RPM build fix (reverted CI changes which will need to be un-reverted or made conditional) and vendor Rust dependencies to make builds much faster in any CI system.

This commit is contained in:
Adam Ierymenko
2022-06-08 07:32:16 -04:00
parent 373ca30269
commit d5ca4e5f52
12611 changed files with 2898014 additions and 284 deletions

229
zeroidc/vendor/hyper/src/ffi/body.rs vendored Normal file
View File

@@ -0,0 +1,229 @@
use std::ffi::c_void;
use std::mem::ManuallyDrop;
use std::ptr;
use std::task::{Context, Poll};
use http::HeaderMap;
use libc::{c_int, size_t};
use super::task::{hyper_context, hyper_task, hyper_task_return_type, AsTaskType};
use super::{UserDataPointer, HYPER_ITER_CONTINUE};
use crate::body::{Body, Bytes, HttpBody as _};
/// A streaming HTTP body.
pub struct hyper_body(pub(super) Body);
/// A buffer of bytes that is sent or received on a `hyper_body`.
pub struct hyper_buf(pub(crate) Bytes);
pub(crate) struct UserBody {
data_func: hyper_body_data_callback,
userdata: *mut c_void,
}
// ===== Body =====
type hyper_body_foreach_callback = extern "C" fn(*mut c_void, *const hyper_buf) -> c_int;
type hyper_body_data_callback =
extern "C" fn(*mut c_void, *mut hyper_context<'_>, *mut *mut hyper_buf) -> c_int;
ffi_fn! {
/// Create a new "empty" body.
///
/// If not configured, this body acts as an empty payload.
fn hyper_body_new() -> *mut hyper_body {
Box::into_raw(Box::new(hyper_body(Body::empty())))
} ?= ptr::null_mut()
}
ffi_fn! {
/// Free a `hyper_body *`.
fn hyper_body_free(body: *mut hyper_body) {
drop(non_null!(Box::from_raw(body) ?= ()));
}
}
ffi_fn! {
/// Return a task that will poll the body for the next buffer of data.
///
/// The task value may have different types depending on the outcome:
///
/// - `HYPER_TASK_BUF`: Success, and more data was received.
/// - `HYPER_TASK_ERROR`: An error retrieving the data.
/// - `HYPER_TASK_EMPTY`: The body has finished streaming data.
///
/// This does not consume the `hyper_body *`, so it may be used to again.
/// However, it MUST NOT be used or freed until the related task completes.
fn hyper_body_data(body: *mut hyper_body) -> *mut hyper_task {
// This doesn't take ownership of the Body, so don't allow destructor
let mut body = ManuallyDrop::new(non_null!(Box::from_raw(body) ?= ptr::null_mut()));
Box::into_raw(hyper_task::boxed(async move {
body.0.data().await.map(|res| res.map(hyper_buf))
}))
} ?= ptr::null_mut()
}
ffi_fn! {
/// Return a task that will poll the body and execute the callback with each
/// body chunk that is received.
///
/// The `hyper_buf` pointer is only a borrowed reference, it cannot live outside
/// the execution of the callback. You must make a copy to retain it.
///
/// The callback should return `HYPER_ITER_CONTINUE` to continue iterating
/// chunks as they are received, or `HYPER_ITER_BREAK` to cancel.
///
/// This will consume the `hyper_body *`, you shouldn't use it anymore or free it.
fn hyper_body_foreach(body: *mut hyper_body, func: hyper_body_foreach_callback, userdata: *mut c_void) -> *mut hyper_task {
let mut body = non_null!(Box::from_raw(body) ?= ptr::null_mut());
let userdata = UserDataPointer(userdata);
Box::into_raw(hyper_task::boxed(async move {
while let Some(item) = body.0.data().await {
let chunk = item?;
if HYPER_ITER_CONTINUE != func(userdata.0, &hyper_buf(chunk)) {
return Err(crate::Error::new_user_aborted_by_callback());
}
}
Ok(())
}))
} ?= ptr::null_mut()
}
ffi_fn! {
/// Set userdata on this body, which will be passed to callback functions.
fn hyper_body_set_userdata(body: *mut hyper_body, userdata: *mut c_void) {
let b = non_null!(&mut *body ?= ());
b.0.as_ffi_mut().userdata = userdata;
}
}
ffi_fn! {
/// Set the data callback for this body.
///
/// The callback is called each time hyper needs to send more data for the
/// body. It is passed the value from `hyper_body_set_userdata`.
///
/// If there is data available, the `hyper_buf **` argument should be set
/// to a `hyper_buf *` containing the data, and `HYPER_POLL_READY` should
/// be returned.
///
/// Returning `HYPER_POLL_READY` while the `hyper_buf **` argument points
/// to `NULL` will indicate the body has completed all data.
///
/// If there is more data to send, but it isn't yet available, a
/// `hyper_waker` should be saved from the `hyper_context *` argument, and
/// `HYPER_POLL_PENDING` should be returned. You must wake the saved waker
/// to signal the task when data is available.
///
/// If some error has occurred, you can return `HYPER_POLL_ERROR` to abort
/// the body.
fn hyper_body_set_data_func(body: *mut hyper_body, func: hyper_body_data_callback) {
let b = non_null!{ &mut *body ?= () };
b.0.as_ffi_mut().data_func = func;
}
}
// ===== impl UserBody =====
impl UserBody {
pub(crate) fn new() -> UserBody {
UserBody {
data_func: data_noop,
userdata: std::ptr::null_mut(),
}
}
pub(crate) fn poll_data(&mut self, cx: &mut Context<'_>) -> Poll<Option<crate::Result<Bytes>>> {
let mut out = std::ptr::null_mut();
match (self.data_func)(self.userdata, hyper_context::wrap(cx), &mut out) {
super::task::HYPER_POLL_READY => {
if out.is_null() {
Poll::Ready(None)
} else {
let buf = unsafe { Box::from_raw(out) };
Poll::Ready(Some(Ok(buf.0)))
}
}
super::task::HYPER_POLL_PENDING => Poll::Pending,
super::task::HYPER_POLL_ERROR => {
Poll::Ready(Some(Err(crate::Error::new_body_write_aborted())))
}
unexpected => Poll::Ready(Some(Err(crate::Error::new_body_write(format!(
"unexpected hyper_body_data_func return code {}",
unexpected
))))),
}
}
pub(crate) fn poll_trailers(
&mut self,
_cx: &mut Context<'_>,
) -> Poll<crate::Result<Option<HeaderMap>>> {
Poll::Ready(Ok(None))
}
}
/// cbindgen:ignore
extern "C" fn data_noop(
_userdata: *mut c_void,
_: *mut hyper_context<'_>,
_: *mut *mut hyper_buf,
) -> c_int {
super::task::HYPER_POLL_READY
}
unsafe impl Send for UserBody {}
unsafe impl Sync for UserBody {}
// ===== Bytes =====
ffi_fn! {
/// Create a new `hyper_buf *` by copying the provided bytes.
///
/// This makes an owned copy of the bytes, so the `buf` argument can be
/// freed or changed afterwards.
///
/// This returns `NULL` if allocating a new buffer fails.
fn hyper_buf_copy(buf: *const u8, len: size_t) -> *mut hyper_buf {
let slice = unsafe {
std::slice::from_raw_parts(buf, len)
};
Box::into_raw(Box::new(hyper_buf(Bytes::copy_from_slice(slice))))
} ?= ptr::null_mut()
}
ffi_fn! {
/// Get a pointer to the bytes in this buffer.
///
/// This should be used in conjunction with `hyper_buf_len` to get the length
/// of the bytes data.
///
/// This pointer is borrowed data, and not valid once the `hyper_buf` is
/// consumed/freed.
fn hyper_buf_bytes(buf: *const hyper_buf) -> *const u8 {
unsafe { (*buf).0.as_ptr() }
} ?= ptr::null()
}
ffi_fn! {
/// Get the length of the bytes this buffer contains.
fn hyper_buf_len(buf: *const hyper_buf) -> size_t {
unsafe { (*buf).0.len() }
}
}
ffi_fn! {
/// Free this buffer.
fn hyper_buf_free(buf: *mut hyper_buf) {
drop(unsafe { Box::from_raw(buf) });
}
}
unsafe impl AsTaskType for hyper_buf {
fn as_task_type(&self) -> hyper_task_return_type {
hyper_task_return_type::HYPER_TASK_BUF
}
}

181
zeroidc/vendor/hyper/src/ffi/client.rs vendored Normal file
View File

@@ -0,0 +1,181 @@
use std::ptr;
use std::sync::Arc;
use libc::c_int;
use crate::client::conn;
use crate::rt::Executor as _;
use super::error::hyper_code;
use super::http_types::{hyper_request, hyper_response};
use super::io::hyper_io;
use super::task::{hyper_executor, hyper_task, hyper_task_return_type, AsTaskType, WeakExec};
/// An options builder to configure an HTTP client connection.
pub struct hyper_clientconn_options {
builder: conn::Builder,
/// Use a `Weak` to prevent cycles.
exec: WeakExec,
}
/// An HTTP client connection handle.
///
/// These are used to send a request on a single connection. It's possible to
/// send multiple requests on a single connection, such as when HTTP/1
/// keep-alive or HTTP/2 is used.
pub struct hyper_clientconn {
tx: conn::SendRequest<crate::Body>,
}
// ===== impl hyper_clientconn =====
ffi_fn! {
/// Starts an HTTP client connection handshake using the provided IO transport
/// and options.
///
/// Both the `io` and the `options` are consumed in this function call.
///
/// The returned `hyper_task *` must be polled with an executor until the
/// handshake completes, at which point the value can be taken.
fn hyper_clientconn_handshake(io: *mut hyper_io, options: *mut hyper_clientconn_options) -> *mut hyper_task {
let options = non_null! { Box::from_raw(options) ?= ptr::null_mut() };
let io = non_null! { Box::from_raw(io) ?= ptr::null_mut() };
Box::into_raw(hyper_task::boxed(async move {
options.builder.handshake::<_, crate::Body>(io)
.await
.map(|(tx, conn)| {
options.exec.execute(Box::pin(async move {
let _ = conn.await;
}));
hyper_clientconn { tx }
})
}))
} ?= std::ptr::null_mut()
}
ffi_fn! {
/// Send a request on the client connection.
///
/// Returns a task that needs to be polled until it is ready. When ready, the
/// task yields a `hyper_response *`.
fn hyper_clientconn_send(conn: *mut hyper_clientconn, req: *mut hyper_request) -> *mut hyper_task {
let mut req = non_null! { Box::from_raw(req) ?= ptr::null_mut() };
// Update request with original-case map of headers
req.finalize_request();
let fut = non_null! { &mut *conn ?= ptr::null_mut() }.tx.send_request(req.0);
let fut = async move {
fut.await.map(hyper_response::wrap)
};
Box::into_raw(hyper_task::boxed(fut))
} ?= std::ptr::null_mut()
}
ffi_fn! {
/// Free a `hyper_clientconn *`.
fn hyper_clientconn_free(conn: *mut hyper_clientconn) {
drop(non_null! { Box::from_raw(conn) ?= () });
}
}
unsafe impl AsTaskType for hyper_clientconn {
fn as_task_type(&self) -> hyper_task_return_type {
hyper_task_return_type::HYPER_TASK_CLIENTCONN
}
}
// ===== impl hyper_clientconn_options =====
ffi_fn! {
/// Creates a new set of HTTP clientconn options to be used in a handshake.
fn hyper_clientconn_options_new() -> *mut hyper_clientconn_options {
let builder = conn::Builder::new();
Box::into_raw(Box::new(hyper_clientconn_options {
builder,
exec: WeakExec::new(),
}))
} ?= std::ptr::null_mut()
}
ffi_fn! {
/// Set the whether or not header case is preserved.
///
/// Pass `0` to allow lowercase normalization (default), `1` to retain original case.
fn hyper_clientconn_options_set_preserve_header_case(opts: *mut hyper_clientconn_options, enabled: c_int) {
let opts = non_null! { &mut *opts ?= () };
opts.builder.http1_preserve_header_case(enabled != 0);
}
}
ffi_fn! {
/// Set the whether or not header order is preserved.
///
/// Pass `0` to allow reordering (default), `1` to retain original ordering.
fn hyper_clientconn_options_set_preserve_header_order(opts: *mut hyper_clientconn_options, enabled: c_int) {
let opts = non_null! { &mut *opts ?= () };
opts.builder.http1_preserve_header_order(enabled != 0);
}
}
ffi_fn! {
/// Free a `hyper_clientconn_options *`.
fn hyper_clientconn_options_free(opts: *mut hyper_clientconn_options) {
drop(non_null! { Box::from_raw(opts) ?= () });
}
}
ffi_fn! {
/// Set the client background task executor.
///
/// This does not consume the `options` or the `exec`.
fn hyper_clientconn_options_exec(opts: *mut hyper_clientconn_options, exec: *const hyper_executor) {
let opts = non_null! { &mut *opts ?= () };
let exec = non_null! { Arc::from_raw(exec) ?= () };
let weak_exec = hyper_executor::downgrade(&exec);
std::mem::forget(exec);
opts.builder.executor(weak_exec.clone());
opts.exec = weak_exec;
}
}
ffi_fn! {
/// Set the whether to use HTTP2.
///
/// Pass `0` to disable, `1` to enable.
fn hyper_clientconn_options_http2(opts: *mut hyper_clientconn_options, enabled: c_int) -> hyper_code {
#[cfg(feature = "http2")]
{
let opts = non_null! { &mut *opts ?= hyper_code::HYPERE_INVALID_ARG };
opts.builder.http2_only(enabled != 0);
hyper_code::HYPERE_OK
}
#[cfg(not(feature = "http2"))]
{
drop(opts);
drop(enabled);
hyper_code::HYPERE_FEATURE_NOT_ENABLED
}
}
}
ffi_fn! {
/// Set the whether to include a copy of the raw headers in responses
/// received on this connection.
///
/// Pass `0` to disable, `1` to enable.
///
/// If enabled, see `hyper_response_headers_raw()` for usage.
fn hyper_clientconn_options_headers_raw(opts: *mut hyper_clientconn_options, enabled: c_int) -> hyper_code {
let opts = non_null! { &mut *opts ?= hyper_code::HYPERE_INVALID_ARG };
opts.builder.http1_headers_raw(enabled != 0);
hyper_code::HYPERE_OK
}
}

85
zeroidc/vendor/hyper/src/ffi/error.rs vendored Normal file
View File

@@ -0,0 +1,85 @@
use libc::size_t;
/// A more detailed error object returned by some hyper functions.
pub struct hyper_error(crate::Error);
/// A return code for many of hyper's methods.
#[repr(C)]
pub enum hyper_code {
/// All is well.
HYPERE_OK,
/// General error, details in the `hyper_error *`.
HYPERE_ERROR,
/// A function argument was invalid.
HYPERE_INVALID_ARG,
/// The IO transport returned an EOF when one wasn't expected.
///
/// This typically means an HTTP request or response was expected, but the
/// connection closed cleanly without sending (all of) it.
HYPERE_UNEXPECTED_EOF,
/// Aborted by a user supplied callback.
HYPERE_ABORTED_BY_CALLBACK,
/// An optional hyper feature was not enabled.
#[cfg_attr(feature = "http2", allow(unused))]
HYPERE_FEATURE_NOT_ENABLED,
/// The peer sent an HTTP message that could not be parsed.
HYPERE_INVALID_PEER_MESSAGE,
}
// ===== impl hyper_error =====
impl hyper_error {
fn code(&self) -> hyper_code {
use crate::error::Kind as ErrorKind;
use crate::error::User;
match self.0.kind() {
ErrorKind::Parse(_) => hyper_code::HYPERE_INVALID_PEER_MESSAGE,
ErrorKind::IncompleteMessage => hyper_code::HYPERE_UNEXPECTED_EOF,
ErrorKind::User(User::AbortedByCallback) => hyper_code::HYPERE_ABORTED_BY_CALLBACK,
// TODO: add more variants
_ => hyper_code::HYPERE_ERROR,
}
}
fn print_to(&self, dst: &mut [u8]) -> usize {
use std::io::Write;
let mut dst = std::io::Cursor::new(dst);
// A write! error doesn't matter. As much as possible will have been
// written, and the Cursor position will know how far that is (even
// if that is zero).
let _ = write!(dst, "{}", &self.0);
dst.position() as usize
}
}
ffi_fn! {
/// Frees a `hyper_error`.
fn hyper_error_free(err: *mut hyper_error) {
drop(non_null!(Box::from_raw(err) ?= ()));
}
}
ffi_fn! {
/// Get an equivalent `hyper_code` from this error.
fn hyper_error_code(err: *const hyper_error) -> hyper_code {
non_null!(&*err ?= hyper_code::HYPERE_INVALID_ARG).code()
}
}
ffi_fn! {
/// Print the details of this error to a buffer.
///
/// The `dst_len` value must be the maximum length that the buffer can
/// store.
///
/// The return value is number of bytes that were written to `dst`.
fn hyper_error_print(err: *const hyper_error, dst: *mut u8, dst_len: size_t) -> size_t {
let dst = unsafe {
std::slice::from_raw_parts_mut(dst, dst_len)
};
non_null!(&*err ?= 0).print_to(dst)
}
}

View File

@@ -0,0 +1,660 @@
use bytes::Bytes;
use libc::{c_int, size_t};
use std::ffi::c_void;
use super::body::{hyper_body, hyper_buf};
use super::error::hyper_code;
use super::task::{hyper_task_return_type, AsTaskType};
use super::{UserDataPointer, HYPER_ITER_CONTINUE};
use crate::ext::{HeaderCaseMap, OriginalHeaderOrder};
use crate::header::{HeaderName, HeaderValue};
use crate::{Body, HeaderMap, Method, Request, Response, Uri};
/// An HTTP request.
pub struct hyper_request(pub(super) Request<Body>);
/// An HTTP response.
pub struct hyper_response(pub(super) Response<Body>);
/// An HTTP header map.
///
/// These can be part of a request or response.
pub struct hyper_headers {
pub(super) headers: HeaderMap,
orig_casing: HeaderCaseMap,
orig_order: OriginalHeaderOrder,
}
#[derive(Debug)]
pub(crate) struct ReasonPhrase(pub(crate) Bytes);
pub(crate) struct RawHeaders(pub(crate) hyper_buf);
pub(crate) struct OnInformational {
func: hyper_request_on_informational_callback,
data: UserDataPointer,
}
type hyper_request_on_informational_callback = extern "C" fn(*mut c_void, *mut hyper_response);
// ===== impl hyper_request =====
ffi_fn! {
/// Construct a new HTTP request.
fn hyper_request_new() -> *mut hyper_request {
Box::into_raw(Box::new(hyper_request(Request::new(Body::empty()))))
} ?= std::ptr::null_mut()
}
ffi_fn! {
/// Free an HTTP request if not going to send it on a client.
fn hyper_request_free(req: *mut hyper_request) {
drop(non_null!(Box::from_raw(req) ?= ()));
}
}
ffi_fn! {
/// Set the HTTP Method of the request.
fn hyper_request_set_method(req: *mut hyper_request, method: *const u8, method_len: size_t) -> hyper_code {
let bytes = unsafe {
std::slice::from_raw_parts(method, method_len as usize)
};
let req = non_null!(&mut *req ?= hyper_code::HYPERE_INVALID_ARG);
match Method::from_bytes(bytes) {
Ok(m) => {
*req.0.method_mut() = m;
hyper_code::HYPERE_OK
},
Err(_) => {
hyper_code::HYPERE_INVALID_ARG
}
}
}
}
ffi_fn! {
/// Set the URI of the request.
///
/// The request's URI is best described as the `request-target` from the RFCs. So in HTTP/1,
/// whatever is set will get sent as-is in the first line (GET $uri HTTP/1.1). It
/// supports the 4 defined variants, origin-form, absolute-form, authority-form, and
/// asterisk-form.
///
/// The underlying type was built to efficiently support HTTP/2 where the request-target is
/// split over :scheme, :authority, and :path. As such, each part can be set explicitly, or the
/// type can parse a single contiguous string and if a scheme is found, that slot is "set". If
/// the string just starts with a path, only the path portion is set. All pseudo headers that
/// have been parsed/set are sent when the connection type is HTTP/2.
///
/// To set each slot explicitly, use `hyper_request_set_uri_parts`.
fn hyper_request_set_uri(req: *mut hyper_request, uri: *const u8, uri_len: size_t) -> hyper_code {
let bytes = unsafe {
std::slice::from_raw_parts(uri, uri_len as usize)
};
let req = non_null!(&mut *req ?= hyper_code::HYPERE_INVALID_ARG);
match Uri::from_maybe_shared(bytes) {
Ok(u) => {
*req.0.uri_mut() = u;
hyper_code::HYPERE_OK
},
Err(_) => {
hyper_code::HYPERE_INVALID_ARG
}
}
}
}
ffi_fn! {
/// Set the URI of the request with separate scheme, authority, and
/// path/query strings.
///
/// Each of `scheme`, `authority`, and `path_and_query` should either be
/// null, to skip providing a component, or point to a UTF-8 encoded
/// string. If any string pointer argument is non-null, its corresponding
/// `len` parameter must be set to the string's length.
fn hyper_request_set_uri_parts(
req: *mut hyper_request,
scheme: *const u8,
scheme_len: size_t,
authority: *const u8,
authority_len: size_t,
path_and_query: *const u8,
path_and_query_len: size_t
) -> hyper_code {
let mut builder = Uri::builder();
if !scheme.is_null() {
let scheme_bytes = unsafe {
std::slice::from_raw_parts(scheme, scheme_len as usize)
};
builder = builder.scheme(scheme_bytes);
}
if !authority.is_null() {
let authority_bytes = unsafe {
std::slice::from_raw_parts(authority, authority_len as usize)
};
builder = builder.authority(authority_bytes);
}
if !path_and_query.is_null() {
let path_and_query_bytes = unsafe {
std::slice::from_raw_parts(path_and_query, path_and_query_len as usize)
};
builder = builder.path_and_query(path_and_query_bytes);
}
match builder.build() {
Ok(u) => {
*unsafe { &mut *req }.0.uri_mut() = u;
hyper_code::HYPERE_OK
},
Err(_) => {
hyper_code::HYPERE_INVALID_ARG
}
}
}
}
ffi_fn! {
/// Set the preferred HTTP version of the request.
///
/// The version value should be one of the `HYPER_HTTP_VERSION_` constants.
///
/// Note that this won't change the major HTTP version of the connection,
/// since that is determined at the handshake step.
fn hyper_request_set_version(req: *mut hyper_request, version: c_int) -> hyper_code {
use http::Version;
let req = non_null!(&mut *req ?= hyper_code::HYPERE_INVALID_ARG);
*req.0.version_mut() = match version {
super::HYPER_HTTP_VERSION_NONE => Version::HTTP_11,
super::HYPER_HTTP_VERSION_1_0 => Version::HTTP_10,
super::HYPER_HTTP_VERSION_1_1 => Version::HTTP_11,
super::HYPER_HTTP_VERSION_2 => Version::HTTP_2,
_ => {
// We don't know this version
return hyper_code::HYPERE_INVALID_ARG;
}
};
hyper_code::HYPERE_OK
}
}
ffi_fn! {
/// Gets a reference to the HTTP headers of this request
///
/// This is not an owned reference, so it should not be accessed after the
/// `hyper_request` has been consumed.
fn hyper_request_headers(req: *mut hyper_request) -> *mut hyper_headers {
hyper_headers::get_or_default(unsafe { &mut *req }.0.extensions_mut())
} ?= std::ptr::null_mut()
}
ffi_fn! {
/// Set the body of the request.
///
/// The default is an empty body.
///
/// This takes ownership of the `hyper_body *`, you must not use it or
/// free it after setting it on the request.
fn hyper_request_set_body(req: *mut hyper_request, body: *mut hyper_body) -> hyper_code {
let body = non_null!(Box::from_raw(body) ?= hyper_code::HYPERE_INVALID_ARG);
let req = non_null!(&mut *req ?= hyper_code::HYPERE_INVALID_ARG);
*req.0.body_mut() = body.0;
hyper_code::HYPERE_OK
}
}
ffi_fn! {
/// Set an informational (1xx) response callback.
///
/// The callback is called each time hyper receives an informational (1xx)
/// response for this request.
///
/// The third argument is an opaque user data pointer, which is passed to
/// the callback each time.
///
/// The callback is passed the `void *` data pointer, and a
/// `hyper_response *` which can be inspected as any other response. The
/// body of the response will always be empty.
///
/// NOTE: The `hyper_response *` is just borrowed data, and will not
/// be valid after the callback finishes. You must copy any data you wish
/// to persist.
fn hyper_request_on_informational(req: *mut hyper_request, callback: hyper_request_on_informational_callback, data: *mut c_void) -> hyper_code {
let ext = OnInformational {
func: callback,
data: UserDataPointer(data),
};
let req = non_null!(&mut *req ?= hyper_code::HYPERE_INVALID_ARG);
req.0.extensions_mut().insert(ext);
hyper_code::HYPERE_OK
}
}
impl hyper_request {
pub(super) fn finalize_request(&mut self) {
if let Some(headers) = self.0.extensions_mut().remove::<hyper_headers>() {
*self.0.headers_mut() = headers.headers;
self.0.extensions_mut().insert(headers.orig_casing);
self.0.extensions_mut().insert(headers.orig_order);
}
}
}
// ===== impl hyper_response =====
ffi_fn! {
/// Free an HTTP response after using it.
fn hyper_response_free(resp: *mut hyper_response) {
drop(non_null!(Box::from_raw(resp) ?= ()));
}
}
ffi_fn! {
/// Get the HTTP-Status code of this response.
///
/// It will always be within the range of 100-599.
fn hyper_response_status(resp: *const hyper_response) -> u16 {
non_null!(&*resp ?= 0).0.status().as_u16()
}
}
ffi_fn! {
/// Get a pointer to the reason-phrase of this response.
///
/// This buffer is not null-terminated.
///
/// This buffer is owned by the response, and should not be used after
/// the response has been freed.
///
/// Use `hyper_response_reason_phrase_len()` to get the length of this
/// buffer.
fn hyper_response_reason_phrase(resp: *const hyper_response) -> *const u8 {
non_null!(&*resp ?= std::ptr::null()).reason_phrase().as_ptr()
} ?= std::ptr::null()
}
ffi_fn! {
/// Get the length of the reason-phrase of this response.
///
/// Use `hyper_response_reason_phrase()` to get the buffer pointer.
fn hyper_response_reason_phrase_len(resp: *const hyper_response) -> size_t {
non_null!(&*resp ?= 0).reason_phrase().len()
}
}
ffi_fn! {
/// Get a reference to the full raw headers of this response.
///
/// You must have enabled `hyper_clientconn_options_headers_raw()`, or this
/// will return NULL.
///
/// The returned `hyper_buf *` is just a reference, owned by the response.
/// You need to make a copy if you wish to use it after freeing the
/// response.
///
/// The buffer is not null-terminated, see the `hyper_buf` functions for
/// getting the bytes and length.
fn hyper_response_headers_raw(resp: *const hyper_response) -> *const hyper_buf {
let resp = non_null!(&*resp ?= std::ptr::null());
match resp.0.extensions().get::<RawHeaders>() {
Some(raw) => &raw.0,
None => std::ptr::null(),
}
} ?= std::ptr::null()
}
ffi_fn! {
/// Get the HTTP version used by this response.
///
/// The returned value could be:
///
/// - `HYPER_HTTP_VERSION_1_0`
/// - `HYPER_HTTP_VERSION_1_1`
/// - `HYPER_HTTP_VERSION_2`
/// - `HYPER_HTTP_VERSION_NONE` if newer (or older).
fn hyper_response_version(resp: *const hyper_response) -> c_int {
use http::Version;
match non_null!(&*resp ?= 0).0.version() {
Version::HTTP_10 => super::HYPER_HTTP_VERSION_1_0,
Version::HTTP_11 => super::HYPER_HTTP_VERSION_1_1,
Version::HTTP_2 => super::HYPER_HTTP_VERSION_2,
_ => super::HYPER_HTTP_VERSION_NONE,
}
}
}
ffi_fn! {
/// Gets a reference to the HTTP headers of this response.
///
/// This is not an owned reference, so it should not be accessed after the
/// `hyper_response` has been freed.
fn hyper_response_headers(resp: *mut hyper_response) -> *mut hyper_headers {
hyper_headers::get_or_default(unsafe { &mut *resp }.0.extensions_mut())
} ?= std::ptr::null_mut()
}
ffi_fn! {
/// Take ownership of the body of this response.
///
/// It is safe to free the response even after taking ownership of its body.
fn hyper_response_body(resp: *mut hyper_response) -> *mut hyper_body {
let body = std::mem::take(non_null!(&mut *resp ?= std::ptr::null_mut()).0.body_mut());
Box::into_raw(Box::new(hyper_body(body)))
} ?= std::ptr::null_mut()
}
impl hyper_response {
pub(super) fn wrap(mut resp: Response<Body>) -> hyper_response {
let headers = std::mem::take(resp.headers_mut());
let orig_casing = resp
.extensions_mut()
.remove::<HeaderCaseMap>()
.unwrap_or_else(HeaderCaseMap::default);
let orig_order = resp
.extensions_mut()
.remove::<OriginalHeaderOrder>()
.unwrap_or_else(OriginalHeaderOrder::default);
resp.extensions_mut().insert(hyper_headers {
headers,
orig_casing,
orig_order,
});
hyper_response(resp)
}
fn reason_phrase(&self) -> &[u8] {
if let Some(reason) = self.0.extensions().get::<ReasonPhrase>() {
return &reason.0;
}
if let Some(reason) = self.0.status().canonical_reason() {
return reason.as_bytes();
}
&[]
}
}
unsafe impl AsTaskType for hyper_response {
fn as_task_type(&self) -> hyper_task_return_type {
hyper_task_return_type::HYPER_TASK_RESPONSE
}
}
// ===== impl Headers =====
type hyper_headers_foreach_callback =
extern "C" fn(*mut c_void, *const u8, size_t, *const u8, size_t) -> c_int;
impl hyper_headers {
pub(super) fn get_or_default(ext: &mut http::Extensions) -> &mut hyper_headers {
if let None = ext.get_mut::<hyper_headers>() {
ext.insert(hyper_headers::default());
}
ext.get_mut::<hyper_headers>().unwrap()
}
}
ffi_fn! {
/// Iterates the headers passing each name and value pair to the callback.
///
/// The `userdata` pointer is also passed to the callback.
///
/// The callback should return `HYPER_ITER_CONTINUE` to keep iterating, or
/// `HYPER_ITER_BREAK` to stop.
fn hyper_headers_foreach(headers: *const hyper_headers, func: hyper_headers_foreach_callback, userdata: *mut c_void) {
let headers = non_null!(&*headers ?= ());
// For each header name/value pair, there may be a value in the casemap
// that corresponds to the HeaderValue. So, we iterator all the keys,
// and for each one, try to pair the originally cased name with the value.
//
// TODO: consider adding http::HeaderMap::entries() iterator
let mut ordered_iter = headers.orig_order.get_in_order().peekable();
if ordered_iter.peek().is_some() {
for (name, idx) in ordered_iter {
let (name_ptr, name_len) = if let Some(orig_name) = headers.orig_casing.get_all(name).nth(*idx) {
(orig_name.as_ref().as_ptr(), orig_name.as_ref().len())
} else {
(
name.as_str().as_bytes().as_ptr(),
name.as_str().as_bytes().len(),
)
};
let val_ptr;
let val_len;
if let Some(value) = headers.headers.get_all(name).iter().nth(*idx) {
val_ptr = value.as_bytes().as_ptr();
val_len = value.as_bytes().len();
} else {
// Stop iterating, something has gone wrong.
return;
}
if HYPER_ITER_CONTINUE != func(userdata, name_ptr, name_len, val_ptr, val_len) {
return;
}
}
} else {
for name in headers.headers.keys() {
let mut names = headers.orig_casing.get_all(name);
for value in headers.headers.get_all(name) {
let (name_ptr, name_len) = if let Some(orig_name) = names.next() {
(orig_name.as_ref().as_ptr(), orig_name.as_ref().len())
} else {
(
name.as_str().as_bytes().as_ptr(),
name.as_str().as_bytes().len(),
)
};
let val_ptr = value.as_bytes().as_ptr();
let val_len = value.as_bytes().len();
if HYPER_ITER_CONTINUE != func(userdata, name_ptr, name_len, val_ptr, val_len) {
return;
}
}
}
}
}
}
ffi_fn! {
/// Sets the header with the provided name to the provided value.
///
/// This overwrites any previous value set for the header.
fn hyper_headers_set(headers: *mut hyper_headers, name: *const u8, name_len: size_t, value: *const u8, value_len: size_t) -> hyper_code {
let headers = non_null!(&mut *headers ?= hyper_code::HYPERE_INVALID_ARG);
match unsafe { raw_name_value(name, name_len, value, value_len) } {
Ok((name, value, orig_name)) => {
headers.headers.insert(&name, value);
headers.orig_casing.insert(name.clone(), orig_name.clone());
headers.orig_order.insert(name);
hyper_code::HYPERE_OK
}
Err(code) => code,
}
}
}
ffi_fn! {
/// Adds the provided value to the list of the provided name.
///
/// If there were already existing values for the name, this will append the
/// new value to the internal list.
fn hyper_headers_add(headers: *mut hyper_headers, name: *const u8, name_len: size_t, value: *const u8, value_len: size_t) -> hyper_code {
let headers = non_null!(&mut *headers ?= hyper_code::HYPERE_INVALID_ARG);
match unsafe { raw_name_value(name, name_len, value, value_len) } {
Ok((name, value, orig_name)) => {
headers.headers.append(&name, value);
headers.orig_casing.append(&name, orig_name.clone());
headers.orig_order.append(name);
hyper_code::HYPERE_OK
}
Err(code) => code,
}
}
}
impl Default for hyper_headers {
fn default() -> Self {
Self {
headers: Default::default(),
orig_casing: HeaderCaseMap::default(),
orig_order: OriginalHeaderOrder::default(),
}
}
}
unsafe fn raw_name_value(
name: *const u8,
name_len: size_t,
value: *const u8,
value_len: size_t,
) -> Result<(HeaderName, HeaderValue, Bytes), hyper_code> {
let name = std::slice::from_raw_parts(name, name_len);
let orig_name = Bytes::copy_from_slice(name);
let name = match HeaderName::from_bytes(name) {
Ok(name) => name,
Err(_) => return Err(hyper_code::HYPERE_INVALID_ARG),
};
let value = std::slice::from_raw_parts(value, value_len);
let value = match HeaderValue::from_bytes(value) {
Ok(val) => val,
Err(_) => return Err(hyper_code::HYPERE_INVALID_ARG),
};
Ok((name, value, orig_name))
}
// ===== impl OnInformational =====
impl OnInformational {
pub(crate) fn call(&mut self, resp: Response<Body>) {
let mut resp = hyper_response::wrap(resp);
(self.func)(self.data.0, &mut resp);
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_headers_foreach_cases_preserved() {
let mut headers = hyper_headers::default();
let name1 = b"Set-CookiE";
let value1 = b"a=b";
hyper_headers_add(
&mut headers,
name1.as_ptr(),
name1.len(),
value1.as_ptr(),
value1.len(),
);
let name2 = b"SET-COOKIE";
let value2 = b"c=d";
hyper_headers_add(
&mut headers,
name2.as_ptr(),
name2.len(),
value2.as_ptr(),
value2.len(),
);
let mut vec = Vec::<u8>::new();
hyper_headers_foreach(&headers, concat, &mut vec as *mut _ as *mut c_void);
assert_eq!(vec, b"Set-CookiE: a=b\r\nSET-COOKIE: c=d\r\n");
extern "C" fn concat(
vec: *mut c_void,
name: *const u8,
name_len: usize,
value: *const u8,
value_len: usize,
) -> c_int {
unsafe {
let vec = &mut *(vec as *mut Vec<u8>);
let name = std::slice::from_raw_parts(name, name_len);
let value = std::slice::from_raw_parts(value, value_len);
vec.extend(name);
vec.extend(b": ");
vec.extend(value);
vec.extend(b"\r\n");
}
HYPER_ITER_CONTINUE
}
}
#[cfg(all(feature = "http1", feature = "ffi"))]
#[test]
fn test_headers_foreach_order_preserved() {
let mut headers = hyper_headers::default();
let name1 = b"Set-CookiE";
let value1 = b"a=b";
hyper_headers_add(
&mut headers,
name1.as_ptr(),
name1.len(),
value1.as_ptr(),
value1.len(),
);
let name2 = b"Content-Encoding";
let value2 = b"gzip";
hyper_headers_add(
&mut headers,
name2.as_ptr(),
name2.len(),
value2.as_ptr(),
value2.len(),
);
let name3 = b"SET-COOKIE";
let value3 = b"c=d";
hyper_headers_add(
&mut headers,
name3.as_ptr(),
name3.len(),
value3.as_ptr(),
value3.len(),
);
let mut vec = Vec::<u8>::new();
hyper_headers_foreach(&headers, concat, &mut vec as *mut _ as *mut c_void);
println!("{}", std::str::from_utf8(&vec).unwrap());
assert_eq!(
vec,
b"Set-CookiE: a=b\r\nContent-Encoding: gzip\r\nSET-COOKIE: c=d\r\n"
);
extern "C" fn concat(
vec: *mut c_void,
name: *const u8,
name_len: usize,
value: *const u8,
value_len: usize,
) -> c_int {
unsafe {
let vec = &mut *(vec as *mut Vec<u8>);
let name = std::slice::from_raw_parts(name, name_len);
let value = std::slice::from_raw_parts(value, value_len);
vec.extend(name);
vec.extend(b": ");
vec.extend(value);
vec.extend(b"\r\n");
}
HYPER_ITER_CONTINUE
}
}
}

178
zeroidc/vendor/hyper/src/ffi/io.rs vendored Normal file
View File

@@ -0,0 +1,178 @@
use std::ffi::c_void;
use std::pin::Pin;
use std::task::{Context, Poll};
use libc::size_t;
use tokio::io::{AsyncRead, AsyncWrite};
use super::task::hyper_context;
/// Sentinel value to return from a read or write callback that the operation
/// is pending.
pub const HYPER_IO_PENDING: size_t = 0xFFFFFFFF;
/// Sentinel value to return from a read or write callback that the operation
/// has errored.
pub const HYPER_IO_ERROR: size_t = 0xFFFFFFFE;
type hyper_io_read_callback =
extern "C" fn(*mut c_void, *mut hyper_context<'_>, *mut u8, size_t) -> size_t;
type hyper_io_write_callback =
extern "C" fn(*mut c_void, *mut hyper_context<'_>, *const u8, size_t) -> size_t;
/// An IO object used to represent a socket or similar concept.
pub struct hyper_io {
read: hyper_io_read_callback,
write: hyper_io_write_callback,
userdata: *mut c_void,
}
ffi_fn! {
/// Create a new IO type used to represent a transport.
///
/// The read and write functions of this transport should be set with
/// `hyper_io_set_read` and `hyper_io_set_write`.
fn hyper_io_new() -> *mut hyper_io {
Box::into_raw(Box::new(hyper_io {
read: read_noop,
write: write_noop,
userdata: std::ptr::null_mut(),
}))
} ?= std::ptr::null_mut()
}
ffi_fn! {
/// Free an unused `hyper_io *`.
///
/// This is typically only useful if you aren't going to pass ownership
/// of the IO handle to hyper, such as with `hyper_clientconn_handshake()`.
fn hyper_io_free(io: *mut hyper_io) {
drop(non_null!(Box::from_raw(io) ?= ()));
}
}
ffi_fn! {
/// Set the user data pointer for this IO to some value.
///
/// This value is passed as an argument to the read and write callbacks.
fn hyper_io_set_userdata(io: *mut hyper_io, data: *mut c_void) {
non_null!(&mut *io ?= ()).userdata = data;
}
}
ffi_fn! {
/// Set the read function for this IO transport.
///
/// Data that is read from the transport should be put in the `buf` pointer,
/// up to `buf_len` bytes. The number of bytes read should be the return value.
///
/// It is undefined behavior to try to access the bytes in the `buf` pointer,
/// unless you have already written them yourself. It is also undefined behavior
/// to return that more bytes have been written than actually set on the `buf`.
///
/// If there is no data currently available, a waker should be claimed from
/// the `ctx` and registered with whatever polling mechanism is used to signal
/// when data is available later on. The return value should be
/// `HYPER_IO_PENDING`.
///
/// If there is an irrecoverable error reading data, then `HYPER_IO_ERROR`
/// should be the return value.
fn hyper_io_set_read(io: *mut hyper_io, func: hyper_io_read_callback) {
non_null!(&mut *io ?= ()).read = func;
}
}
ffi_fn! {
/// Set the write function for this IO transport.
///
/// Data from the `buf` pointer should be written to the transport, up to
/// `buf_len` bytes. The number of bytes written should be the return value.
///
/// If no data can currently be written, the `waker` should be cloned and
/// registered with whatever polling mechanism is used to signal when data
/// is available later on. The return value should be `HYPER_IO_PENDING`.
///
/// Yeet.
///
/// If there is an irrecoverable error reading data, then `HYPER_IO_ERROR`
/// should be the return value.
fn hyper_io_set_write(io: *mut hyper_io, func: hyper_io_write_callback) {
non_null!(&mut *io ?= ()).write = func;
}
}
/// cbindgen:ignore
extern "C" fn read_noop(
_userdata: *mut c_void,
_: *mut hyper_context<'_>,
_buf: *mut u8,
_buf_len: size_t,
) -> size_t {
0
}
/// cbindgen:ignore
extern "C" fn write_noop(
_userdata: *mut c_void,
_: *mut hyper_context<'_>,
_buf: *const u8,
_buf_len: size_t,
) -> size_t {
0
}
impl AsyncRead for hyper_io {
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut tokio::io::ReadBuf<'_>,
) -> Poll<std::io::Result<()>> {
let buf_ptr = unsafe { buf.unfilled_mut() }.as_mut_ptr() as *mut u8;
let buf_len = buf.remaining();
match (self.read)(self.userdata, hyper_context::wrap(cx), buf_ptr, buf_len) {
HYPER_IO_PENDING => Poll::Pending,
HYPER_IO_ERROR => Poll::Ready(Err(std::io::Error::new(
std::io::ErrorKind::Other,
"io error",
))),
ok => {
// We have to trust that the user's read callback actually
// filled in that many bytes... :(
unsafe { buf.assume_init(ok) };
buf.advance(ok);
Poll::Ready(Ok(()))
}
}
}
}
impl AsyncWrite for hyper_io {
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<std::io::Result<usize>> {
let buf_ptr = buf.as_ptr();
let buf_len = buf.len();
match (self.write)(self.userdata, hyper_context::wrap(cx), buf_ptr, buf_len) {
HYPER_IO_PENDING => Poll::Pending,
HYPER_IO_ERROR => Poll::Ready(Err(std::io::Error::new(
std::io::ErrorKind::Other,
"io error",
))),
ok => Poll::Ready(Ok(ok)),
}
}
fn poll_flush(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<std::io::Result<()>> {
Poll::Ready(Ok(()))
}
fn poll_shutdown(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<std::io::Result<()>> {
Poll::Ready(Ok(()))
}
}
unsafe impl Send for hyper_io {}
unsafe impl Sync for hyper_io {}

53
zeroidc/vendor/hyper/src/ffi/macros.rs vendored Normal file
View File

@@ -0,0 +1,53 @@
macro_rules! ffi_fn {
($(#[$doc:meta])* fn $name:ident($($arg:ident: $arg_ty:ty),*) -> $ret:ty $body:block ?= $default:expr) => {
$(#[$doc])*
#[no_mangle]
pub extern fn $name($($arg: $arg_ty),*) -> $ret {
use std::panic::{self, AssertUnwindSafe};
match panic::catch_unwind(AssertUnwindSafe(move || $body)) {
Ok(v) => v,
Err(_) => {
$default
}
}
}
};
($(#[$doc:meta])* fn $name:ident($($arg:ident: $arg_ty:ty),*) -> $ret:ty $body:block) => {
ffi_fn!($(#[$doc])* fn $name($($arg: $arg_ty),*) -> $ret $body ?= {
eprintln!("panic unwind caught, aborting");
std::process::abort()
});
};
($(#[$doc:meta])* fn $name:ident($($arg:ident: $arg_ty:ty),*) $body:block ?= $default:expr) => {
ffi_fn!($(#[$doc])* fn $name($($arg: $arg_ty),*) -> () $body ?= $default);
};
($(#[$doc:meta])* fn $name:ident($($arg:ident: $arg_ty:ty),*) $body:block) => {
ffi_fn!($(#[$doc])* fn $name($($arg: $arg_ty),*) -> () $body);
};
}
macro_rules! non_null {
($ptr:ident, $eval:expr, $err:expr) => {{
debug_assert!(!$ptr.is_null(), "{:?} must not be null", stringify!($ptr));
if $ptr.is_null() {
return $err;
}
unsafe { $eval }
}};
(&*$ptr:ident ?= $err:expr) => {{
non_null!($ptr, &*$ptr, $err)
}};
(&mut *$ptr:ident ?= $err:expr) => {{
non_null!($ptr, &mut *$ptr, $err)
}};
(Box::from_raw($ptr:ident) ?= $err:expr) => {{
non_null!($ptr, Box::from_raw($ptr), $err)
}};
(Arc::from_raw($ptr:ident) ?= $err:expr) => {{
non_null!($ptr, Arc::from_raw($ptr), $err)
}};
}

94
zeroidc/vendor/hyper/src/ffi/mod.rs vendored Normal file
View File

@@ -0,0 +1,94 @@
// We have a lot of c-types in here, stop warning about their names!
#![allow(non_camel_case_types)]
// fmt::Debug isn't helpful on FFI types
#![allow(missing_debug_implementations)]
// unreachable_pub warns `#[no_mangle] pub extern fn` in private mod.
#![allow(unreachable_pub)]
//! # hyper C API
//!
//! This part of the documentation describes the C API for hyper. That is, how
//! to *use* the hyper library in C code. This is **not** a regular Rust
//! module, and thus it is not accessible in Rust.
//!
//! ## Unstable
//!
//! The C API of hyper is currently **unstable**, which means it's not part of
//! the semver contract as the rest of the Rust API is. Because of that, it's
//! only accessible if `--cfg hyper_unstable_ffi` is passed to `rustc` when
//! compiling. The easiest way to do that is setting the `RUSTFLAGS`
//! environment variable.
//!
//! ## Building
//!
//! The C API is part of the Rust library, but isn't compiled by default. Using
//! `cargo`, it can be compiled with the following command:
//!
//! ```notrust
//! RUSTFLAGS="--cfg hyper_unstable_ffi" cargo build --features client,http1,http2,ffi
//! ```
// We may eventually allow the FFI to be enabled without `client` or `http1`,
// that is why we don't auto enable them as `ffi = ["client", "http1"]` in
// the `Cargo.toml`.
//
// But for now, give a clear message that this compile error is expected.
#[cfg(not(all(feature = "client", feature = "http1")))]
compile_error!("The `ffi` feature currently requires the `client` and `http1` features.");
#[cfg(not(hyper_unstable_ffi))]
compile_error!(
"\
The `ffi` feature is unstable, and requires the \
`RUSTFLAGS='--cfg hyper_unstable_ffi'` environment variable to be set.\
"
);
#[macro_use]
mod macros;
mod body;
mod client;
mod error;
mod http_types;
mod io;
mod task;
pub use self::body::*;
pub use self::client::*;
pub use self::error::*;
pub use self::http_types::*;
pub use self::io::*;
pub use self::task::*;
/// Return in iter functions to continue iterating.
pub const HYPER_ITER_CONTINUE: libc::c_int = 0;
/// Return in iter functions to stop iterating.
#[allow(unused)]
pub const HYPER_ITER_BREAK: libc::c_int = 1;
/// An HTTP Version that is unspecified.
pub const HYPER_HTTP_VERSION_NONE: libc::c_int = 0;
/// The HTTP/1.0 version.
pub const HYPER_HTTP_VERSION_1_0: libc::c_int = 10;
/// The HTTP/1.1 version.
pub const HYPER_HTTP_VERSION_1_1: libc::c_int = 11;
/// The HTTP/2 version.
pub const HYPER_HTTP_VERSION_2: libc::c_int = 20;
struct UserDataPointer(*mut std::ffi::c_void);
// We don't actually know anything about this pointer, it's up to the user
// to do the right thing.
unsafe impl Send for UserDataPointer {}
unsafe impl Sync for UserDataPointer {}
/// cbindgen:ignore
static VERSION_CSTR: &str = concat!(env!("CARGO_PKG_VERSION"), "\0");
ffi_fn! {
/// Returns a static ASCII (null terminated) string of the hyper version.
fn hyper_version() -> *const libc::c_char {
VERSION_CSTR.as_ptr() as _
} ?= std::ptr::null()
}

411
zeroidc/vendor/hyper/src/ffi/task.rs vendored Normal file
View File

@@ -0,0 +1,411 @@
use std::ffi::c_void;
use std::future::Future;
use std::pin::Pin;
use std::ptr;
use std::sync::{
atomic::{AtomicBool, Ordering},
Arc, Mutex, Weak,
};
use std::task::{Context, Poll};
use futures_util::stream::{FuturesUnordered, Stream};
use libc::c_int;
use super::error::hyper_code;
use super::UserDataPointer;
type BoxFuture<T> = Pin<Box<dyn Future<Output = T> + Send>>;
type BoxAny = Box<dyn AsTaskType + Send + Sync>;
/// Return in a poll function to indicate it was ready.
pub const HYPER_POLL_READY: c_int = 0;
/// Return in a poll function to indicate it is still pending.
///
/// The passed in `hyper_waker` should be registered to wake up the task at
/// some later point.
pub const HYPER_POLL_PENDING: c_int = 1;
/// Return in a poll function indicate an error.
pub const HYPER_POLL_ERROR: c_int = 3;
/// A task executor for `hyper_task`s.
pub struct hyper_executor {
/// The executor of all task futures.
///
/// There should never be contention on the mutex, as it is only locked
/// to drive the futures. However, we cannot guarantee proper usage from
/// `hyper_executor_poll()`, which in C could potentially be called inside
/// one of the stored futures. The mutex isn't re-entrant, so doing so
/// would result in a deadlock, but that's better than data corruption.
driver: Mutex<FuturesUnordered<TaskFuture>>,
/// The queue of futures that need to be pushed into the `driver`.
///
/// This is has a separate mutex since `spawn` could be called from inside
/// a future, which would mean the driver's mutex is already locked.
spawn_queue: Mutex<Vec<TaskFuture>>,
/// This is used to track when a future calls `wake` while we are within
/// `hyper_executor::poll_next`.
is_woken: Arc<ExecWaker>,
}
#[derive(Clone)]
pub(crate) struct WeakExec(Weak<hyper_executor>);
struct ExecWaker(AtomicBool);
/// An async task.
pub struct hyper_task {
future: BoxFuture<BoxAny>,
output: Option<BoxAny>,
userdata: UserDataPointer,
}
struct TaskFuture {
task: Option<Box<hyper_task>>,
}
/// An async context for a task that contains the related waker.
pub struct hyper_context<'a>(Context<'a>);
/// A waker that is saved and used to waken a pending task.
pub struct hyper_waker {
waker: std::task::Waker,
}
/// A descriptor for what type a `hyper_task` value is.
#[repr(C)]
pub enum hyper_task_return_type {
/// The value of this task is null (does not imply an error).
HYPER_TASK_EMPTY,
/// The value of this task is `hyper_error *`.
HYPER_TASK_ERROR,
/// The value of this task is `hyper_clientconn *`.
HYPER_TASK_CLIENTCONN,
/// The value of this task is `hyper_response *`.
HYPER_TASK_RESPONSE,
/// The value of this task is `hyper_buf *`.
HYPER_TASK_BUF,
}
pub(crate) unsafe trait AsTaskType {
fn as_task_type(&self) -> hyper_task_return_type;
}
pub(crate) trait IntoDynTaskType {
fn into_dyn_task_type(self) -> BoxAny;
}
// ===== impl hyper_executor =====
impl hyper_executor {
fn new() -> Arc<hyper_executor> {
Arc::new(hyper_executor {
driver: Mutex::new(FuturesUnordered::new()),
spawn_queue: Mutex::new(Vec::new()),
is_woken: Arc::new(ExecWaker(AtomicBool::new(false))),
})
}
pub(crate) fn downgrade(exec: &Arc<hyper_executor>) -> WeakExec {
WeakExec(Arc::downgrade(exec))
}
fn spawn(&self, task: Box<hyper_task>) {
self.spawn_queue
.lock()
.unwrap()
.push(TaskFuture { task: Some(task) });
}
fn poll_next(&self) -> Option<Box<hyper_task>> {
// Drain the queue first.
self.drain_queue();
let waker = futures_util::task::waker_ref(&self.is_woken);
let mut cx = Context::from_waker(&waker);
loop {
match Pin::new(&mut *self.driver.lock().unwrap()).poll_next(&mut cx) {
Poll::Ready(val) => return val,
Poll::Pending => {
// Check if any of the pending tasks tried to spawn
// some new tasks. If so, drain into the driver and loop.
if self.drain_queue() {
continue;
}
// If the driver called `wake` while we were polling,
// we should poll again immediately!
if self.is_woken.0.swap(false, Ordering::SeqCst) {
continue;
}
return None;
}
}
}
}
fn drain_queue(&self) -> bool {
let mut queue = self.spawn_queue.lock().unwrap();
if queue.is_empty() {
return false;
}
let driver = self.driver.lock().unwrap();
for task in queue.drain(..) {
driver.push(task);
}
true
}
}
impl futures_util::task::ArcWake for ExecWaker {
fn wake_by_ref(me: &Arc<ExecWaker>) {
me.0.store(true, Ordering::SeqCst);
}
}
// ===== impl WeakExec =====
impl WeakExec {
pub(crate) fn new() -> Self {
WeakExec(Weak::new())
}
}
impl crate::rt::Executor<BoxFuture<()>> for WeakExec {
fn execute(&self, fut: BoxFuture<()>) {
if let Some(exec) = self.0.upgrade() {
exec.spawn(hyper_task::boxed(fut));
}
}
}
ffi_fn! {
/// Creates a new task executor.
fn hyper_executor_new() -> *const hyper_executor {
Arc::into_raw(hyper_executor::new())
} ?= ptr::null()
}
ffi_fn! {
/// Frees an executor and any incomplete tasks still part of it.
fn hyper_executor_free(exec: *const hyper_executor) {
drop(non_null!(Arc::from_raw(exec) ?= ()));
}
}
ffi_fn! {
/// Push a task onto the executor.
///
/// The executor takes ownership of the task, it should not be accessed
/// again unless returned back to the user with `hyper_executor_poll`.
fn hyper_executor_push(exec: *const hyper_executor, task: *mut hyper_task) -> hyper_code {
let exec = non_null!(&*exec ?= hyper_code::HYPERE_INVALID_ARG);
let task = non_null!(Box::from_raw(task) ?= hyper_code::HYPERE_INVALID_ARG);
exec.spawn(task);
hyper_code::HYPERE_OK
}
}
ffi_fn! {
/// Polls the executor, trying to make progress on any tasks that have notified
/// that they are ready again.
///
/// If ready, returns a task from the executor that has completed.
///
/// If there are no ready tasks, this returns `NULL`.
fn hyper_executor_poll(exec: *const hyper_executor) -> *mut hyper_task {
let exec = non_null!(&*exec ?= ptr::null_mut());
match exec.poll_next() {
Some(task) => Box::into_raw(task),
None => ptr::null_mut(),
}
} ?= ptr::null_mut()
}
// ===== impl hyper_task =====
impl hyper_task {
pub(crate) fn boxed<F>(fut: F) -> Box<hyper_task>
where
F: Future + Send + 'static,
F::Output: IntoDynTaskType + Send + Sync + 'static,
{
Box::new(hyper_task {
future: Box::pin(async move { fut.await.into_dyn_task_type() }),
output: None,
userdata: UserDataPointer(ptr::null_mut()),
})
}
fn output_type(&self) -> hyper_task_return_type {
match self.output {
None => hyper_task_return_type::HYPER_TASK_EMPTY,
Some(ref val) => val.as_task_type(),
}
}
}
impl Future for TaskFuture {
type Output = Box<hyper_task>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
match Pin::new(&mut self.task.as_mut().unwrap().future).poll(cx) {
Poll::Ready(val) => {
let mut task = self.task.take().unwrap();
task.output = Some(val);
Poll::Ready(task)
}
Poll::Pending => Poll::Pending,
}
}
}
ffi_fn! {
/// Free a task.
fn hyper_task_free(task: *mut hyper_task) {
drop(non_null!(Box::from_raw(task) ?= ()));
}
}
ffi_fn! {
/// Takes the output value of this task.
///
/// This must only be called once polling the task on an executor has finished
/// this task.
///
/// Use `hyper_task_type` to determine the type of the `void *` return value.
fn hyper_task_value(task: *mut hyper_task) -> *mut c_void {
let task = non_null!(&mut *task ?= ptr::null_mut());
if let Some(val) = task.output.take() {
let p = Box::into_raw(val) as *mut c_void;
// protect from returning fake pointers to empty types
if p == std::ptr::NonNull::<c_void>::dangling().as_ptr() {
ptr::null_mut()
} else {
p
}
} else {
ptr::null_mut()
}
} ?= ptr::null_mut()
}
ffi_fn! {
/// Query the return type of this task.
fn hyper_task_type(task: *mut hyper_task) -> hyper_task_return_type {
// instead of blowing up spectacularly, just say this null task
// doesn't have a value to retrieve.
non_null!(&*task ?= hyper_task_return_type::HYPER_TASK_EMPTY).output_type()
}
}
ffi_fn! {
/// Set a user data pointer to be associated with this task.
///
/// This value will be passed to task callbacks, and can be checked later
/// with `hyper_task_userdata`.
fn hyper_task_set_userdata(task: *mut hyper_task, userdata: *mut c_void) {
if task.is_null() {
return;
}
unsafe { (*task).userdata = UserDataPointer(userdata) };
}
}
ffi_fn! {
/// Retrieve the userdata that has been set via `hyper_task_set_userdata`.
fn hyper_task_userdata(task: *mut hyper_task) -> *mut c_void {
non_null!(&*task ?= ptr::null_mut()).userdata.0
} ?= ptr::null_mut()
}
// ===== impl AsTaskType =====
unsafe impl AsTaskType for () {
fn as_task_type(&self) -> hyper_task_return_type {
hyper_task_return_type::HYPER_TASK_EMPTY
}
}
unsafe impl AsTaskType for crate::Error {
fn as_task_type(&self) -> hyper_task_return_type {
hyper_task_return_type::HYPER_TASK_ERROR
}
}
impl<T> IntoDynTaskType for T
where
T: AsTaskType + Send + Sync + 'static,
{
fn into_dyn_task_type(self) -> BoxAny {
Box::new(self)
}
}
impl<T> IntoDynTaskType for crate::Result<T>
where
T: IntoDynTaskType + Send + Sync + 'static,
{
fn into_dyn_task_type(self) -> BoxAny {
match self {
Ok(val) => val.into_dyn_task_type(),
Err(err) => Box::new(err),
}
}
}
impl<T> IntoDynTaskType for Option<T>
where
T: IntoDynTaskType + Send + Sync + 'static,
{
fn into_dyn_task_type(self) -> BoxAny {
match self {
Some(val) => val.into_dyn_task_type(),
None => ().into_dyn_task_type(),
}
}
}
// ===== impl hyper_context =====
impl hyper_context<'_> {
pub(crate) fn wrap<'a, 'b>(cx: &'a mut Context<'b>) -> &'a mut hyper_context<'b> {
// A struct with only one field has the same layout as that field.
unsafe { std::mem::transmute::<&mut Context<'_>, &mut hyper_context<'_>>(cx) }
}
}
ffi_fn! {
/// Copies a waker out of the task context.
fn hyper_context_waker(cx: *mut hyper_context<'_>) -> *mut hyper_waker {
let waker = non_null!(&mut *cx ?= ptr::null_mut()).0.waker().clone();
Box::into_raw(Box::new(hyper_waker { waker }))
} ?= ptr::null_mut()
}
// ===== impl hyper_waker =====
ffi_fn! {
/// Free a waker that hasn't been woken.
fn hyper_waker_free(waker: *mut hyper_waker) {
drop(non_null!(Box::from_raw(waker) ?= ()));
}
}
ffi_fn! {
/// Wake up the task associated with a waker.
///
/// NOTE: This consumes the waker. You should not use or free the waker afterwards.
fn hyper_waker_wake(waker: *mut hyper_waker) {
let waker = non_null!(Box::from_raw(waker) ?= ());
waker.waker.wake();
}
}