneousTuple + Clone,
T::Item: Clone
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
if T::num_items() == 1 {
return T::collect_from_iter_no_buf(&mut self.iter)
}
if let Some(ref mut last) = self.last {
if let Some(new) = self.iter.next() {
last.left_shift_push(new);
return Some(last.clone());
}
}
None
}
}
impl<I, T> FusedIterator for TupleWindows<I, T>
where I: FusedIterator<Item = T::Item>,
T: HomogeneousTuple + Clone,
T::Item: Clone
{}
/// An iterator over all windows,wrapping back to the first elements when the
/// window would otherwise exceed the length of the iterator, producing tuples
/// of a specific size.
///
/// See [`.circular_tuple_windows()`](crate::Itertools::circular_tuple_windows) for more
/// information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[derive(Debug)]
pub struct CircularTupleWindows<I, T: Clone>
where I: Iterator<Item = T::Item> + Clone,
T: TupleCollect + Clone
{
iter: Take<TupleWindows<Cycle<I>, T>>,
phantom_data: PhantomData<T>
}
pub fn circular_tuple_windows<I, T>(iter: I) -> CircularTupleWindows<I, T>
where I: Iterator<Item = T::Item> + Clone + ExactSizeIterator,
T: TupleCollect + Clone,
T::Item: Clone
{
let len = iter.len();
let iter = tuple_windows(iter.cycle()).take(len);
CircularTupleWindows {
iter,
phantom_data: PhantomData{}
}
}
impl<I, T> Iterator for CircularTupleWindows<I, T>
where I: Iterator<Item = T::Item> + Clone,
T: TupleCollect + Clone,
T::Item: Clone
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
}
pub trait TupleCollect: Sized {
type Item;
type Buffer: Default + AsRef<[Option<Self::Item>]> + AsMut<[Option<Self::Item>]>;
fn collect_from_iter<I>(iter: I, buf: &mut Self::Buffer) -> Option<Self>
where I: IntoIterator<Item = Self::Item>;
fn collect_from_iter_no_buf<I>(iter: I) -> Option<Self>
where I: IntoIterator<Item = Self::Item>;
fn num_items() -> usize;
fn left_shift_push(&mut self, item: Self::Item);
}
macro_rules! count_ident{
() => {0};
($i0:ident, $($i:ident,)*) => {1 + count_ident!($($i,)*)};
}
macro_rules! rev_for_each_ident{
($m:ident, ) => {};
($m:ident, $i0:ident, $($i:ident,)*) => {
rev_for_each_ident!($m, $($i,)*);
$m!($i0);
};
}
macro_rules! impl_tuple_collect {
($dummy:ident,) => {}; // stop
($dummy:ident, $($Y:ident,)*) => (
impl_tuple_collect!($($Y,)*);
impl<A> TupleCollect for ($(ignore_ident!($Y, A),)*) {
type Item = A;
type Buffer = [Option<A>; count_ident!($($Y,)*) - 1];
#[allow(unused_assignments, unused_mut)]
fn collect_from_iter<I>(iter: I, buf: &mut Self::Buffer) -> Option<Self>
where I: IntoIterator<Item = A>
{
let mut iter = iter.into_iter();
$(
let mut $Y = None;
)*
loop {
$(
$Y = iter.next();
if $Y.is_none() {
break
}
)*
return Some(($($Y.unwrap()),*,))
}
let mut i = 0;
let mut s = buf.as_mut();
$(
if i < s.len() {
s[i] = $Y;
i += 1;
}
)*
return None;
}
fn collect_from_iter_no_buf<I>(iter: I) -> Option<Self>
where I: IntoIterator<Item = A>
{
let mut iter = iter.into_iter();
Some(($(
{ let $Y = iter.next()?; $Y },
)*))
}
fn num_items() -> usize {
count_ident!($($Y,)*)
}
fn left_shift_push(&mut self, mut item: A) {
use std::mem::replace;
let &mut ($(ref mut $Y),*,) = self;
macro_rules! replace_item{($i:ident) => {
item = replace($i, item);
}}
rev_for_each_ident!(replace_item, $($Y,)*);
drop(item);
}
}
)
}
impl_tuple_collect!(dummy, a, b, c, d, e, f, g, h, i, j, k, l,);

View File

@@ -0,0 +1,178 @@
use std::collections::HashMap;
use std::collections::hash_map::{Entry};
use std::hash::Hash;
use std::fmt;
use std::iter::FusedIterator;
/// An iterator adapter to filter out duplicate elements.
///
/// See [`.unique_by()`](crate::Itertools::unique) for more information.
#[derive(Clone)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct UniqueBy<I: Iterator, V, F> {
iter: I,
// Use a hashmap for the entry API
used: HashMap<V, ()>,
f: F,
}
impl<I, V, F> fmt::Debug for UniqueBy<I, V, F>
where I: Iterator + fmt::Debug,
V: fmt::Debug + Hash + Eq,
{
debug_fmt_fields!(UniqueBy, iter, used);
}
/// Create a new `UniqueBy` iterator.
pub fn unique_by<I, V, F>(iter: I, f: F) -> UniqueBy<I, V, F>
where V: Eq + Hash,
F: FnMut(&I::Item) -> V,
I: Iterator,
{
UniqueBy {
iter,
used: HashMap::new(),
f,
}
}
// count the number of new unique keys in iterable (`used` is the set already seen)
fn count_new_keys<I, K>(mut used: HashMap<K, ()>, iterable: I) -> usize
where I: IntoIterator<Item=K>,
K: Hash + Eq,
{
let iter = iterable.into_iter();
let current_used = used.len();
used.extend(iter.map(|key| (key, ())));
used.len() - current_used
}
impl<I, V, F> Iterator for UniqueBy<I, V, F>
where I: Iterator,
V: Eq + Hash,
F: FnMut(&I::Item) -> V
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
while let Some(v) = self.iter.next() {
let key = (self.f)(&v);
if self.used.insert(key, ()).is_none() {
return Some(v);
}
}
None
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (low, hi) = self.iter.size_hint();
((low > 0 && self.used.is_empty()) as usize, hi)
}
fn count(self) -> usize {
let mut key_f = self.f;
count_new_keys(self.used, self.iter.map(move |elt| key_f(&elt)))
}
}
impl<I, V, F> DoubleEndedIterator for UniqueBy<I, V, F>
where I: DoubleEndedIterator,
V: Eq + Hash,
F: FnMut(&I::Item) -> V
{
fn next_back(&mut self) -> Option<Self::Item> {
while let Some(v) = self.iter.next_back() {
let key = (self.f)(&v);
if self.used.insert(key, ()).is_none() {
return Some(v);
}
}
None
}
}
impl<I, V, F> FusedIterator for UniqueBy<I, V, F>
where I: FusedIterator,
V: Eq + Hash,
F: FnMut(&I::Item) -> V
{}
impl<I> Iterator for Unique<I>
where I: Iterator,
I::Item: Eq + Hash + Clone
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
while let Some(v) = self.iter.iter.next() {
if let Entry::Vacant(entry) = self.iter.used.entry(v) {
let elt = entry.key().clone();
entry.insert(());
return Some(elt);
}
}
None
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (low, hi) = self.iter.iter.size_hint();
((low > 0 && self.iter.used.is_empty()) as usize, hi)
}
fn count(self) -> usize {
count_new_keys(self.iter.used, self.iter.iter)
}
}
impl<I> DoubleEndedIterator for Unique<I>
where I: DoubleEndedIterator,
I::Item: Eq + Hash + Clone
{
fn next_back(&mut self) -> Option<Self::Item> {
while let Some(v) = self.iter.iter.next_back() {
if let Entry::Vacant(entry) = self.iter.used.entry(v) {
let elt = entry.key().clone();
entry.insert(());
return Some(elt);
}
}
None
}
}
impl<I> FusedIterator for Unique<I>
where I: FusedIterator,
I::Item: Eq + Hash + Clone
{}
/// An iterator adapter to filter out duplicate elements.
///
/// See [`.unique()`](crate::Itertools::unique) for more information.
#[derive(Clone)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Unique<I: Iterator> {
iter: UniqueBy<I, I::Item, ()>,
}
impl<I> fmt::Debug for Unique<I>
where I: Iterator + fmt::Debug,
I::Item: Hash + Eq + fmt::Debug,
{
debug_fmt_fields!(Unique, iter);
}
pub fn unique<I>(iter: I) -> Unique<I>
where I: Iterator,
I::Item: Eq + Hash,
{
Unique {
iter: UniqueBy {
iter,
used: HashMap::new(),
f: (),
}
}
}

View File

@@ -0,0 +1,80 @@
/// Converts an iterator of tuples into a tuple of containers.
///
/// `unzip()` consumes an entire iterator of n-ary tuples, producing `n` collections, one for each
/// column.
///
/// This function is, in some sense, the opposite of [`multizip`].
///
/// ```
/// use itertools::multiunzip;
///
/// let inputs = vec![(1, 2, 3), (4, 5, 6), (7, 8, 9)];
///
/// let (a, b, c): (Vec<_>, Vec<_>, Vec<_>) = multiunzip(inputs);
///
/// assert_eq!(a, vec![1, 4, 7]);
/// assert_eq!(b, vec![2, 5, 8]);
/// assert_eq!(c, vec![3, 6, 9]);
/// ```
///
/// [`multizip`]: crate::multizip
pub fn multiunzip<FromI, I>(i: I) -> FromI
where
I: IntoIterator,
I::IntoIter: MultiUnzip<FromI>,
{
i.into_iter().multiunzip()
}
/// An iterator that can be unzipped into multiple collections.
///
/// See [`.multiunzip()`](crate::Itertools::multiunzip) for more information.
pub trait MultiUnzip<FromI>: Iterator {
/// Unzip this iterator into multiple collections.
fn multiunzip(self) -> FromI;
}
macro_rules! impl_unzip_iter {
($($T:ident => $FromT:ident),*) => (
#[allow(non_snake_case)]
impl<IT: Iterator<Item = ($($T,)*)>, $($T, $FromT: Default + Extend<$T>),* > MultiUnzip<($($FromT,)*)> for IT {
fn multiunzip(self) -> ($($FromT,)*) {
// This implementation mirrors the logic of Iterator::unzip as close as possible.
// Unfortunately a lot of the used api there is still unstable represented by
// the commented out parts that follow.
//
// https://doc.rust-lang.org/src/core/iter/traits/iterator.rs.html#2816-2844
let mut res = ($($FromT::default(),)*);
let ($($FromT,)*) = &mut res;
// Still unstable #72631
// let (lower_bound, _) = self.size_hint();
// if lower_bound > 0 {
// $($FromT.extend_reserve(lower_bound);)*
// }
self.fold((), |(), ($($T,)*)| {
// Still unstable #72631
// $( $FromT.extend_one($T); )*
$( $FromT.extend(std::iter::once($T)); )*
});
res
}
}
);
}
impl_unzip_iter!();
impl_unzip_iter!(A => FromA);
impl_unzip_iter!(A => FromA, B => FromB);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF, G => FromG);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF, G => FromG, H => FromH);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF, G => FromG, H => FromH, I => FromI);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF, G => FromG, H => FromH, I => FromI, J => FromJ);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF, G => FromG, H => FromH, I => FromI, J => FromJ, K => FromK);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF, G => FromG, H => FromH, I => FromI, J => FromJ, K => FromK, L => FromL);

View File

@@ -0,0 +1,100 @@
use std::iter::{Fuse,Peekable, FusedIterator};
/// An iterator adaptor that wraps each element in an [`Position`].
///
/// Iterator element type is `Position<I::Item>`.
///
/// See [`.with_position()`](crate::Itertools::with_position) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct WithPosition<I>
where I: Iterator,
{
handled_first: bool,
peekable: Peekable<Fuse<I>>,
}
impl<I> Clone for WithPosition<I>
where I: Clone + Iterator,
I::Item: Clone,
{
clone_fields!(handled_first, peekable);
}
/// Create a new `WithPosition` iterator.
pub fn with_position<I>(iter: I) -> WithPosition<I>
where I: Iterator,
{
WithPosition {
handled_first: false,
peekable: iter.fuse().peekable(),
}
}
/// A value yielded by `WithPosition`.
/// Indicates the position of this element in the iterator results.
///
/// See [`.with_position()`](crate::Itertools::with_position) for more information.
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum Position<T> {
/// This is the first element.
First(T),
/// This is neither the first nor the last element.
Middle(T),
/// This is the last element.
Last(T),
/// This is the only element.
Only(T),
}
impl<T> Position<T> {
/// Return the inner value.
pub fn into_inner(self) -> T {
match self {
Position::First(x) |
Position::Middle(x) |
Position::Last(x) |
Position::Only(x) => x,
}
}
}
impl<I: Iterator> Iterator for WithPosition<I> {
type Item = Position<I::Item>;
fn next(&mut self) -> Option<Self::Item> {
match self.peekable.next() {
Some(item) => {
if !self.handled_first {
// Haven't seen the first item yet, and there is one to give.
self.handled_first = true;
// Peek to see if this is also the last item,
// in which case tag it as `Only`.
match self.peekable.peek() {
Some(_) => Some(Position::First(item)),
None => Some(Position::Only(item)),
}
} else {
// Have seen the first item, and there's something left.
// Peek to see if this is the last item.
match self.peekable.peek() {
Some(_) => Some(Position::Middle(item)),
None => Some(Position::Last(item)),
}
}
}
// Iterator is finished.
None => None,
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.peekable.size_hint()
}
}
impl<I> ExactSizeIterator for WithPosition<I>
where I: ExactSizeIterator,
{ }
impl<I: Iterator> FusedIterator for WithPosition<I>
{}

View File

@@ -0,0 +1,60 @@
use super::size_hint;
/// An iterator which iterates two other iterators simultaneously
///
/// See [`.zip_eq()`](crate::Itertools::zip_eq) for more information.
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct ZipEq<I, J> {
a: I,
b: J,
}
/// Iterate `i` and `j` in lock step.
///
/// **Panics** if the iterators are not of the same length.
///
/// [`IntoIterator`] enabled version of [`Itertools::zip_eq`](crate::Itertools::zip_eq).
///
/// ```
/// use itertools::zip_eq;
///
/// let data = [1, 2, 3, 4, 5];
/// for (a, b) in zip_eq(&data[..data.len() - 1], &data[1..]) {
/// /* loop body */
/// }
/// ```
pub fn zip_eq<I, J>(i: I, j: J) -> ZipEq<I::IntoIter, J::IntoIter>
where I: IntoIterator,
J: IntoIterator
{
ZipEq {
a: i.into_iter(),
b: j.into_iter(),
}
}
impl<I, J> Iterator for ZipEq<I, J>
where I: Iterator,
J: Iterator
{
type Item = (I::Item, J::Item);
fn next(&mut self) -> Option<Self::Item> {
match (self.a.next(), self.b.next()) {
(None, None) => None,
(Some(a), Some(b)) => Some((a, b)),
(None, Some(_)) | (Some(_), None) =>
panic!("itertools: .zip_eq() reached end of one iterator before the other")
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
size_hint::min(self.a.size_hint(), self.b.size_hint())
}
}
impl<I, J> ExactSizeIterator for ZipEq<I, J>
where I: ExactSizeIterator,
J: ExactSizeIterator
{}

View File

@@ -0,0 +1,83 @@
use std::cmp::Ordering::{Equal, Greater, Less};
use super::size_hint;
use std::iter::{Fuse, FusedIterator};
use crate::either_or_both::EitherOrBoth;
// ZipLongest originally written by SimonSapin,
// and dedicated to itertools https://github.com/rust-lang/rust/pull/19283
/// An iterator which iterates two other iterators simultaneously
///
/// This iterator is *fused*.
///
/// See [`.zip_longest()`](crate::Itertools::zip_longest) for more information.
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct ZipLongest<T, U> {
a: Fuse<T>,
b: Fuse<U>,
}
/// Create a new `ZipLongest` iterator.
pub fn zip_longest<T, U>(a: T, b: U) -> ZipLongest<T, U>
where T: Iterator,
U: Iterator
{
ZipLongest {
a: a.fuse(),
b: b.fuse(),
}
}
impl<T, U> Iterator for ZipLongest<T, U>
where T: Iterator,
U: Iterator
{
type Item = EitherOrBoth<T::Item, U::Item>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
match (self.a.next(), self.b.next()) {
(None, None) => None,
(Some(a), None) => Some(EitherOrBoth::Left(a)),
(None, Some(b)) => Some(EitherOrBoth::Right(b)),
(Some(a), Some(b)) => Some(EitherOrBoth::Both(a, b)),
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
size_hint::max(self.a.size_hint(), self.b.size_hint())
}
}
impl<T, U> DoubleEndedIterator for ZipLongest<T, U>
where T: DoubleEndedIterator + ExactSizeIterator,
U: DoubleEndedIterator + ExactSizeIterator
{
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
match self.a.len().cmp(&self.b.len()) {
Equal => match (self.a.next_back(), self.b.next_back()) {
(None, None) => None,
(Some(a), Some(b)) => Some(EitherOrBoth::Both(a, b)),
// These can only happen if .len() is inconsistent with .next_back()
(Some(a), None) => Some(EitherOrBoth::Left(a)),
(None, Some(b)) => Some(EitherOrBoth::Right(b)),
},
Greater => self.a.next_back().map(EitherOrBoth::Left),
Less => self.b.next_back().map(EitherOrBoth::Right),
}
}
}
impl<T, U> ExactSizeIterator for ZipLongest<T, U>
where T: ExactSizeIterator,
U: ExactSizeIterator
{}
impl<T, U> FusedIterator for ZipLongest<T, U>
where T: Iterator,
U: Iterator
{}

137
zeroidc/vendor/itertools/src/ziptuple.rs vendored Normal file
View File

@@ -0,0 +1,137 @@
use super::size_hint;
/// See [`multizip`] for more information.
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Zip<T> {
t: T,
}
/// An iterator that generalizes *.zip()* and allows running multiple iterators in lockstep.
///
/// The iterator `Zip<(I, J, ..., M)>` is formed from a tuple of iterators (or values that
/// implement [`IntoIterator`]) and yields elements
/// until any of the subiterators yields `None`.
///
/// The iterator element type is a tuple like like `(A, B, ..., E)` where `A` to `E` are the
/// element types of the subiterator.
///
/// **Note:** The result of this macro is a value of a named type (`Zip<(I, J,
/// ..)>` of each component iterator `I, J, ...`) if each component iterator is
/// nameable.
///
/// Prefer [`izip!()`] over `multizip` for the performance benefits of using the
/// standard library `.zip()`. Prefer `multizip` if a nameable type is needed.
///
/// ```
/// use itertools::multizip;
///
/// // iterate over three sequences side-by-side
/// let mut results = [0, 0, 0, 0];
/// let inputs = [3, 7, 9, 6];
///
/// for (r, index, input) in multizip((&mut results, 0..10, &inputs)) {
/// *r = index * 10 + input;
/// }
///
/// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]);
/// ```
pub fn multizip<T, U>(t: U) -> Zip<T>
where Zip<T>: From<U>,
Zip<T>: Iterator,
{
Zip::from(t)
}
macro_rules! impl_zip_iter {
($($B:ident),*) => (
#[allow(non_snake_case)]
impl<$($B: IntoIterator),*> From<($($B,)*)> for Zip<($($B::IntoIter,)*)> {
fn from(t: ($($B,)*)) -> Self {
let ($($B,)*) = t;
Zip { t: ($($B.into_iter(),)*) }
}
}
#[allow(non_snake_case)]
#[allow(unused_assignments)]
impl<$($B),*> Iterator for Zip<($($B,)*)>
where
$(
$B: Iterator,
)*
{
type Item = ($($B::Item,)*);
fn next(&mut self) -> Option<Self::Item>
{
let ($(ref mut $B,)*) = self.t;
// NOTE: Just like iter::Zip, we check the iterators
// for None in order. We may finish unevenly (some
// iterators gave n + 1 elements, some only n).
$(
let $B = match $B.next() {
None => return None,
Some(elt) => elt
};
)*
Some(($($B,)*))
}
fn size_hint(&self) -> (usize, Option<usize>)
{
let sh = (::std::usize::MAX, None);
let ($(ref $B,)*) = self.t;
$(
let sh = size_hint::min($B.size_hint(), sh);
)*
sh
}
}
#[allow(non_snake_case)]
impl<$($B),*> ExactSizeIterator for Zip<($($B,)*)> where
$(
$B: ExactSizeIterator,
)*
{ }
#[allow(non_snake_case)]
impl<$($B),*> DoubleEndedIterator for Zip<($($B,)*)> where
$(
$B: DoubleEndedIterator + ExactSizeIterator,
)*
{
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
let ($(ref mut $B,)*) = self.t;
let size = *[$( $B.len(), )*].iter().min().unwrap();
$(
if $B.len() != size {
for _ in 0..$B.len() - size { $B.next_back(); }
}
)*
match ($($B.next_back(),)*) {
($(Some($B),)*) => Some(($($B,)*)),
_ => None,
}
}
}
);
}
impl_zip_iter!(A);
impl_zip_iter!(A, B);
impl_zip_iter!(A, B, C);
impl_zip_iter!(A, B, C, D);
impl_zip_iter!(A, B, C, D, E);
impl_zip_iter!(A, B, C, D, E, F);
impl_zip_iter!(A, B, C, D, E, F, G);
impl_zip_iter!(A, B, C, D, E, F, G, H);
impl_zip_iter!(A, B, C, D, E, F, G, H, I);
impl_zip_iter!(A, B, C, D, E, F, G, H, I, J);
impl_zip_iter!(A, B, C, D, E, F, G, H, I, J, K);
impl_zip_iter!(A, B, C, D, E, F, G, H, I, J, K, L);