RPM build fix (reverted CI changes which will need to be un-reverted or made conditional) and vendor Rust dependencies to make builds much faster in any CI system.

This commit is contained in:
Adam Ierymenko
2022-06-08 07:32:16 -04:00
parent 373ca30269
commit d5ca4e5f52
12611 changed files with 2898014 additions and 284 deletions

View File

@@ -0,0 +1,27 @@
#[macro_use]
extern crate generic_array;
extern crate typenum;
#[test]
fn empty_without_trailing_comma() {
let ar = arr![u8; ];
assert_eq!(format!("{:x}", ar), "");
}
#[test]
fn empty_with_trailing_comma() {
let ar = arr![u8; , ];
assert_eq!(format!("{:x}", ar), "");
}
#[test]
fn without_trailing_comma() {
let ar = arr![u8; 10, 20, 30];
assert_eq!(format!("{:x}", ar), "0a141e");
}
#[test]
fn with_trailing_comma() {
let ar = arr![u8; 10, 20, 30, ];
assert_eq!(format!("{:x}", ar), "0a141e");
}

View File

@@ -0,0 +1,98 @@
#![recursion_limit = "128"]
#[macro_use]
extern crate generic_array;
use generic_array::typenum::consts::U4;
use std::fmt::Debug;
use std::ops::Add;
use generic_array::{GenericArray, ArrayLength};
use generic_array::sequence::*;
use generic_array::functional::*;
/// Example function using generics to pass N-length sequences and map them
pub fn generic_map<S>(s: S)
where
S: FunctionalSequence<i32>, // `.map`
S::Item: Add<i32, Output = i32>, // `x + 1`
S: MappedGenericSequence<i32, i32>, // `i32` -> `i32`
MappedSequence<S, i32, i32>: Debug, // println!
{
let a = s.map(|x| x + 1);
println!("{:?}", a);
}
/// Complex example function using generics to pass N-length sequences, zip them, and then map that result.
///
/// If used with `GenericArray` specifically this isn't necessary
pub fn generic_sequence_zip_sum<A, B>(a: A, b: B) -> i32
where
A: FunctionalSequence<i32>, // `.zip`
B: FunctionalSequence<i32, Length = A::Length>, // `.zip`
A: MappedGenericSequence<i32, i32>, // `i32` -> `i32`
B: MappedGenericSequence<i32, i32, Mapped = MappedSequence<A, i32, i32>>, // `i32` -> `i32`, prove A and B can map to the same output
A::Item: Add<B::Item, Output = i32>, // `l + r`
MappedSequence<A, i32, i32>: MappedGenericSequence<i32, i32> + FunctionalSequence<i32>, // `.map`
SequenceItem<MappedSequence<A, i32, i32>>: Add<i32, Output=i32>, // `x + 1`
MappedSequence<MappedSequence<A, i32, i32>, i32, i32>: Debug, // `println!`
MappedSequence<MappedSequence<A, i32, i32>, i32, i32>: FunctionalSequence<i32>, // `.fold`
SequenceItem<MappedSequence<MappedSequence<A, i32, i32>, i32, i32>>: Add<i32, Output=i32> // `x + a`, note the order
{
let c = a.zip(b, |l, r| l + r).map(|x| x + 1);
println!("{:?}", c);
c.fold(0, |a, x| x + a)
}
/// Super-simple fixed-length i32 `GenericArray`s
pub fn generic_array_plain_zip_sum(a: GenericArray<i32, U4>, b: GenericArray<i32, U4>) -> i32 {
a.zip(b, |l, r| l + r).map(|x| x + 1).fold(0, |a, x| x + a)
}
pub fn generic_array_variable_length_zip_sum<N>(a: GenericArray<i32, N>, b: GenericArray<i32, N>) -> i32
where
N: ArrayLength<i32>,
{
a.zip(b, |l, r| l + r).map(|x| x + 1).fold(0, |a, x| x + a)
}
pub fn generic_array_same_type_variable_length_zip_sum<T, N>(a: GenericArray<T, N>, b: GenericArray<T, N>) -> i32
where
N: ArrayLength<T> + ArrayLength<<T as Add<T>>::Output>,
T: Add<T, Output=i32>,
{
a.zip(b, |l, r| l + r).map(|x| x + 1).fold(0, |a, x| x + a)
}
/// Complex example using fully generic `GenericArray`s with the same length.
///
/// It's mostly just the repeated `Add` traits, which would be present in other systems anyway.
pub fn generic_array_zip_sum<A, B, N: ArrayLength<A> + ArrayLength<B>>(a: GenericArray<A, N>, b: GenericArray<B, N>) -> i32
where
A: Add<B>,
N: ArrayLength<<A as Add<B>>::Output> +
ArrayLength<<<A as Add<B>>::Output as Add<i32>>::Output>,
<A as Add<B>>::Output: Add<i32>,
<<A as Add<B>>::Output as Add<i32>>::Output: Add<i32, Output=i32>,
{
a.zip(b, |l, r| l + r).map(|x| x + 1).fold(0, |a, x| x + a)
}
#[test]
fn test_generics() {
generic_map(arr![i32; 1, 2, 3, 4]);
assert_eq!(generic_sequence_zip_sum(arr![i32; 1, 2, 3, 4], arr![i32; 2, 3, 4, 5]), 28);
assert_eq!(generic_array_plain_zip_sum(arr![i32; 1, 2, 3, 4], arr![i32; 2, 3, 4, 5]), 28);
assert_eq!(generic_array_variable_length_zip_sum(arr![i32; 1, 2, 3, 4], arr![i32; 2, 3, 4, 5]), 28);
assert_eq!(generic_array_same_type_variable_length_zip_sum(arr![i32; 1, 2, 3, 4], arr![i32; 2, 3, 4, 5]), 28);
assert_eq!(generic_array_zip_sum(arr![i32; 1, 2, 3, 4], arr![i32; 2, 3, 4, 5]), 28);
}

View File

@@ -0,0 +1,61 @@
#[macro_use]
extern crate generic_array;
extern crate typenum;
use generic_array::GenericArray;
use std::str::from_utf8;
use typenum::U2048;
#[test]
fn short_lower_hex() {
let ar = arr![u8; 10, 20, 30];
assert_eq!(format!("{:x}", ar), "0a141e");
}
#[test]
fn short_upper_hex() {
let ar = arr![u8; 30, 20, 10];
assert_eq!(format!("{:X}", ar), "1E140A");
}
#[test]
fn long_lower_hex() {
let ar = GenericArray::<u8, U2048>::default();
assert_eq!(format!("{:x}", ar), from_utf8(&[b'0'; 4096]).unwrap());
}
#[test]
fn long_lower_hex_truncated() {
let ar = GenericArray::<u8, U2048>::default();
assert_eq!(format!("{:.3001x}", ar), from_utf8(&[b'0'; 3001]).unwrap());
}
#[test]
fn long_upper_hex() {
let ar = GenericArray::<u8, U2048>::default();
assert_eq!(format!("{:X}", ar), from_utf8(&[b'0'; 4096]).unwrap());
}
#[test]
fn long_upper_hex_truncated() {
let ar = GenericArray::<u8, U2048>::default();
assert_eq!(format!("{:.2777X}", ar), from_utf8(&[b'0'; 2777]).unwrap());
}
#[test]
fn truncated_lower_hex() {
let ar = arr![u8; 10, 20, 30, 40, 50];
assert_eq!(format!("{:.2x}", ar), "0a");
assert_eq!(format!("{:.3x}", ar), "0a1");
assert_eq!(format!("{:.4x}", ar), "0a14");
}
#[test]
fn truncated_upper_hex() {
let ar = arr![u8; 30, 20, 10, 17, 0];
assert_eq!(format!("{:.4X}", ar), "1E14");
assert_eq!(format!("{:.5X}", ar), "1E140");
assert_eq!(format!("{:.6X}", ar), "1E140A");
assert_eq!(format!("{:.7X}", ar), "1E140A1");
assert_eq!(format!("{:.8X}", ar), "1E140A11");
}

View File

@@ -0,0 +1,10 @@
#[macro_use]
extern crate generic_array as gen_arr;
use gen_arr::typenum;
#[test]
fn test_different_crate_name() {
let _: gen_arr::GenericArray<u32, typenum::U4> = arr![u32; 0, 1, 2, 3];
let _: gen_arr::GenericArray<u32, typenum::U0> = arr![u32;];
}

View File

@@ -0,0 +1,199 @@
#[macro_use]
extern crate generic_array;
use std::cell::Cell;
use std::ops::Drop;
use generic_array::typenum::consts::U5;
use generic_array::GenericArray;
#[test]
fn test_from_iterator() {
struct BadExact(usize);
impl Iterator for BadExact {
type Item = usize;
fn next(&mut self) -> Option<usize> {
if self.0 == 1 {
return None;
}
self.0 -= 1;
Some(self.0)
}
}
impl ExactSizeIterator for BadExact {
fn len(&self) -> usize { self.0 }
}
assert!(GenericArray::<usize, U5>::from_exact_iter(BadExact(5)).is_none());
}
#[test]
fn test_into_iter_as_slice() {
let array = arr![char; 'a', 'b', 'c'];
let mut into_iter = array.into_iter();
assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
let _ = into_iter.next().unwrap();
assert_eq!(into_iter.as_slice(), &['b', 'c']);
let _ = into_iter.next().unwrap();
let _ = into_iter.next().unwrap();
assert_eq!(into_iter.as_slice(), &[]);
}
#[test]
fn test_into_iter_as_mut_slice() {
let array = arr![char; 'a', 'b', 'c'];
let mut into_iter = array.into_iter();
assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
into_iter.as_mut_slice()[0] = 'x';
into_iter.as_mut_slice()[1] = 'y';
assert_eq!(into_iter.next().unwrap(), 'x');
assert_eq!(into_iter.as_slice(), &['y', 'c']);
}
#[test]
fn test_into_iter_debug() {
let array = arr![char; 'a', 'b', 'c'];
let into_iter = array.into_iter();
let debug = format!("{:?}", into_iter);
assert_eq!(debug, "GenericArrayIter(['a', 'b', 'c'])");
}
#[test]
fn test_into_iter_clone() {
fn iter_equal<I: Iterator<Item = i32>>(it: I, slice: &[i32]) {
let v: Vec<i32> = it.collect();
assert_eq!(&v[..], slice);
}
let mut it = arr![i32; 1, 2, 3].into_iter();
iter_equal(it.clone(), &[1, 2, 3]);
assert_eq!(it.next(), Some(1));
let mut it = it.rev();
iter_equal(it.clone(), &[3, 2]);
assert_eq!(it.next(), Some(3));
iter_equal(it.clone(), &[2]);
assert_eq!(it.next(), Some(2));
iter_equal(it.clone(), &[]);
assert_eq!(it.next(), None);
}
#[test]
fn test_into_iter_nth() {
let v = arr![i32; 0, 1, 2, 3, 4];
for i in 0..v.len() {
assert_eq!(v.clone().into_iter().nth(i).unwrap(), v[i]);
}
assert_eq!(v.clone().into_iter().nth(v.len()), None);
let mut iter = v.into_iter();
assert_eq!(iter.nth(2).unwrap(), v[2]);
assert_eq!(iter.nth(1).unwrap(), v[4]);
}
#[test]
fn test_into_iter_last() {
let v = arr![i32; 0, 1, 2, 3, 4];
assert_eq!(v.into_iter().last().unwrap(), 4);
assert_eq!(arr![i32; 0].into_iter().last().unwrap(), 0);
}
#[test]
fn test_into_iter_count() {
let v = arr![i32; 0, 1, 2, 3, 4];
assert_eq!(v.clone().into_iter().count(), 5);
let mut iter2 = v.into_iter();
iter2.next();
iter2.next();
assert_eq!(iter2.count(), 3);
}
#[test]
fn test_into_iter_flat_map() {
assert!((0..5).flat_map(|i| arr![i32; 2 * i, 2 * i + 1]).eq(0..10));
}
#[test]
fn test_into_iter_fold() {
assert_eq!(
arr![i32; 1, 2, 3, 4].into_iter().fold(0, |sum, x| sum + x),
10
);
let mut iter = arr![i32; 0, 1, 2, 3, 4, 5].into_iter();
iter.next();
iter.next_back();
assert_eq!(iter.clone().fold(0, |sum, x| sum + x), 10);
assert_eq!(iter.rfold(0, |sum, x| sum + x), 10);
}
#[test]
fn test_into_iter_drops() {
struct R<'a> {
i: &'a Cell<usize>,
}
impl<'a> Drop for R<'a> {
fn drop(&mut self) {
self.i.set(self.i.get() + 1);
}
}
fn r(i: &Cell<usize>) -> R {
R { i: i }
}
fn v(i: &Cell<usize>) -> GenericArray<R, U5> {
arr![R; r(i), r(i), r(i), r(i), r(i)]
}
let i = Cell::new(0);
{
v(&i).into_iter();
}
assert_eq!(i.get(), 5);
let i = Cell::new(0);
{
let mut iter = v(&i).into_iter();
let _x = iter.next();
assert_eq!(i.get(), 0);
assert_eq!(iter.count(), 4);
assert_eq!(i.get(), 4);
}
assert_eq!(i.get(), 5);
let i = Cell::new(0);
{
let mut iter = v(&i).into_iter();
let _x = iter.nth(2);
assert_eq!(i.get(), 2);
let _y = iter.last();
assert_eq!(i.get(), 3);
}
assert_eq!(i.get(), 5);
let i = Cell::new(0);
for (index, _x) in v(&i).into_iter().enumerate() {
assert_eq!(i.get(), index);
}
assert_eq!(i.get(), 5);
let i = Cell::new(0);
for (index, _x) in v(&i).into_iter().rev().enumerate() {
assert_eq!(i.get(), index);
}
assert_eq!(i.get(), 5);
}
/*
//TODO: Cover this
#[allow(dead_code)]
fn assert_covariance() {
fn into_iter<'new>(i: GenericArrayIter<&'static str, U10>) -> GenericArrayIter<&'new str, U10> {
i
}
}
*/

View File

@@ -0,0 +1,379 @@
#![recursion_limit = "128"]
#![no_std]
#[macro_use]
extern crate generic_array;
use core::cell::Cell;
use core::ops::{Add, Drop};
use generic_array::functional::*;
use generic_array::sequence::*;
use generic_array::typenum::{U0, U3, U4, U97};
use generic_array::GenericArray;
#[test]
fn test() {
let mut list97 = [0; 97];
for i in 0..97 {
list97[i] = i as i32;
}
let l: GenericArray<i32, U97> = GenericArray::clone_from_slice(&list97);
assert_eq!(l[0], 0);
assert_eq!(l[1], 1);
assert_eq!(l[32], 32);
assert_eq!(l[56], 56);
}
#[test]
fn test_drop() {
#[derive(Clone)]
struct TestDrop<'a>(&'a Cell<u32>);
impl<'a> Drop for TestDrop<'a> {
fn drop(&mut self) {
self.0.set(self.0.get() + 1);
}
}
let drop_counter = Cell::new(0);
{
let _: GenericArray<TestDrop, U3> = arr![TestDrop; TestDrop(&drop_counter),
TestDrop(&drop_counter),
TestDrop(&drop_counter)];
}
assert_eq!(drop_counter.get(), 3);
}
#[test]
fn test_arr() {
let test: GenericArray<u32, U3> = arr![u32; 1, 2, 3];
assert_eq!(test[1], 2);
}
#[test]
fn test_copy() {
let test = arr![u32; 1, 2, 3];
let test2 = test;
// if GenericArray is not copy, this should fail as a use of a moved value
assert_eq!(test[1], 2);
assert_eq!(test2[0], 1);
}
#[derive(Debug, PartialEq, Eq)]
struct NoClone<T>(T);
#[test]
fn test_from_slice() {
let arr = [1, 2, 3, 4];
let gen_arr = GenericArray::<_, U3>::from_slice(&arr[..3]);
assert_eq!(&arr[..3], gen_arr.as_slice());
let arr = [NoClone(1u32), NoClone(2), NoClone(3), NoClone(4)];
let gen_arr = GenericArray::<_, U3>::from_slice(&arr[..3]);
assert_eq!(&arr[..3], gen_arr.as_slice());
}
#[test]
fn test_from_mut_slice() {
let mut arr = [1, 2, 3, 4];
{
let gen_arr = GenericArray::<_, U3>::from_mut_slice(&mut arr[..3]);
gen_arr[2] = 10;
}
assert_eq!(arr, [1, 2, 10, 4]);
let mut arr = [NoClone(1u32), NoClone(2), NoClone(3), NoClone(4)];
{
let gen_arr = GenericArray::<_, U3>::from_mut_slice(&mut arr[..3]);
gen_arr[2] = NoClone(10);
}
assert_eq!(arr, [NoClone(1), NoClone(2), NoClone(10), NoClone(4)]);
}
#[test]
fn test_default() {
let arr = GenericArray::<u8, U4>::default();
assert_eq!(arr.as_slice(), &[0, 0, 0, 0]);
}
#[test]
fn test_from() {
let data = [(1, 2, 3), (4, 5, 6), (7, 8, 9)];
let garray: GenericArray<(usize, usize, usize), U3> = data.into();
assert_eq!(&data, garray.as_slice());
}
#[test]
fn test_unit_macro() {
let arr = arr![f32; 3.14];
assert_eq!(arr[0], 3.14);
}
#[test]
fn test_empty_macro() {
let _arr = arr![f32;];
}
#[test]
fn test_cmp() {
let _ = arr![u8; 0x00].cmp(&arr![u8; 0x00]);
}
/// This test should cause a helpful compile error if uncommented.
// #[test]
// fn test_empty_macro2(){
// let arr = arr![];
// }
#[cfg(feature = "serde")]
mod impl_serde {
extern crate serde_json;
use generic_array::typenum::U6;
use generic_array::GenericArray;
#[test]
fn test_serde_implementation() {
let array: GenericArray<f64, U6> = arr![f64; 0.0, 5.0, 3.0, 7.07192, 76.0, -9.0];
let string = serde_json::to_string(&array).unwrap();
assert_eq!(string, "[0.0,5.0,3.0,7.07192,76.0,-9.0]");
let test_array: GenericArray<f64, U6> = serde_json::from_str(&string).unwrap();
assert_eq!(test_array, array);
}
}
#[test]
fn test_map() {
let b: GenericArray<i32, U4> = GenericArray::generate(|i| i as i32 * 4).map(|x| x - 3);
assert_eq!(b, arr![i32; -3, 1, 5, 9]);
}
#[test]
fn test_zip() {
let a: GenericArray<_, U4> = GenericArray::generate(|i| i + 1);
let b: GenericArray<_, U4> = GenericArray::generate(|i| i as i32 * 4);
// Uses reference and non-reference arguments
let c = (&a).zip(b, |r, l| *r as i32 + l);
assert_eq!(c, arr![i32; 1, 6, 11, 16]);
}
#[test]
#[should_panic]
fn test_from_iter_short() {
use core::iter::repeat;
let a: GenericArray<_, U4> = repeat(11).take(3).collect();
assert_eq!(a, arr![i32; 11, 11, 11, 0]);
}
#[test]
fn test_from_iter() {
use core::iter::{once, repeat};
let a: GenericArray<_, U4> = repeat(11).take(3).chain(once(0)).collect();
assert_eq!(a, arr![i32; 11, 11, 11, 0]);
}
#[allow(unused)]
#[derive(Debug, Copy, Clone)]
enum E {
V,
V2(i32),
V3 { h: bool, i: i32 },
}
#[allow(unused)]
#[derive(Debug, Copy, Clone)]
#[repr(C)]
#[repr(packed)]
struct Test {
t: u16,
s: u32,
mm: bool,
r: u16,
f: u16,
p: (),
o: u32,
ff: *const extern "C" fn(*const char) -> *const core::ffi::c_void,
l: *const core::ffi::c_void,
w: bool,
q: bool,
v: E,
}
#[test]
fn test_sizes() {
use core::mem::{size_of, size_of_val};
assert_eq!(size_of::<E>(), 8);
assert_eq!(size_of::<Test>(), 25 + size_of::<usize>() * 2);
assert_eq!(size_of_val(&arr![u8; 1, 2, 3]), size_of::<u8>() * 3);
assert_eq!(size_of_val(&arr![u32; 1]), size_of::<u32>() * 1);
assert_eq!(size_of_val(&arr![u64; 1, 2, 3, 4]), size_of::<u64>() * 4);
assert_eq!(size_of::<GenericArray<Test, U97>>(), size_of::<Test>() * 97);
}
#[test]
fn test_alignment() {
use core::mem::align_of;
assert_eq!(align_of::<GenericArray::<u32, U0>>(), align_of::<[u32; 0]>());
assert_eq!(align_of::<GenericArray::<u32, U3>>(), align_of::<[u32; 3]>());
assert_eq!(align_of::<GenericArray::<Test, U3>>(), align_of::<[Test; 3]>());
}
#[test]
fn test_append() {
let a = arr![i32; 1, 2, 3];
let b = a.append(4);
assert_eq!(b, arr![i32; 1, 2, 3, 4]);
}
#[test]
fn test_prepend() {
let a = arr![i32; 1, 2, 3];
let b = a.prepend(4);
assert_eq!(b, arr![i32; 4, 1, 2, 3]);
}
#[test]
fn test_pop() {
let a = arr![i32; 1, 2, 3, 4];
let (init, last) = a.pop_back();
assert_eq!(init, arr![i32; 1, 2, 3]);
assert_eq!(last, 4);
let (head, tail) = a.pop_front();
assert_eq!(head, 1);
assert_eq!(tail, arr![i32; 2, 3, 4]);
}
#[test]
fn test_split() {
let a = arr![i32; 1, 2, 3, 4];
let (b, c) = a.split();
assert_eq!(b, arr![i32; 1]);
assert_eq!(c, arr![i32; 2, 3, 4]);
let (e, f) = a.split();
assert_eq!(e, arr![i32; 1, 2]);
assert_eq!(f, arr![i32; 3, 4]);
}
#[test]
fn test_split_ref() {
let a = arr![i32; 1, 2, 3, 4];
let a_ref = &a;
let (b_ref, c_ref) = a_ref.split();
assert_eq!(b_ref, &arr![i32; 1]);
assert_eq!(c_ref, &arr![i32; 2, 3, 4]);
let (e_ref, f_ref) = a_ref.split();
assert_eq!(e_ref, &arr![i32; 1, 2]);
assert_eq!(f_ref, &arr![i32; 3, 4]);
}
#[test]
fn test_split_mut() {
let mut a = arr![i32; 1, 2, 3, 4];
let a_ref = &mut a;
let (b_ref, c_ref) = a_ref.split();
assert_eq!(b_ref, &mut arr![i32; 1]);
assert_eq!(c_ref, &mut arr![i32; 2, 3, 4]);
let (e_ref, f_ref) = a_ref.split();
assert_eq!(e_ref, &mut arr![i32; 1, 2]);
assert_eq!(f_ref, &mut arr![i32; 3, 4]);
}
#[test]
fn test_concat() {
let a = arr![i32; 1, 2];
let b = arr![i32; 3, 4, 5];
let c = a.concat(b);
assert_eq!(c, arr![i32; 1, 2, 3, 4, 5]);
let (d, e) = c.split();
assert_eq!(d, arr![i32; 1, 2]);
assert_eq!(e, arr![i32; 3, 4, 5]);
}
#[test]
fn test_fold() {
let a = arr![i32; 1, 2, 3, 4];
assert_eq!(10, a.fold(0, |a, x| a + x));
}
fn sum_generic<S>(s: S) -> i32
where
S: FunctionalSequence<i32>,
S::Item: Add<i32, Output = i32>, // `+`
i32: Add<S::Item, Output = i32>, // reflexive
{
s.fold(0, |a, x| a + x)
}
#[test]
fn test_sum() {
let a = sum_generic(arr![i32; 1, 2, 3, 4]);
assert_eq!(a, 10);
}
#[test]
fn test_as_ref() {
let a = arr![i32; 1, 2, 3, 4];
let a_ref: &[i32; 4] = a.as_ref();
assert_eq!(a_ref, &[1, 2, 3, 4]);
}
#[test]
fn test_as_mut() {
let mut a = arr![i32; 1, 2, 3, 4];
let a_mut: &mut [i32; 4] = a.as_mut();
assert_eq!(a_mut, &mut [1, 2, 3, 4]);
a_mut[2] = 0;
assert_eq!(a_mut, &mut [1, 2, 0, 4]);
assert_eq!(a, arr![i32; 1, 2, 0, 4]);
}
#[test]
fn test_from_array_ref() {
let a = arr![i32; 1, 2, 3, 4];
let a_ref: &[i32; 4] = a.as_ref();
let a_from: &GenericArray<i32, U4> = a_ref.into();
assert_eq!(&a, a_from);
}
#[test]
fn test_from_array_mut() {
let mut a = arr![i32; 1, 2, 3, 4];
let mut a_copy = a;
let a_mut: &mut [i32; 4] = a.as_mut();
let a_from: &mut GenericArray<i32, U4> = a_mut.into();
assert_eq!(&mut a_copy, a_from);
}