RPM build fix (reverted CI changes which will need to be un-reverted or made conditional) and vendor Rust dependencies to make builds much faster in any CI system.

This commit is contained in:
Adam Ierymenko
2022-06-08 07:32:16 -04:00
parent 373ca30269
commit d5ca4e5f52
12611 changed files with 2898014 additions and 284 deletions

480
zeroidc/vendor/chrono/src/date.rs vendored Normal file
View File

@@ -0,0 +1,480 @@
// This is a part of Chrono.
// See README.md and LICENSE.txt for details.
//! ISO 8601 calendar date with time zone.
#[cfg(any(feature = "alloc", feature = "std", test))]
use core::borrow::Borrow;
use core::cmp::Ordering;
use core::ops::{Add, Sub};
use core::{fmt, hash};
use oldtime::Duration as OldDuration;
#[cfg(feature = "unstable-locales")]
use format::Locale;
#[cfg(any(feature = "alloc", feature = "std", test))]
use format::{DelayedFormat, Item, StrftimeItems};
use naive::{self, IsoWeek, NaiveDate, NaiveTime};
use offset::{TimeZone, Utc};
use DateTime;
use {Datelike, Weekday};
/// ISO 8601 calendar date with time zone.
///
/// This type should be considered ambiguous at best,
/// due to the inherent lack of precision required for the time zone resolution.
/// For serialization and deserialization uses, it is best to use `NaiveDate` instead.
/// There are some guarantees on the usage of `Date<Tz>`:
///
/// - If properly constructed via `TimeZone::ymd` and others without an error,
/// the corresponding local date should exist for at least a moment.
/// (It may still have a gap from the offset changes.)
///
/// - The `TimeZone` is free to assign *any* `Offset` to the local date,
/// as long as that offset did occur in given day.
/// For example, if `2015-03-08T01:59-08:00` is followed by `2015-03-08T03:00-07:00`,
/// it may produce either `2015-03-08-08:00` or `2015-03-08-07:00`
/// but *not* `2015-03-08+00:00` and others.
///
/// - Once constructed as a full `DateTime`,
/// `DateTime::date` and other associated methods should return those for the original `Date`.
/// For example, if `dt = tz.ymd(y,m,d).hms(h,n,s)` were valid, `dt.date() == tz.ymd(y,m,d)`.
///
/// - The date is timezone-agnostic up to one day (i.e. practically always),
/// so the local date and UTC date should be equal for most cases
/// even though the raw calculation between `NaiveDate` and `Duration` may not.
#[derive(Clone)]
pub struct Date<Tz: TimeZone> {
date: NaiveDate,
offset: Tz::Offset,
}
/// The minimum possible `Date`.
pub const MIN_DATE: Date<Utc> = Date { date: naive::MIN_DATE, offset: Utc };
/// The maximum possible `Date`.
pub const MAX_DATE: Date<Utc> = Date { date: naive::MAX_DATE, offset: Utc };
impl<Tz: TimeZone> Date<Tz> {
/// Makes a new `Date` with given *UTC* date and offset.
/// The local date should be constructed via the `TimeZone` trait.
//
// note: this constructor is purposely not named to `new` to discourage the direct usage.
#[inline]
pub fn from_utc(date: NaiveDate, offset: Tz::Offset) -> Date<Tz> {
Date { date: date, offset: offset }
}
/// Makes a new `DateTime` from the current date and given `NaiveTime`.
/// The offset in the current date is preserved.
///
/// Panics on invalid datetime.
#[inline]
pub fn and_time(&self, time: NaiveTime) -> Option<DateTime<Tz>> {
let localdt = self.naive_local().and_time(time);
self.timezone().from_local_datetime(&localdt).single()
}
/// Makes a new `DateTime` from the current date, hour, minute and second.
/// The offset in the current date is preserved.
///
/// Panics on invalid hour, minute and/or second.
#[inline]
pub fn and_hms(&self, hour: u32, min: u32, sec: u32) -> DateTime<Tz> {
self.and_hms_opt(hour, min, sec).expect("invalid time")
}
/// Makes a new `DateTime` from the current date, hour, minute and second.
/// The offset in the current date is preserved.
///
/// Returns `None` on invalid hour, minute and/or second.
#[inline]
pub fn and_hms_opt(&self, hour: u32, min: u32, sec: u32) -> Option<DateTime<Tz>> {
NaiveTime::from_hms_opt(hour, min, sec).and_then(|time| self.and_time(time))
}
/// Makes a new `DateTime` from the current date, hour, minute, second and millisecond.
/// The millisecond part can exceed 1,000 in order to represent the leap second.
/// The offset in the current date is preserved.
///
/// Panics on invalid hour, minute, second and/or millisecond.
#[inline]
pub fn and_hms_milli(&self, hour: u32, min: u32, sec: u32, milli: u32) -> DateTime<Tz> {
self.and_hms_milli_opt(hour, min, sec, milli).expect("invalid time")
}
/// Makes a new `DateTime` from the current date, hour, minute, second and millisecond.
/// The millisecond part can exceed 1,000 in order to represent the leap second.
/// The offset in the current date is preserved.
///
/// Returns `None` on invalid hour, minute, second and/or millisecond.
#[inline]
pub fn and_hms_milli_opt(
&self,
hour: u32,
min: u32,
sec: u32,
milli: u32,
) -> Option<DateTime<Tz>> {
NaiveTime::from_hms_milli_opt(hour, min, sec, milli).and_then(|time| self.and_time(time))
}
/// Makes a new `DateTime` from the current date, hour, minute, second and microsecond.
/// The microsecond part can exceed 1,000,000 in order to represent the leap second.
/// The offset in the current date is preserved.
///
/// Panics on invalid hour, minute, second and/or microsecond.
#[inline]
pub fn and_hms_micro(&self, hour: u32, min: u32, sec: u32, micro: u32) -> DateTime<Tz> {
self.and_hms_micro_opt(hour, min, sec, micro).expect("invalid time")
}
/// Makes a new `DateTime` from the current date, hour, minute, second and microsecond.
/// The microsecond part can exceed 1,000,000 in order to represent the leap second.
/// The offset in the current date is preserved.
///
/// Returns `None` on invalid hour, minute, second and/or microsecond.
#[inline]
pub fn and_hms_micro_opt(
&self,
hour: u32,
min: u32,
sec: u32,
micro: u32,
) -> Option<DateTime<Tz>> {
NaiveTime::from_hms_micro_opt(hour, min, sec, micro).and_then(|time| self.and_time(time))
}
/// Makes a new `DateTime` from the current date, hour, minute, second and nanosecond.
/// The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
/// The offset in the current date is preserved.
///
/// Panics on invalid hour, minute, second and/or nanosecond.
#[inline]
pub fn and_hms_nano(&self, hour: u32, min: u32, sec: u32, nano: u32) -> DateTime<Tz> {
self.and_hms_nano_opt(hour, min, sec, nano).expect("invalid time")
}
/// Makes a new `DateTime` from the current date, hour, minute, second and nanosecond.
/// The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
/// The offset in the current date is preserved.
///
/// Returns `None` on invalid hour, minute, second and/or nanosecond.
#[inline]
pub fn and_hms_nano_opt(
&self,
hour: u32,
min: u32,
sec: u32,
nano: u32,
) -> Option<DateTime<Tz>> {
NaiveTime::from_hms_nano_opt(hour, min, sec, nano).and_then(|time| self.and_time(time))
}
/// Makes a new `Date` for the next date.
///
/// Panics when `self` is the last representable date.
#[inline]
pub fn succ(&self) -> Date<Tz> {
self.succ_opt().expect("out of bound")
}
/// Makes a new `Date` for the next date.
///
/// Returns `None` when `self` is the last representable date.
#[inline]
pub fn succ_opt(&self) -> Option<Date<Tz>> {
self.date.succ_opt().map(|date| Date::from_utc(date, self.offset.clone()))
}
/// Makes a new `Date` for the prior date.
///
/// Panics when `self` is the first representable date.
#[inline]
pub fn pred(&self) -> Date<Tz> {
self.pred_opt().expect("out of bound")
}
/// Makes a new `Date` for the prior date.
///
/// Returns `None` when `self` is the first representable date.
#[inline]
pub fn pred_opt(&self) -> Option<Date<Tz>> {
self.date.pred_opt().map(|date| Date::from_utc(date, self.offset.clone()))
}
/// Retrieves an associated offset from UTC.
#[inline]
pub fn offset(&self) -> &Tz::Offset {
&self.offset
}
/// Retrieves an associated time zone.
#[inline]
pub fn timezone(&self) -> Tz {
TimeZone::from_offset(&self.offset)
}
/// Changes the associated time zone.
/// This does not change the actual `Date` (but will change the string representation).
#[inline]
pub fn with_timezone<Tz2: TimeZone>(&self, tz: &Tz2) -> Date<Tz2> {
tz.from_utc_date(&self.date)
}
/// Adds given `Duration` to the current date.
///
/// Returns `None` when it will result in overflow.
#[inline]
pub fn checked_add_signed(self, rhs: OldDuration) -> Option<Date<Tz>> {
let date = try_opt!(self.date.checked_add_signed(rhs));
Some(Date { date: date, offset: self.offset })
}
/// Subtracts given `Duration` from the current date.
///
/// Returns `None` when it will result in overflow.
#[inline]
pub fn checked_sub_signed(self, rhs: OldDuration) -> Option<Date<Tz>> {
let date = try_opt!(self.date.checked_sub_signed(rhs));
Some(Date { date: date, offset: self.offset })
}
/// Subtracts another `Date` from the current date.
/// Returns a `Duration` of integral numbers.
///
/// This does not overflow or underflow at all,
/// as all possible output fits in the range of `Duration`.
#[inline]
pub fn signed_duration_since<Tz2: TimeZone>(self, rhs: Date<Tz2>) -> OldDuration {
self.date.signed_duration_since(rhs.date)
}
/// Returns a view to the naive UTC date.
#[inline]
pub fn naive_utc(&self) -> NaiveDate {
self.date
}
/// Returns a view to the naive local date.
///
/// This is technically the same as [`naive_utc`](#method.naive_utc)
/// because the offset is restricted to never exceed one day,
/// but provided for the consistency.
#[inline]
pub fn naive_local(&self) -> NaiveDate {
self.date
}
}
/// Maps the local date to other date with given conversion function.
fn map_local<Tz: TimeZone, F>(d: &Date<Tz>, mut f: F) -> Option<Date<Tz>>
where
F: FnMut(NaiveDate) -> Option<NaiveDate>,
{
f(d.naive_local()).and_then(|date| d.timezone().from_local_date(&date).single())
}
impl<Tz: TimeZone> Date<Tz>
where
Tz::Offset: fmt::Display,
{
/// Formats the date with the specified formatting items.
#[cfg(any(feature = "alloc", feature = "std", test))]
#[inline]
pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I>
where
I: Iterator<Item = B> + Clone,
B: Borrow<Item<'a>>,
{
DelayedFormat::new_with_offset(Some(self.naive_local()), None, &self.offset, items)
}
/// Formats the date with the specified format string.
/// See the [`format::strftime` module](./format/strftime/index.html)
/// on the supported escape sequences.
#[cfg(any(feature = "alloc", feature = "std", test))]
#[inline]
pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> {
self.format_with_items(StrftimeItems::new(fmt))
}
/// Formats the date with the specified formatting items and locale.
#[cfg(feature = "unstable-locales")]
#[inline]
pub fn format_localized_with_items<'a, I, B>(
&self,
items: I,
locale: Locale,
) -> DelayedFormat<I>
where
I: Iterator<Item = B> + Clone,
B: Borrow<Item<'a>>,
{
DelayedFormat::new_with_offset_and_locale(
Some(self.naive_local()),
None,
&self.offset,
items,
locale,
)
}
/// Formats the date with the specified format string and locale.
/// See the [`format::strftime` module](./format/strftime/index.html)
/// on the supported escape sequences.
#[cfg(feature = "unstable-locales")]
#[inline]
pub fn format_localized<'a>(
&self,
fmt: &'a str,
locale: Locale,
) -> DelayedFormat<StrftimeItems<'a>> {
self.format_localized_with_items(StrftimeItems::new_with_locale(fmt, locale), locale)
}
}
impl<Tz: TimeZone> Datelike for Date<Tz> {
#[inline]
fn year(&self) -> i32 {
self.naive_local().year()
}
#[inline]
fn month(&self) -> u32 {
self.naive_local().month()
}
#[inline]
fn month0(&self) -> u32 {
self.naive_local().month0()
}
#[inline]
fn day(&self) -> u32 {
self.naive_local().day()
}
#[inline]
fn day0(&self) -> u32 {
self.naive_local().day0()
}
#[inline]
fn ordinal(&self) -> u32 {
self.naive_local().ordinal()
}
#[inline]
fn ordinal0(&self) -> u32 {
self.naive_local().ordinal0()
}
#[inline]
fn weekday(&self) -> Weekday {
self.naive_local().weekday()
}
#[inline]
fn iso_week(&self) -> IsoWeek {
self.naive_local().iso_week()
}
#[inline]
fn with_year(&self, year: i32) -> Option<Date<Tz>> {
map_local(self, |date| date.with_year(year))
}
#[inline]
fn with_month(&self, month: u32) -> Option<Date<Tz>> {
map_local(self, |date| date.with_month(month))
}
#[inline]
fn with_month0(&self, month0: u32) -> Option<Date<Tz>> {
map_local(self, |date| date.with_month0(month0))
}
#[inline]
fn with_day(&self, day: u32) -> Option<Date<Tz>> {
map_local(self, |date| date.with_day(day))
}
#[inline]
fn with_day0(&self, day0: u32) -> Option<Date<Tz>> {
map_local(self, |date| date.with_day0(day0))
}
#[inline]
fn with_ordinal(&self, ordinal: u32) -> Option<Date<Tz>> {
map_local(self, |date| date.with_ordinal(ordinal))
}
#[inline]
fn with_ordinal0(&self, ordinal0: u32) -> Option<Date<Tz>> {
map_local(self, |date| date.with_ordinal0(ordinal0))
}
}
// we need them as automatic impls cannot handle associated types
impl<Tz: TimeZone> Copy for Date<Tz> where <Tz as TimeZone>::Offset: Copy {}
unsafe impl<Tz: TimeZone> Send for Date<Tz> where <Tz as TimeZone>::Offset: Send {}
impl<Tz: TimeZone, Tz2: TimeZone> PartialEq<Date<Tz2>> for Date<Tz> {
fn eq(&self, other: &Date<Tz2>) -> bool {
self.date == other.date
}
}
impl<Tz: TimeZone> Eq for Date<Tz> {}
impl<Tz: TimeZone> PartialOrd for Date<Tz> {
fn partial_cmp(&self, other: &Date<Tz>) -> Option<Ordering> {
self.date.partial_cmp(&other.date)
}
}
impl<Tz: TimeZone> Ord for Date<Tz> {
fn cmp(&self, other: &Date<Tz>) -> Ordering {
self.date.cmp(&other.date)
}
}
impl<Tz: TimeZone> hash::Hash for Date<Tz> {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.date.hash(state)
}
}
impl<Tz: TimeZone> Add<OldDuration> for Date<Tz> {
type Output = Date<Tz>;
#[inline]
fn add(self, rhs: OldDuration) -> Date<Tz> {
self.checked_add_signed(rhs).expect("`Date + Duration` overflowed")
}
}
impl<Tz: TimeZone> Sub<OldDuration> for Date<Tz> {
type Output = Date<Tz>;
#[inline]
fn sub(self, rhs: OldDuration) -> Date<Tz> {
self.checked_sub_signed(rhs).expect("`Date - Duration` overflowed")
}
}
impl<Tz: TimeZone> Sub<Date<Tz>> for Date<Tz> {
type Output = OldDuration;
#[inline]
fn sub(self, rhs: Date<Tz>) -> OldDuration {
self.signed_duration_since(rhs)
}
}
impl<Tz: TimeZone> fmt::Debug for Date<Tz> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}{:?}", self.naive_local(), self.offset)
}
}
impl<Tz: TimeZone> fmt::Display for Date<Tz>
where
Tz::Offset: fmt::Display,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}{}", self.naive_local(), self.offset)
}
}

2589
zeroidc/vendor/chrono/src/datetime.rs vendored Normal file

File diff suppressed because it is too large Load Diff

41
zeroidc/vendor/chrono/src/div.rs vendored Normal file
View File

@@ -0,0 +1,41 @@
// This is a part of Chrono.
// Portions Copyright 2013-2014 The Rust Project Developers.
// See README.md and LICENSE.txt for details.
//! Integer division utilities. (Shamelessly copied from [num](https://github.com/rust-lang/num/))
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
pub use num_integer::{div_floor, div_mod_floor, div_rem, mod_floor};
#[cfg(test)]
mod tests {
use super::{div_mod_floor, mod_floor};
#[test]
fn test_mod_floor() {
assert_eq!(mod_floor(8, 3), 2);
assert_eq!(mod_floor(8, -3), -1);
assert_eq!(mod_floor(-8, 3), 1);
assert_eq!(mod_floor(-8, -3), -2);
assert_eq!(mod_floor(1, 2), 1);
assert_eq!(mod_floor(1, -2), -1);
assert_eq!(mod_floor(-1, 2), 1);
assert_eq!(mod_floor(-1, -2), -1);
}
#[test]
fn test_div_mod_floor() {
assert_eq!(div_mod_floor(8, 3), (2, 2));
assert_eq!(div_mod_floor(8, -3), (-3, -1));
assert_eq!(div_mod_floor(-8, 3), (-3, 1));
assert_eq!(div_mod_floor(-8, -3), (2, -2));
assert_eq!(div_mod_floor(1, 2), (0, 1));
assert_eq!(div_mod_floor(1, -2), (-1, -1));
assert_eq!(div_mod_floor(-1, 2), (-1, 1));
assert_eq!(div_mod_floor(-1, -2), (0, -1));
}
}

View File

@@ -0,0 +1,33 @@
use pure_rust_locales::{locale_match, Locale};
pub(crate) fn short_months(locale: Locale) -> &'static [&'static str] {
locale_match!(locale => LC_TIME::ABMON)
}
pub(crate) fn long_months(locale: Locale) -> &'static [&'static str] {
locale_match!(locale => LC_TIME::MON)
}
pub(crate) fn short_weekdays(locale: Locale) -> &'static [&'static str] {
locale_match!(locale => LC_TIME::ABDAY)
}
pub(crate) fn long_weekdays(locale: Locale) -> &'static [&'static str] {
locale_match!(locale => LC_TIME::DAY)
}
pub(crate) fn am_pm(locale: Locale) -> &'static [&'static str] {
locale_match!(locale => LC_TIME::AM_PM)
}
pub(crate) fn d_fmt(locale: Locale) -> &'static str {
locale_match!(locale => LC_TIME::D_FMT)
}
pub(crate) fn d_t_fmt(locale: Locale) -> &'static str {
locale_match!(locale => LC_TIME::D_T_FMT)
}
pub(crate) fn t_fmt(locale: Locale) -> &'static str {
locale_match!(locale => LC_TIME::T_FMT)
}

938
zeroidc/vendor/chrono/src/format/mod.rs vendored Normal file
View File

@@ -0,0 +1,938 @@
// This is a part of Chrono.
// See README.md and LICENSE.txt for details.
//! Formatting (and parsing) utilities for date and time.
//!
//! This module provides the common types and routines to implement,
//! for example, [`DateTime::format`](../struct.DateTime.html#method.format) or
//! [`DateTime::parse_from_str`](../struct.DateTime.html#method.parse_from_str) methods.
//! For most cases you should use these high-level interfaces.
//!
//! Internally the formatting and parsing shares the same abstract **formatting items**,
//! which are just an [`Iterator`](https://doc.rust-lang.org/std/iter/trait.Iterator.html) of
//! the [`Item`](./enum.Item.html) type.
//! They are generated from more readable **format strings**;
//! currently Chrono supports [one built-in syntax closely resembling
//! C's `strftime` format](./strftime/index.html).
#![allow(ellipsis_inclusive_range_patterns)]
#[cfg(feature = "alloc")]
use alloc::boxed::Box;
#[cfg(feature = "alloc")]
use alloc::string::{String, ToString};
#[cfg(any(feature = "alloc", feature = "std", test))]
use core::borrow::Borrow;
use core::fmt;
use core::str::FromStr;
#[cfg(any(feature = "std", test))]
use std::error::Error;
#[cfg(any(feature = "alloc", feature = "std", test))]
use naive::{NaiveDate, NaiveTime};
#[cfg(any(feature = "alloc", feature = "std", test))]
use offset::{FixedOffset, Offset};
#[cfg(any(feature = "alloc", feature = "std", test))]
use {Datelike, Timelike};
use {Month, ParseMonthError, ParseWeekdayError, Weekday};
#[cfg(feature = "unstable-locales")]
pub(crate) mod locales;
pub use self::parse::parse;
pub use self::parsed::Parsed;
pub use self::strftime::StrftimeItems;
/// L10n locales.
#[cfg(feature = "unstable-locales")]
pub use pure_rust_locales::Locale;
#[cfg(not(feature = "unstable-locales"))]
#[derive(Debug)]
struct Locale;
/// An uninhabited type used for `InternalNumeric` and `InternalFixed` below.
#[derive(Clone, PartialEq, Eq)]
enum Void {}
/// Padding characters for numeric items.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum Pad {
/// No padding.
None,
/// Zero (`0`) padding.
Zero,
/// Space padding.
Space,
}
/// Numeric item types.
/// They have associated formatting width (FW) and parsing width (PW).
///
/// The **formatting width** is the minimal width to be formatted.
/// If the number is too short, and the padding is not [`Pad::None`](./enum.Pad.html#variant.None),
/// then it is left-padded.
/// If the number is too long or (in some cases) negative, it is printed as is.
///
/// The **parsing width** is the maximal width to be scanned.
/// The parser only tries to consume from one to given number of digits (greedily).
/// It also trims the preceding whitespace if any.
/// It cannot parse the negative number, so some date and time cannot be formatted then
/// parsed with the same formatting items.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Numeric {
/// Full Gregorian year (FW=4, PW=∞).
/// May accept years before 1 BCE or after 9999 CE, given an initial sign.
Year,
/// Gregorian year divided by 100 (century number; FW=PW=2). Implies the non-negative year.
YearDiv100,
/// Gregorian year modulo 100 (FW=PW=2). Cannot be negative.
YearMod100,
/// Year in the ISO week date (FW=4, PW=∞).
/// May accept years before 1 BCE or after 9999 CE, given an initial sign.
IsoYear,
/// Year in the ISO week date, divided by 100 (FW=PW=2). Implies the non-negative year.
IsoYearDiv100,
/// Year in the ISO week date, modulo 100 (FW=PW=2). Cannot be negative.
IsoYearMod100,
/// Month (FW=PW=2).
Month,
/// Day of the month (FW=PW=2).
Day,
/// Week number, where the week 1 starts at the first Sunday of January (FW=PW=2).
WeekFromSun,
/// Week number, where the week 1 starts at the first Monday of January (FW=PW=2).
WeekFromMon,
/// Week number in the ISO week date (FW=PW=2).
IsoWeek,
/// Day of the week, where Sunday = 0 and Saturday = 6 (FW=PW=1).
NumDaysFromSun,
/// Day of the week, where Monday = 1 and Sunday = 7 (FW=PW=1).
WeekdayFromMon,
/// Day of the year (FW=PW=3).
Ordinal,
/// Hour number in the 24-hour clocks (FW=PW=2).
Hour,
/// Hour number in the 12-hour clocks (FW=PW=2).
Hour12,
/// The number of minutes since the last whole hour (FW=PW=2).
Minute,
/// The number of seconds since the last whole minute (FW=PW=2).
Second,
/// The number of nanoseconds since the last whole second (FW=PW=9).
/// Note that this is *not* left-aligned;
/// see also [`Fixed::Nanosecond`](./enum.Fixed.html#variant.Nanosecond).
Nanosecond,
/// The number of non-leap seconds since the midnight UTC on January 1, 1970 (FW=1, PW=∞).
/// For formatting, it assumes UTC upon the absence of time zone offset.
Timestamp,
/// Internal uses only.
///
/// This item exists so that one can add additional internal-only formatting
/// without breaking major compatibility (as enum variants cannot be selectively private).
Internal(InternalNumeric),
}
/// An opaque type representing numeric item types for internal uses only.
pub struct InternalNumeric {
_dummy: Void,
}
impl Clone for InternalNumeric {
fn clone(&self) -> Self {
match self._dummy {}
}
}
impl PartialEq for InternalNumeric {
fn eq(&self, _other: &InternalNumeric) -> bool {
match self._dummy {}
}
}
impl Eq for InternalNumeric {}
impl fmt::Debug for InternalNumeric {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "<InternalNumeric>")
}
}
/// Fixed-format item types.
///
/// They have their own rules of formatting and parsing.
/// Otherwise noted, they print in the specified cases but parse case-insensitively.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Fixed {
/// Abbreviated month names.
///
/// Prints a three-letter-long name in the title case, reads the same name in any case.
ShortMonthName,
/// Full month names.
///
/// Prints a full name in the title case, reads either a short or full name in any case.
LongMonthName,
/// Abbreviated day of the week names.
///
/// Prints a three-letter-long name in the title case, reads the same name in any case.
ShortWeekdayName,
/// Full day of the week names.
///
/// Prints a full name in the title case, reads either a short or full name in any case.
LongWeekdayName,
/// AM/PM.
///
/// Prints in lower case, reads in any case.
LowerAmPm,
/// AM/PM.
///
/// Prints in upper case, reads in any case.
UpperAmPm,
/// An optional dot plus one or more digits for left-aligned nanoseconds.
/// May print nothing, 3, 6 or 9 digits according to the available accuracy.
/// See also [`Numeric::Nanosecond`](./enum.Numeric.html#variant.Nanosecond).
Nanosecond,
/// Same as [`Nanosecond`](#variant.Nanosecond) but the accuracy is fixed to 3.
Nanosecond3,
/// Same as [`Nanosecond`](#variant.Nanosecond) but the accuracy is fixed to 6.
Nanosecond6,
/// Same as [`Nanosecond`](#variant.Nanosecond) but the accuracy is fixed to 9.
Nanosecond9,
/// Timezone name.
///
/// It does not support parsing, its use in the parser is an immediate failure.
TimezoneName,
/// Offset from the local time to UTC (`+09:00` or `-04:00` or `+00:00`).
///
/// In the parser, the colon can be omitted and/or surrounded with any amount of whitespace.
/// The offset is limited from `-24:00` to `+24:00`,
/// which is the same as [`FixedOffset`](../offset/struct.FixedOffset.html)'s range.
TimezoneOffsetColon,
/// Offset from the local time to UTC (`+09:00` or `-04:00` or `Z`).
///
/// In the parser, the colon can be omitted and/or surrounded with any amount of whitespace,
/// and `Z` can be either in upper case or in lower case.
/// The offset is limited from `-24:00` to `+24:00`,
/// which is the same as [`FixedOffset`](../offset/struct.FixedOffset.html)'s range.
TimezoneOffsetColonZ,
/// Same as [`TimezoneOffsetColon`](#variant.TimezoneOffsetColon) but prints no colon.
/// Parsing allows an optional colon.
TimezoneOffset,
/// Same as [`TimezoneOffsetColonZ`](#variant.TimezoneOffsetColonZ) but prints no colon.
/// Parsing allows an optional colon.
TimezoneOffsetZ,
/// RFC 2822 date and time syntax. Commonly used for email and MIME date and time.
RFC2822,
/// RFC 3339 & ISO 8601 date and time syntax.
RFC3339,
/// Internal uses only.
///
/// This item exists so that one can add additional internal-only formatting
/// without breaking major compatibility (as enum variants cannot be selectively private).
Internal(InternalFixed),
}
/// An opaque type representing fixed-format item types for internal uses only.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct InternalFixed {
val: InternalInternal,
}
#[derive(Debug, Clone, PartialEq, Eq)]
enum InternalInternal {
/// Same as [`TimezoneOffsetColonZ`](#variant.TimezoneOffsetColonZ), but
/// allows missing minutes (per [ISO 8601][iso8601]).
///
/// # Panics
///
/// If you try to use this for printing.
///
/// [iso8601]: https://en.wikipedia.org/wiki/ISO_8601#Time_offsets_from_UTC
TimezoneOffsetPermissive,
/// Same as [`Nanosecond`](#variant.Nanosecond) but the accuracy is fixed to 3 and there is no leading dot.
Nanosecond3NoDot,
/// Same as [`Nanosecond`](#variant.Nanosecond) but the accuracy is fixed to 6 and there is no leading dot.
Nanosecond6NoDot,
/// Same as [`Nanosecond`](#variant.Nanosecond) but the accuracy is fixed to 9 and there is no leading dot.
Nanosecond9NoDot,
}
/// A single formatting item. This is used for both formatting and parsing.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Item<'a> {
/// A literally printed and parsed text.
Literal(&'a str),
/// Same as `Literal` but with the string owned by the item.
#[cfg(any(feature = "alloc", feature = "std", test))]
OwnedLiteral(Box<str>),
/// Whitespace. Prints literally but reads zero or more whitespace.
Space(&'a str),
/// Same as `Space` but with the string owned by the item.
#[cfg(any(feature = "alloc", feature = "std", test))]
OwnedSpace(Box<str>),
/// Numeric item. Can be optionally padded to the maximal length (if any) when formatting;
/// the parser simply ignores any padded whitespace and zeroes.
Numeric(Numeric, Pad),
/// Fixed-format item.
Fixed(Fixed),
/// Issues a formatting error. Used to signal an invalid format string.
Error,
}
macro_rules! lit {
($x:expr) => {
Item::Literal($x)
};
}
macro_rules! sp {
($x:expr) => {
Item::Space($x)
};
}
macro_rules! num {
($x:ident) => {
Item::Numeric(Numeric::$x, Pad::None)
};
}
macro_rules! num0 {
($x:ident) => {
Item::Numeric(Numeric::$x, Pad::Zero)
};
}
macro_rules! nums {
($x:ident) => {
Item::Numeric(Numeric::$x, Pad::Space)
};
}
macro_rules! fix {
($x:ident) => {
Item::Fixed(Fixed::$x)
};
}
macro_rules! internal_fix {
($x:ident) => {
Item::Fixed(Fixed::Internal(InternalFixed { val: InternalInternal::$x }))
};
}
/// An error from the `parse` function.
#[derive(Debug, Clone, PartialEq, Eq, Copy)]
pub struct ParseError(ParseErrorKind);
/// The category of parse error
#[derive(Debug, Clone, PartialEq, Eq, Copy)]
enum ParseErrorKind {
/// Given field is out of permitted range.
OutOfRange,
/// There is no possible date and time value with given set of fields.
///
/// This does not include the out-of-range conditions, which are trivially invalid.
/// It includes the case that there are one or more fields that are inconsistent to each other.
Impossible,
/// Given set of fields is not enough to make a requested date and time value.
///
/// Note that there *may* be a case that given fields constrain the possible values so much
/// that there is a unique possible value. Chrono only tries to be correct for
/// most useful sets of fields however, as such constraint solving can be expensive.
NotEnough,
/// The input string has some invalid character sequence for given formatting items.
Invalid,
/// The input string has been prematurely ended.
TooShort,
/// All formatting items have been read but there is a remaining input.
TooLong,
/// There was an error on the formatting string, or there were non-supported formating items.
BadFormat,
}
/// Same as `Result<T, ParseError>`.
pub type ParseResult<T> = Result<T, ParseError>;
impl fmt::Display for ParseError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.0 {
ParseErrorKind::OutOfRange => write!(f, "input is out of range"),
ParseErrorKind::Impossible => write!(f, "no possible date and time matching input"),
ParseErrorKind::NotEnough => write!(f, "input is not enough for unique date and time"),
ParseErrorKind::Invalid => write!(f, "input contains invalid characters"),
ParseErrorKind::TooShort => write!(f, "premature end of input"),
ParseErrorKind::TooLong => write!(f, "trailing input"),
ParseErrorKind::BadFormat => write!(f, "bad or unsupported format string"),
}
}
}
#[cfg(any(feature = "std", test))]
impl Error for ParseError {
#[allow(deprecated)]
fn description(&self) -> &str {
"parser error, see to_string() for details"
}
}
// to be used in this module and submodules
const OUT_OF_RANGE: ParseError = ParseError(ParseErrorKind::OutOfRange);
const IMPOSSIBLE: ParseError = ParseError(ParseErrorKind::Impossible);
const NOT_ENOUGH: ParseError = ParseError(ParseErrorKind::NotEnough);
const INVALID: ParseError = ParseError(ParseErrorKind::Invalid);
const TOO_SHORT: ParseError = ParseError(ParseErrorKind::TooShort);
const TOO_LONG: ParseError = ParseError(ParseErrorKind::TooLong);
const BAD_FORMAT: ParseError = ParseError(ParseErrorKind::BadFormat);
/// Formats single formatting item
#[cfg(any(feature = "alloc", feature = "std", test))]
pub fn format_item<'a>(
w: &mut fmt::Formatter,
date: Option<&NaiveDate>,
time: Option<&NaiveTime>,
off: Option<&(String, FixedOffset)>,
item: &Item<'a>,
) -> fmt::Result {
let mut result = String::new();
format_inner(&mut result, date, time, off, item, None)?;
w.pad(&result)
}
#[cfg(any(feature = "alloc", feature = "std", test))]
fn format_inner<'a>(
result: &mut String,
date: Option<&NaiveDate>,
time: Option<&NaiveTime>,
off: Option<&(String, FixedOffset)>,
item: &Item<'a>,
_locale: Option<Locale>,
) -> fmt::Result {
#[cfg(feature = "unstable-locales")]
let (short_months, long_months, short_weekdays, long_weekdays, am_pm, am_pm_lowercase) = {
let locale = _locale.unwrap_or(Locale::POSIX);
let am_pm = locales::am_pm(locale);
(
locales::short_months(locale),
locales::long_months(locale),
locales::short_weekdays(locale),
locales::long_weekdays(locale),
am_pm,
&[am_pm[0].to_lowercase(), am_pm[1].to_lowercase()],
)
};
#[cfg(not(feature = "unstable-locales"))]
let (short_months, long_months, short_weekdays, long_weekdays, am_pm, am_pm_lowercase) = {
(
&["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"],
&[
"January",
"February",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November",
"December",
],
&["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"],
&["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"],
&["AM", "PM"],
&["am", "pm"],
)
};
use core::fmt::Write;
use div::{div_floor, mod_floor};
match *item {
Item::Literal(s) | Item::Space(s) => result.push_str(s),
#[cfg(any(feature = "alloc", feature = "std", test))]
Item::OwnedLiteral(ref s) | Item::OwnedSpace(ref s) => result.push_str(s),
Item::Numeric(ref spec, ref pad) => {
use self::Numeric::*;
let week_from_sun = |d: &NaiveDate| {
(d.ordinal() as i32 - d.weekday().num_days_from_sunday() as i32 + 7) / 7
};
let week_from_mon = |d: &NaiveDate| {
(d.ordinal() as i32 - d.weekday().num_days_from_monday() as i32 + 7) / 7
};
let (width, v) = match *spec {
Year => (4, date.map(|d| i64::from(d.year()))),
YearDiv100 => (2, date.map(|d| div_floor(i64::from(d.year()), 100))),
YearMod100 => (2, date.map(|d| mod_floor(i64::from(d.year()), 100))),
IsoYear => (4, date.map(|d| i64::from(d.iso_week().year()))),
IsoYearDiv100 => (2, date.map(|d| div_floor(i64::from(d.iso_week().year()), 100))),
IsoYearMod100 => (2, date.map(|d| mod_floor(i64::from(d.iso_week().year()), 100))),
Month => (2, date.map(|d| i64::from(d.month()))),
Day => (2, date.map(|d| i64::from(d.day()))),
WeekFromSun => (2, date.map(|d| i64::from(week_from_sun(d)))),
WeekFromMon => (2, date.map(|d| i64::from(week_from_mon(d)))),
IsoWeek => (2, date.map(|d| i64::from(d.iso_week().week()))),
NumDaysFromSun => (1, date.map(|d| i64::from(d.weekday().num_days_from_sunday()))),
WeekdayFromMon => (1, date.map(|d| i64::from(d.weekday().number_from_monday()))),
Ordinal => (3, date.map(|d| i64::from(d.ordinal()))),
Hour => (2, time.map(|t| i64::from(t.hour()))),
Hour12 => (2, time.map(|t| i64::from(t.hour12().1))),
Minute => (2, time.map(|t| i64::from(t.minute()))),
Second => (2, time.map(|t| i64::from(t.second() + t.nanosecond() / 1_000_000_000))),
Nanosecond => (9, time.map(|t| i64::from(t.nanosecond() % 1_000_000_000))),
Timestamp => (
1,
match (date, time, off) {
(Some(d), Some(t), None) => Some(d.and_time(*t).timestamp()),
(Some(d), Some(t), Some(&(_, off))) => {
Some((d.and_time(*t) - off).timestamp())
}
(_, _, _) => None,
},
),
// for the future expansion
Internal(ref int) => match int._dummy {},
};
if let Some(v) = v {
if (spec == &Year || spec == &IsoYear) && !(0 <= v && v < 10_000) {
// non-four-digit years require an explicit sign as per ISO 8601
match *pad {
Pad::None => write!(result, "{:+}", v),
Pad::Zero => write!(result, "{:+01$}", v, width + 1),
Pad::Space => write!(result, "{:+1$}", v, width + 1),
}
} else {
match *pad {
Pad::None => write!(result, "{}", v),
Pad::Zero => write!(result, "{:01$}", v, width),
Pad::Space => write!(result, "{:1$}", v, width),
}
}?
} else {
return Err(fmt::Error); // insufficient arguments for given format
}
}
Item::Fixed(ref spec) => {
use self::Fixed::*;
/// Prints an offset from UTC in the format of `+HHMM` or `+HH:MM`.
/// `Z` instead of `+00[:]00` is allowed when `allow_zulu` is true.
fn write_local_minus_utc(
result: &mut String,
off: FixedOffset,
allow_zulu: bool,
use_colon: bool,
) -> fmt::Result {
let off = off.local_minus_utc();
if !allow_zulu || off != 0 {
let (sign, off) = if off < 0 { ('-', -off) } else { ('+', off) };
if use_colon {
write!(result, "{}{:02}:{:02}", sign, off / 3600, off / 60 % 60)
} else {
write!(result, "{}{:02}{:02}", sign, off / 3600, off / 60 % 60)
}
} else {
result.push_str("Z");
Ok(())
}
}
let ret =
match *spec {
ShortMonthName => date.map(|d| {
result.push_str(short_months[d.month0() as usize]);
Ok(())
}),
LongMonthName => date.map(|d| {
result.push_str(long_months[d.month0() as usize]);
Ok(())
}),
ShortWeekdayName => date.map(|d| {
result
.push_str(short_weekdays[d.weekday().num_days_from_sunday() as usize]);
Ok(())
}),
LongWeekdayName => date.map(|d| {
result.push_str(long_weekdays[d.weekday().num_days_from_sunday() as usize]);
Ok(())
}),
LowerAmPm => time.map(|t| {
#[cfg_attr(feature = "cargo-clippy", allow(useless_asref))]
{
result.push_str(if t.hour12().0 {
am_pm_lowercase[1].as_ref()
} else {
am_pm_lowercase[0].as_ref()
});
}
Ok(())
}),
UpperAmPm => time.map(|t| {
result.push_str(if t.hour12().0 { am_pm[1] } else { am_pm[0] });
Ok(())
}),
Nanosecond => time.map(|t| {
let nano = t.nanosecond() % 1_000_000_000;
if nano == 0 {
Ok(())
} else if nano % 1_000_000 == 0 {
write!(result, ".{:03}", nano / 1_000_000)
} else if nano % 1_000 == 0 {
write!(result, ".{:06}", nano / 1_000)
} else {
write!(result, ".{:09}", nano)
}
}),
Nanosecond3 => time.map(|t| {
let nano = t.nanosecond() % 1_000_000_000;
write!(result, ".{:03}", nano / 1_000_000)
}),
Nanosecond6 => time.map(|t| {
let nano = t.nanosecond() % 1_000_000_000;
write!(result, ".{:06}", nano / 1_000)
}),
Nanosecond9 => time.map(|t| {
let nano = t.nanosecond() % 1_000_000_000;
write!(result, ".{:09}", nano)
}),
Internal(InternalFixed { val: InternalInternal::Nanosecond3NoDot }) => time
.map(|t| {
let nano = t.nanosecond() % 1_000_000_000;
write!(result, "{:03}", nano / 1_000_000)
}),
Internal(InternalFixed { val: InternalInternal::Nanosecond6NoDot }) => time
.map(|t| {
let nano = t.nanosecond() % 1_000_000_000;
write!(result, "{:06}", nano / 1_000)
}),
Internal(InternalFixed { val: InternalInternal::Nanosecond9NoDot }) => time
.map(|t| {
let nano = t.nanosecond() % 1_000_000_000;
write!(result, "{:09}", nano)
}),
TimezoneName => off.map(|&(ref name, _)| {
result.push_str(name);
Ok(())
}),
TimezoneOffsetColon => {
off.map(|&(_, off)| write_local_minus_utc(result, off, false, true))
}
TimezoneOffsetColonZ => {
off.map(|&(_, off)| write_local_minus_utc(result, off, true, true))
}
TimezoneOffset => {
off.map(|&(_, off)| write_local_minus_utc(result, off, false, false))
}
TimezoneOffsetZ => {
off.map(|&(_, off)| write_local_minus_utc(result, off, true, false))
}
Internal(InternalFixed { val: InternalInternal::TimezoneOffsetPermissive }) => {
panic!("Do not try to write %#z it is undefined")
}
RFC2822 =>
// same as `%a, %d %b %Y %H:%M:%S %z`
{
if let (Some(d), Some(t), Some(&(_, off))) = (date, time, off) {
let sec = t.second() + t.nanosecond() / 1_000_000_000;
write!(
result,
"{}, {:02} {} {:04} {:02}:{:02}:{:02} ",
short_weekdays[d.weekday().num_days_from_sunday() as usize],
d.day(),
short_months[d.month0() as usize],
d.year(),
t.hour(),
t.minute(),
sec
)?;
Some(write_local_minus_utc(result, off, false, false))
} else {
None
}
}
RFC3339 =>
// same as `%Y-%m-%dT%H:%M:%S%.f%:z`
{
if let (Some(d), Some(t), Some(&(_, off))) = (date, time, off) {
// reuse `Debug` impls which already print ISO 8601 format.
// this is faster in this way.
write!(result, "{:?}T{:?}", d, t)?;
Some(write_local_minus_utc(result, off, false, true))
} else {
None
}
}
};
match ret {
Some(ret) => ret?,
None => return Err(fmt::Error), // insufficient arguments for given format
}
}
Item::Error => return Err(fmt::Error),
}
Ok(())
}
/// Tries to format given arguments with given formatting items.
/// Internally used by `DelayedFormat`.
#[cfg(any(feature = "alloc", feature = "std", test))]
pub fn format<'a, I, B>(
w: &mut fmt::Formatter,
date: Option<&NaiveDate>,
time: Option<&NaiveTime>,
off: Option<&(String, FixedOffset)>,
items: I,
) -> fmt::Result
where
I: Iterator<Item = B> + Clone,
B: Borrow<Item<'a>>,
{
let mut result = String::new();
for item in items {
format_inner(&mut result, date, time, off, item.borrow(), None)?;
}
w.pad(&result)
}
mod parsed;
// due to the size of parsing routines, they are in separate modules.
mod parse;
mod scan;
pub mod strftime;
/// A *temporary* object which can be used as an argument to `format!` or others.
/// This is normally constructed via `format` methods of each date and time type.
#[cfg(any(feature = "alloc", feature = "std", test))]
#[derive(Debug)]
pub struct DelayedFormat<I> {
/// The date view, if any.
date: Option<NaiveDate>,
/// The time view, if any.
time: Option<NaiveTime>,
/// The name and local-to-UTC difference for the offset (timezone), if any.
off: Option<(String, FixedOffset)>,
/// An iterator returning formatting items.
items: I,
/// Locale used for text.
locale: Option<Locale>,
}
#[cfg(any(feature = "alloc", feature = "std", test))]
impl<'a, I: Iterator<Item = B> + Clone, B: Borrow<Item<'a>>> DelayedFormat<I> {
/// Makes a new `DelayedFormat` value out of local date and time.
pub fn new(date: Option<NaiveDate>, time: Option<NaiveTime>, items: I) -> DelayedFormat<I> {
DelayedFormat { date: date, time: time, off: None, items: items, locale: None }
}
/// Makes a new `DelayedFormat` value out of local date and time and UTC offset.
pub fn new_with_offset<Off>(
date: Option<NaiveDate>,
time: Option<NaiveTime>,
offset: &Off,
items: I,
) -> DelayedFormat<I>
where
Off: Offset + fmt::Display,
{
let name_and_diff = (offset.to_string(), offset.fix());
DelayedFormat {
date: date,
time: time,
off: Some(name_and_diff),
items: items,
locale: None,
}
}
/// Makes a new `DelayedFormat` value out of local date and time and locale.
#[cfg(feature = "unstable-locales")]
pub fn new_with_locale(
date: Option<NaiveDate>,
time: Option<NaiveTime>,
items: I,
locale: Locale,
) -> DelayedFormat<I> {
DelayedFormat { date: date, time: time, off: None, items: items, locale: Some(locale) }
}
/// Makes a new `DelayedFormat` value out of local date and time, UTC offset and locale.
#[cfg(feature = "unstable-locales")]
pub fn new_with_offset_and_locale<Off>(
date: Option<NaiveDate>,
time: Option<NaiveTime>,
offset: &Off,
items: I,
locale: Locale,
) -> DelayedFormat<I>
where
Off: Offset + fmt::Display,
{
let name_and_diff = (offset.to_string(), offset.fix());
DelayedFormat {
date: date,
time: time,
off: Some(name_and_diff),
items: items,
locale: Some(locale),
}
}
}
#[cfg(any(feature = "alloc", feature = "std", test))]
impl<'a, I: Iterator<Item = B> + Clone, B: Borrow<Item<'a>>> fmt::Display for DelayedFormat<I> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
#[cfg(feature = "unstable-locales")]
{
if let Some(locale) = self.locale {
return format_localized(
f,
self.date.as_ref(),
self.time.as_ref(),
self.off.as_ref(),
self.items.clone(),
locale,
);
}
}
format(f, self.date.as_ref(), self.time.as_ref(), self.off.as_ref(), self.items.clone())
}
}
// this implementation is here only because we need some private code from `scan`
/// Parsing a `str` into a `Weekday` uses the format [`%W`](./format/strftime/index.html).
///
/// # Example
///
/// ~~~~
/// use chrono::Weekday;
///
/// assert_eq!("Sunday".parse::<Weekday>(), Ok(Weekday::Sun));
/// assert!("any day".parse::<Weekday>().is_err());
/// ~~~~
///
/// The parsing is case-insensitive.
///
/// ~~~~
/// # use chrono::Weekday;
/// assert_eq!("mON".parse::<Weekday>(), Ok(Weekday::Mon));
/// ~~~~
///
/// Only the shortest form (e.g. `sun`) and the longest form (e.g. `sunday`) is accepted.
///
/// ~~~~
/// # use chrono::Weekday;
/// assert!("thurs".parse::<Weekday>().is_err());
/// ~~~~
impl FromStr for Weekday {
type Err = ParseWeekdayError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
if let Ok(("", w)) = scan::short_or_long_weekday(s) {
Ok(w)
} else {
Err(ParseWeekdayError { _dummy: () })
}
}
}
/// Formats single formatting item
#[cfg(feature = "unstable-locales")]
pub fn format_item_localized<'a>(
w: &mut fmt::Formatter,
date: Option<&NaiveDate>,
time: Option<&NaiveTime>,
off: Option<&(String, FixedOffset)>,
item: &Item<'a>,
locale: Locale,
) -> fmt::Result {
let mut result = String::new();
format_inner(&mut result, date, time, off, item, Some(locale))?;
w.pad(&result)
}
/// Tries to format given arguments with given formatting items.
/// Internally used by `DelayedFormat`.
#[cfg(feature = "unstable-locales")]
pub fn format_localized<'a, I, B>(
w: &mut fmt::Formatter,
date: Option<&NaiveDate>,
time: Option<&NaiveTime>,
off: Option<&(String, FixedOffset)>,
items: I,
locale: Locale,
) -> fmt::Result
where
I: Iterator<Item = B> + Clone,
B: Borrow<Item<'a>>,
{
let mut result = String::new();
for item in items {
format_inner(&mut result, date, time, off, item.borrow(), Some(locale))?;
}
w.pad(&result)
}
/// Parsing a `str` into a `Month` uses the format [`%W`](./format/strftime/index.html).
///
/// # Example
///
/// ~~~~
/// use chrono::Month;
///
/// assert_eq!("January".parse::<Month>(), Ok(Month::January));
/// assert!("any day".parse::<Month>().is_err());
/// ~~~~
///
/// The parsing is case-insensitive.
///
/// ~~~~
/// # use chrono::Month;
/// assert_eq!("fEbruARy".parse::<Month>(), Ok(Month::February));
/// ~~~~
///
/// Only the shortest form (e.g. `jan`) and the longest form (e.g. `january`) is accepted.
///
/// ~~~~
/// # use chrono::Month;
/// assert!("septem".parse::<Month>().is_err());
/// assert!("Augustin".parse::<Month>().is_err());
/// ~~~~
impl FromStr for Month {
type Err = ParseMonthError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
if let Ok(("", w)) = scan::short_or_long_month0(s) {
match w {
0 => Ok(Month::January),
1 => Ok(Month::February),
2 => Ok(Month::March),
3 => Ok(Month::April),
4 => Ok(Month::May),
5 => Ok(Month::June),
6 => Ok(Month::July),
7 => Ok(Month::August),
8 => Ok(Month::September),
9 => Ok(Month::October),
10 => Ok(Month::November),
11 => Ok(Month::December),
_ => Err(ParseMonthError { _dummy: () }),
}
} else {
Err(ParseMonthError { _dummy: () })
}
}
}

View File

@@ -0,0 +1,934 @@
// This is a part of Chrono.
// Portions copyright (c) 2015, John Nagle.
// See README.md and LICENSE.txt for details.
//! Date and time parsing routines.
#![allow(deprecated)]
use core::borrow::Borrow;
use core::str;
use core::usize;
use super::scan;
use super::{Fixed, InternalFixed, InternalInternal, Item, Numeric, Pad, Parsed};
use super::{ParseError, ParseErrorKind, ParseResult};
use super::{BAD_FORMAT, INVALID, NOT_ENOUGH, OUT_OF_RANGE, TOO_LONG, TOO_SHORT};
use {DateTime, FixedOffset, Weekday};
fn set_weekday_with_num_days_from_sunday(p: &mut Parsed, v: i64) -> ParseResult<()> {
p.set_weekday(match v {
0 => Weekday::Sun,
1 => Weekday::Mon,
2 => Weekday::Tue,
3 => Weekday::Wed,
4 => Weekday::Thu,
5 => Weekday::Fri,
6 => Weekday::Sat,
_ => return Err(OUT_OF_RANGE),
})
}
fn set_weekday_with_number_from_monday(p: &mut Parsed, v: i64) -> ParseResult<()> {
p.set_weekday(match v {
1 => Weekday::Mon,
2 => Weekday::Tue,
3 => Weekday::Wed,
4 => Weekday::Thu,
5 => Weekday::Fri,
6 => Weekday::Sat,
7 => Weekday::Sun,
_ => return Err(OUT_OF_RANGE),
})
}
fn parse_rfc2822<'a>(parsed: &mut Parsed, mut s: &'a str) -> ParseResult<(&'a str, ())> {
macro_rules! try_consume {
($e:expr) => {{
let (s_, v) = $e?;
s = s_;
v
}};
}
// an adapted RFC 2822 syntax from Section 3.3 and 4.3:
//
// date-time = [ day-of-week "," ] date 1*S time *S
// day-of-week = *S day-name *S
// day-name = "Mon" / "Tue" / "Wed" / "Thu" / "Fri" / "Sat" / "Sun"
// date = day month year
// day = *S 1*2DIGIT *S
// month = 1*S month-name 1*S
// month-name = "Jan" / "Feb" / "Mar" / "Apr" / "May" / "Jun" /
// "Jul" / "Aug" / "Sep" / "Oct" / "Nov" / "Dec"
// year = *S 2*DIGIT *S
// time = time-of-day 1*S zone
// time-of-day = hour ":" minute [ ":" second ]
// hour = *S 2DIGIT *S
// minute = *S 2DIGIT *S
// second = *S 2DIGIT *S
// zone = ( "+" / "-" ) 4DIGIT /
// "UT" / "GMT" / ; same as +0000
// "EST" / "CST" / "MST" / "PST" / ; same as -0500 to -0800
// "EDT" / "CDT" / "MDT" / "PDT" / ; same as -0400 to -0700
// 1*(%d65-90 / %d97-122) ; same as -0000
//
// some notes:
//
// - quoted characters can be in any mixture of lower and upper cases.
//
// - we do not recognize a folding white space (FWS) or comment (CFWS).
// for our purposes, instead, we accept any sequence of Unicode
// white space characters (denoted here to `S`). any actual RFC 2822
// parser is expected to parse FWS and/or CFWS themselves and replace
// it with a single SP (`%x20`); this is legitimate.
//
// - two-digit year < 50 should be interpreted by adding 2000.
// two-digit year >= 50 or three-digit year should be interpreted
// by adding 1900. note that four-or-more-digit years less than 1000
// are *never* affected by this rule.
//
// - mismatching day-of-week is always an error, which is consistent to
// Chrono's own rules.
//
// - zones can range from `-9959` to `+9959`, but `FixedOffset` does not
// support offsets larger than 24 hours. this is not *that* problematic
// since we do not directly go to a `DateTime` so one can recover
// the offset information from `Parsed` anyway.
s = s.trim_left();
if let Ok((s_, weekday)) = scan::short_weekday(s) {
if !s_.starts_with(',') {
return Err(INVALID);
}
s = &s_[1..];
parsed.set_weekday(weekday)?;
}
s = s.trim_left();
parsed.set_day(try_consume!(scan::number(s, 1, 2)))?;
s = scan::space(s)?; // mandatory
parsed.set_month(1 + i64::from(try_consume!(scan::short_month0(s))))?;
s = scan::space(s)?; // mandatory
// distinguish two- and three-digit years from four-digit years
let prevlen = s.len();
let mut year = try_consume!(scan::number(s, 2, usize::MAX));
let yearlen = prevlen - s.len();
match (yearlen, year) {
(2, 0...49) => {
year += 2000;
} // 47 -> 2047, 05 -> 2005
(2, 50...99) => {
year += 1900;
} // 79 -> 1979
(3, _) => {
year += 1900;
} // 112 -> 2012, 009 -> 1909
(_, _) => {} // 1987 -> 1987, 0654 -> 0654
}
parsed.set_year(year)?;
s = scan::space(s)?; // mandatory
parsed.set_hour(try_consume!(scan::number(s, 2, 2)))?;
s = scan::char(s.trim_left(), b':')?.trim_left(); // *S ":" *S
parsed.set_minute(try_consume!(scan::number(s, 2, 2)))?;
if let Ok(s_) = scan::char(s.trim_left(), b':') {
// [ ":" *S 2DIGIT ]
parsed.set_second(try_consume!(scan::number(s_, 2, 2)))?;
}
s = scan::space(s)?; // mandatory
if let Some(offset) = try_consume!(scan::timezone_offset_2822(s)) {
// only set the offset when it is definitely known (i.e. not `-0000`)
parsed.set_offset(i64::from(offset))?;
}
Ok((s, ()))
}
fn parse_rfc3339<'a>(parsed: &mut Parsed, mut s: &'a str) -> ParseResult<(&'a str, ())> {
macro_rules! try_consume {
($e:expr) => {{
let (s_, v) = $e?;
s = s_;
v
}};
}
// an adapted RFC 3339 syntax from Section 5.6:
//
// date-fullyear = 4DIGIT
// date-month = 2DIGIT ; 01-12
// date-mday = 2DIGIT ; 01-28, 01-29, 01-30, 01-31 based on month/year
// time-hour = 2DIGIT ; 00-23
// time-minute = 2DIGIT ; 00-59
// time-second = 2DIGIT ; 00-58, 00-59, 00-60 based on leap second rules
// time-secfrac = "." 1*DIGIT
// time-numoffset = ("+" / "-") time-hour ":" time-minute
// time-offset = "Z" / time-numoffset
// partial-time = time-hour ":" time-minute ":" time-second [time-secfrac]
// full-date = date-fullyear "-" date-month "-" date-mday
// full-time = partial-time time-offset
// date-time = full-date "T" full-time
//
// some notes:
//
// - quoted characters can be in any mixture of lower and upper cases.
//
// - it may accept any number of fractional digits for seconds.
// for Chrono, this means that we should skip digits past first 9 digits.
//
// - unlike RFC 2822, the valid offset ranges from -23:59 to +23:59.
// note that this restriction is unique to RFC 3339 and not ISO 8601.
// since this is not a typical Chrono behavior, we check it earlier.
parsed.set_year(try_consume!(scan::number(s, 4, 4)))?;
s = scan::char(s, b'-')?;
parsed.set_month(try_consume!(scan::number(s, 2, 2)))?;
s = scan::char(s, b'-')?;
parsed.set_day(try_consume!(scan::number(s, 2, 2)))?;
s = match s.as_bytes().first() {
Some(&b't') | Some(&b'T') => &s[1..],
Some(_) => return Err(INVALID),
None => return Err(TOO_SHORT),
};
parsed.set_hour(try_consume!(scan::number(s, 2, 2)))?;
s = scan::char(s, b':')?;
parsed.set_minute(try_consume!(scan::number(s, 2, 2)))?;
s = scan::char(s, b':')?;
parsed.set_second(try_consume!(scan::number(s, 2, 2)))?;
if s.starts_with('.') {
let nanosecond = try_consume!(scan::nanosecond(&s[1..]));
parsed.set_nanosecond(nanosecond)?;
}
let offset = try_consume!(scan::timezone_offset_zulu(s, |s| scan::char(s, b':')));
if offset <= -86_400 || offset >= 86_400 {
return Err(OUT_OF_RANGE);
}
parsed.set_offset(i64::from(offset))?;
Ok((s, ()))
}
/// Tries to parse given string into `parsed` with given formatting items.
/// Returns `Ok` when the entire string has been parsed (otherwise `parsed` should not be used).
/// There should be no trailing string after parsing;
/// use a stray [`Item::Space`](./enum.Item.html#variant.Space) to trim whitespaces.
///
/// This particular date and time parser is:
///
/// - Greedy. It will consume the longest possible prefix.
/// For example, `April` is always consumed entirely when the long month name is requested;
/// it equally accepts `Apr`, but prefers the longer prefix in this case.
///
/// - Padding-agnostic (for numeric items).
/// The [`Pad`](./enum.Pad.html) field is completely ignored,
/// so one can prepend any number of whitespace then any number of zeroes before numbers.
///
/// - (Still) obeying the intrinsic parsing width. This allows, for example, parsing `HHMMSS`.
pub fn parse<'a, I, B>(parsed: &mut Parsed, s: &str, items: I) -> ParseResult<()>
where
I: Iterator<Item = B>,
B: Borrow<Item<'a>>,
{
parse_internal(parsed, s, items).map(|_| ()).map_err(|(_s, e)| e)
}
fn parse_internal<'a, 'b, I, B>(
parsed: &mut Parsed,
mut s: &'b str,
items: I,
) -> Result<&'b str, (&'b str, ParseError)>
where
I: Iterator<Item = B>,
B: Borrow<Item<'a>>,
{
macro_rules! try_consume {
($e:expr) => {{
match $e {
Ok((s_, v)) => {
s = s_;
v
}
Err(e) => return Err((s, e)),
}
}};
}
for item in items {
match *item.borrow() {
Item::Literal(prefix) => {
if s.len() < prefix.len() {
return Err((s, TOO_SHORT));
}
if !s.starts_with(prefix) {
return Err((s, INVALID));
}
s = &s[prefix.len()..];
}
#[cfg(any(feature = "alloc", feature = "std", test))]
Item::OwnedLiteral(ref prefix) => {
if s.len() < prefix.len() {
return Err((s, TOO_SHORT));
}
if !s.starts_with(&prefix[..]) {
return Err((s, INVALID));
}
s = &s[prefix.len()..];
}
Item::Space(_) => {
s = s.trim_left();
}
#[cfg(any(feature = "alloc", feature = "std", test))]
Item::OwnedSpace(_) => {
s = s.trim_left();
}
Item::Numeric(ref spec, ref _pad) => {
use super::Numeric::*;
type Setter = fn(&mut Parsed, i64) -> ParseResult<()>;
let (width, signed, set): (usize, bool, Setter) = match *spec {
Year => (4, true, Parsed::set_year),
YearDiv100 => (2, false, Parsed::set_year_div_100),
YearMod100 => (2, false, Parsed::set_year_mod_100),
IsoYear => (4, true, Parsed::set_isoyear),
IsoYearDiv100 => (2, false, Parsed::set_isoyear_div_100),
IsoYearMod100 => (2, false, Parsed::set_isoyear_mod_100),
Month => (2, false, Parsed::set_month),
Day => (2, false, Parsed::set_day),
WeekFromSun => (2, false, Parsed::set_week_from_sun),
WeekFromMon => (2, false, Parsed::set_week_from_mon),
IsoWeek => (2, false, Parsed::set_isoweek),
NumDaysFromSun => (1, false, set_weekday_with_num_days_from_sunday),
WeekdayFromMon => (1, false, set_weekday_with_number_from_monday),
Ordinal => (3, false, Parsed::set_ordinal),
Hour => (2, false, Parsed::set_hour),
Hour12 => (2, false, Parsed::set_hour12),
Minute => (2, false, Parsed::set_minute),
Second => (2, false, Parsed::set_second),
Nanosecond => (9, false, Parsed::set_nanosecond),
Timestamp => (usize::MAX, false, Parsed::set_timestamp),
// for the future expansion
Internal(ref int) => match int._dummy {},
};
s = s.trim_left();
let v = if signed {
if s.starts_with('-') {
let v = try_consume!(scan::number(&s[1..], 1, usize::MAX));
0i64.checked_sub(v).ok_or((s, OUT_OF_RANGE))?
} else if s.starts_with('+') {
try_consume!(scan::number(&s[1..], 1, usize::MAX))
} else {
// if there is no explicit sign, we respect the original `width`
try_consume!(scan::number(s, 1, width))
}
} else {
try_consume!(scan::number(s, 1, width))
};
set(parsed, v).map_err(|e| (s, e))?;
}
Item::Fixed(ref spec) => {
use super::Fixed::*;
match spec {
&ShortMonthName => {
let month0 = try_consume!(scan::short_month0(s));
parsed.set_month(i64::from(month0) + 1).map_err(|e| (s, e))?;
}
&LongMonthName => {
let month0 = try_consume!(scan::short_or_long_month0(s));
parsed.set_month(i64::from(month0) + 1).map_err(|e| (s, e))?;
}
&ShortWeekdayName => {
let weekday = try_consume!(scan::short_weekday(s));
parsed.set_weekday(weekday).map_err(|e| (s, e))?;
}
&LongWeekdayName => {
let weekday = try_consume!(scan::short_or_long_weekday(s));
parsed.set_weekday(weekday).map_err(|e| (s, e))?;
}
&LowerAmPm | &UpperAmPm => {
if s.len() < 2 {
return Err((s, TOO_SHORT));
}
let ampm = match (s.as_bytes()[0] | 32, s.as_bytes()[1] | 32) {
(b'a', b'm') => false,
(b'p', b'm') => true,
_ => return Err((s, INVALID)),
};
parsed.set_ampm(ampm).map_err(|e| (s, e))?;
s = &s[2..];
}
&Nanosecond | &Nanosecond3 | &Nanosecond6 | &Nanosecond9 => {
if s.starts_with('.') {
let nano = try_consume!(scan::nanosecond(&s[1..]));
parsed.set_nanosecond(nano).map_err(|e| (s, e))?;
}
}
&Internal(InternalFixed { val: InternalInternal::Nanosecond3NoDot }) => {
if s.len() < 3 {
return Err((s, TOO_SHORT));
}
let nano = try_consume!(scan::nanosecond_fixed(s, 3));
parsed.set_nanosecond(nano).map_err(|e| (s, e))?;
}
&Internal(InternalFixed { val: InternalInternal::Nanosecond6NoDot }) => {
if s.len() < 6 {
return Err((s, TOO_SHORT));
}
let nano = try_consume!(scan::nanosecond_fixed(s, 6));
parsed.set_nanosecond(nano).map_err(|e| (s, e))?;
}
&Internal(InternalFixed { val: InternalInternal::Nanosecond9NoDot }) => {
if s.len() < 9 {
return Err((s, TOO_SHORT));
}
let nano = try_consume!(scan::nanosecond_fixed(s, 9));
parsed.set_nanosecond(nano).map_err(|e| (s, e))?;
}
&TimezoneName => {
try_consume!(scan::timezone_name_skip(s));
}
&TimezoneOffsetColon | &TimezoneOffset => {
let offset = try_consume!(scan::timezone_offset(
s.trim_left(),
scan::colon_or_space
));
parsed.set_offset(i64::from(offset)).map_err(|e| (s, e))?;
}
&TimezoneOffsetColonZ | &TimezoneOffsetZ => {
let offset = try_consume!(scan::timezone_offset_zulu(
s.trim_left(),
scan::colon_or_space
));
parsed.set_offset(i64::from(offset)).map_err(|e| (s, e))?;
}
&Internal(InternalFixed {
val: InternalInternal::TimezoneOffsetPermissive,
}) => {
let offset = try_consume!(scan::timezone_offset_permissive(
s.trim_left(),
scan::colon_or_space
));
parsed.set_offset(i64::from(offset)).map_err(|e| (s, e))?;
}
&RFC2822 => try_consume!(parse_rfc2822(parsed, s)),
&RFC3339 => try_consume!(parse_rfc3339(parsed, s)),
}
}
Item::Error => {
return Err((s, BAD_FORMAT));
}
}
}
// if there are trailling chars, it is an error
if !s.is_empty() {
Err((s, TOO_LONG))
} else {
Ok(s)
}
}
impl str::FromStr for DateTime<FixedOffset> {
type Err = ParseError;
fn from_str(s: &str) -> ParseResult<DateTime<FixedOffset>> {
const DATE_ITEMS: &'static [Item<'static>] = &[
Item::Numeric(Numeric::Year, Pad::Zero),
Item::Space(""),
Item::Literal("-"),
Item::Numeric(Numeric::Month, Pad::Zero),
Item::Space(""),
Item::Literal("-"),
Item::Numeric(Numeric::Day, Pad::Zero),
];
const TIME_ITEMS: &'static [Item<'static>] = &[
Item::Numeric(Numeric::Hour, Pad::Zero),
Item::Space(""),
Item::Literal(":"),
Item::Numeric(Numeric::Minute, Pad::Zero),
Item::Space(""),
Item::Literal(":"),
Item::Numeric(Numeric::Second, Pad::Zero),
Item::Fixed(Fixed::Nanosecond),
Item::Space(""),
Item::Fixed(Fixed::TimezoneOffsetZ),
Item::Space(""),
];
let mut parsed = Parsed::new();
match parse_internal(&mut parsed, s, DATE_ITEMS.iter()) {
Err((remainder, e)) if e.0 == ParseErrorKind::TooLong => {
if remainder.starts_with('T') || remainder.starts_with(' ') {
parse(&mut parsed, &remainder[1..], TIME_ITEMS.iter())?;
} else {
Err(INVALID)?;
}
}
Err((_s, e)) => Err(e)?,
Ok(_) => Err(NOT_ENOUGH)?,
};
parsed.to_datetime()
}
}
#[cfg(test)]
#[test]
fn test_parse() {
use super::IMPOSSIBLE;
use super::*;
// workaround for Rust issue #22255
fn parse_all(s: &str, items: &[Item]) -> ParseResult<Parsed> {
let mut parsed = Parsed::new();
parse(&mut parsed, s, items.iter())?;
Ok(parsed)
}
macro_rules! check {
($fmt:expr, $items:expr; $err:tt) => (
assert_eq!(parse_all($fmt, &$items), Err($err))
);
($fmt:expr, $items:expr; $($k:ident: $v:expr),*) => (#[allow(unused_mut)] {
let mut expected = Parsed::new();
$(expected.$k = Some($v);)*
assert_eq!(parse_all($fmt, &$items), Ok(expected))
});
}
// empty string
check!("", []; );
check!(" ", []; TOO_LONG);
check!("a", []; TOO_LONG);
// whitespaces
check!("", [sp!("")]; );
check!(" ", [sp!("")]; );
check!("\t", [sp!("")]; );
check!(" \n\r \n", [sp!("")]; );
check!("a", [sp!("")]; TOO_LONG);
// literal
check!("", [lit!("a")]; TOO_SHORT);
check!(" ", [lit!("a")]; INVALID);
check!("a", [lit!("a")]; );
check!("aa", [lit!("a")]; TOO_LONG);
check!("A", [lit!("a")]; INVALID);
check!("xy", [lit!("xy")]; );
check!("xy", [lit!("x"), lit!("y")]; );
check!("x y", [lit!("x"), lit!("y")]; INVALID);
check!("xy", [lit!("x"), sp!(""), lit!("y")]; );
check!("x y", [lit!("x"), sp!(""), lit!("y")]; );
// numeric
check!("1987", [num!(Year)]; year: 1987);
check!("1987 ", [num!(Year)]; TOO_LONG);
check!("0x12", [num!(Year)]; TOO_LONG); // `0` is parsed
check!("x123", [num!(Year)]; INVALID);
check!("2015", [num!(Year)]; year: 2015);
check!("0000", [num!(Year)]; year: 0);
check!("9999", [num!(Year)]; year: 9999);
check!(" \t987", [num!(Year)]; year: 987);
check!("5", [num!(Year)]; year: 5);
check!("5\0", [num!(Year)]; TOO_LONG);
check!("\05", [num!(Year)]; INVALID);
check!("", [num!(Year)]; TOO_SHORT);
check!("12345", [num!(Year), lit!("5")]; year: 1234);
check!("12345", [nums!(Year), lit!("5")]; year: 1234);
check!("12345", [num0!(Year), lit!("5")]; year: 1234);
check!("12341234", [num!(Year), num!(Year)]; year: 1234);
check!("1234 1234", [num!(Year), num!(Year)]; year: 1234);
check!("1234 1235", [num!(Year), num!(Year)]; IMPOSSIBLE);
check!("1234 1234", [num!(Year), lit!("x"), num!(Year)]; INVALID);
check!("1234x1234", [num!(Year), lit!("x"), num!(Year)]; year: 1234);
check!("1234xx1234", [num!(Year), lit!("x"), num!(Year)]; INVALID);
check!("1234 x 1234", [num!(Year), lit!("x"), num!(Year)]; INVALID);
// signed numeric
check!("-42", [num!(Year)]; year: -42);
check!("+42", [num!(Year)]; year: 42);
check!("-0042", [num!(Year)]; year: -42);
check!("+0042", [num!(Year)]; year: 42);
check!("-42195", [num!(Year)]; year: -42195);
check!("+42195", [num!(Year)]; year: 42195);
check!(" -42195", [num!(Year)]; year: -42195);
check!(" +42195", [num!(Year)]; year: 42195);
check!(" - 42", [num!(Year)]; INVALID);
check!(" + 42", [num!(Year)]; INVALID);
check!("-", [num!(Year)]; TOO_SHORT);
check!("+", [num!(Year)]; TOO_SHORT);
// unsigned numeric
check!("345", [num!(Ordinal)]; ordinal: 345);
check!("+345", [num!(Ordinal)]; INVALID);
check!("-345", [num!(Ordinal)]; INVALID);
check!(" 345", [num!(Ordinal)]; ordinal: 345);
check!(" +345", [num!(Ordinal)]; INVALID);
check!(" -345", [num!(Ordinal)]; INVALID);
// various numeric fields
check!("1234 5678",
[num!(Year), num!(IsoYear)];
year: 1234, isoyear: 5678);
check!("12 34 56 78",
[num!(YearDiv100), num!(YearMod100), num!(IsoYearDiv100), num!(IsoYearMod100)];
year_div_100: 12, year_mod_100: 34, isoyear_div_100: 56, isoyear_mod_100: 78);
check!("1 2 3 4 5 6",
[num!(Month), num!(Day), num!(WeekFromSun), num!(WeekFromMon), num!(IsoWeek),
num!(NumDaysFromSun)];
month: 1, day: 2, week_from_sun: 3, week_from_mon: 4, isoweek: 5, weekday: Weekday::Sat);
check!("7 89 01",
[num!(WeekdayFromMon), num!(Ordinal), num!(Hour12)];
weekday: Weekday::Sun, ordinal: 89, hour_mod_12: 1);
check!("23 45 6 78901234 567890123",
[num!(Hour), num!(Minute), num!(Second), num!(Nanosecond), num!(Timestamp)];
hour_div_12: 1, hour_mod_12: 11, minute: 45, second: 6, nanosecond: 78_901_234,
timestamp: 567_890_123);
// fixed: month and weekday names
check!("apr", [fix!(ShortMonthName)]; month: 4);
check!("Apr", [fix!(ShortMonthName)]; month: 4);
check!("APR", [fix!(ShortMonthName)]; month: 4);
check!("ApR", [fix!(ShortMonthName)]; month: 4);
check!("April", [fix!(ShortMonthName)]; TOO_LONG); // `Apr` is parsed
check!("A", [fix!(ShortMonthName)]; TOO_SHORT);
check!("Sol", [fix!(ShortMonthName)]; INVALID);
check!("Apr", [fix!(LongMonthName)]; month: 4);
check!("Apri", [fix!(LongMonthName)]; TOO_LONG); // `Apr` is parsed
check!("April", [fix!(LongMonthName)]; month: 4);
check!("Aprill", [fix!(LongMonthName)]; TOO_LONG);
check!("Aprill", [fix!(LongMonthName), lit!("l")]; month: 4);
check!("Aprl", [fix!(LongMonthName), lit!("l")]; month: 4);
check!("April", [fix!(LongMonthName), lit!("il")]; TOO_SHORT); // do not backtrack
check!("thu", [fix!(ShortWeekdayName)]; weekday: Weekday::Thu);
check!("Thu", [fix!(ShortWeekdayName)]; weekday: Weekday::Thu);
check!("THU", [fix!(ShortWeekdayName)]; weekday: Weekday::Thu);
check!("tHu", [fix!(ShortWeekdayName)]; weekday: Weekday::Thu);
check!("Thursday", [fix!(ShortWeekdayName)]; TOO_LONG); // `Thu` is parsed
check!("T", [fix!(ShortWeekdayName)]; TOO_SHORT);
check!("The", [fix!(ShortWeekdayName)]; INVALID);
check!("Nop", [fix!(ShortWeekdayName)]; INVALID);
check!("Thu", [fix!(LongWeekdayName)]; weekday: Weekday::Thu);
check!("Thur", [fix!(LongWeekdayName)]; TOO_LONG); // `Thu` is parsed
check!("Thurs", [fix!(LongWeekdayName)]; TOO_LONG); // ditto
check!("Thursday", [fix!(LongWeekdayName)]; weekday: Weekday::Thu);
check!("Thursdays", [fix!(LongWeekdayName)]; TOO_LONG);
check!("Thursdays", [fix!(LongWeekdayName), lit!("s")]; weekday: Weekday::Thu);
check!("Thus", [fix!(LongWeekdayName), lit!("s")]; weekday: Weekday::Thu);
check!("Thursday", [fix!(LongWeekdayName), lit!("rsday")]; TOO_SHORT); // do not backtrack
// fixed: am/pm
check!("am", [fix!(LowerAmPm)]; hour_div_12: 0);
check!("pm", [fix!(LowerAmPm)]; hour_div_12: 1);
check!("AM", [fix!(LowerAmPm)]; hour_div_12: 0);
check!("PM", [fix!(LowerAmPm)]; hour_div_12: 1);
check!("am", [fix!(UpperAmPm)]; hour_div_12: 0);
check!("pm", [fix!(UpperAmPm)]; hour_div_12: 1);
check!("AM", [fix!(UpperAmPm)]; hour_div_12: 0);
check!("PM", [fix!(UpperAmPm)]; hour_div_12: 1);
check!("Am", [fix!(LowerAmPm)]; hour_div_12: 0);
check!(" Am", [fix!(LowerAmPm)]; INVALID);
check!("ame", [fix!(LowerAmPm)]; TOO_LONG); // `am` is parsed
check!("a", [fix!(LowerAmPm)]; TOO_SHORT);
check!("p", [fix!(LowerAmPm)]; TOO_SHORT);
check!("x", [fix!(LowerAmPm)]; TOO_SHORT);
check!("xx", [fix!(LowerAmPm)]; INVALID);
check!("", [fix!(LowerAmPm)]; TOO_SHORT);
// fixed: dot plus nanoseconds
check!("", [fix!(Nanosecond)]; ); // no field set, but not an error
check!("4", [fix!(Nanosecond)]; TOO_LONG); // never consumes `4`
check!("4", [fix!(Nanosecond), num!(Second)]; second: 4);
check!(".0", [fix!(Nanosecond)]; nanosecond: 0);
check!(".4", [fix!(Nanosecond)]; nanosecond: 400_000_000);
check!(".42", [fix!(Nanosecond)]; nanosecond: 420_000_000);
check!(".421", [fix!(Nanosecond)]; nanosecond: 421_000_000);
check!(".42195", [fix!(Nanosecond)]; nanosecond: 421_950_000);
check!(".421950803", [fix!(Nanosecond)]; nanosecond: 421_950_803);
check!(".421950803547", [fix!(Nanosecond)]; nanosecond: 421_950_803);
check!(".000000003547", [fix!(Nanosecond)]; nanosecond: 3);
check!(".000000000547", [fix!(Nanosecond)]; nanosecond: 0);
check!(".", [fix!(Nanosecond)]; TOO_SHORT);
check!(".4x", [fix!(Nanosecond)]; TOO_LONG);
check!(". 4", [fix!(Nanosecond)]; INVALID);
check!(" .4", [fix!(Nanosecond)]; TOO_LONG); // no automatic trimming
// fixed: nanoseconds without the dot
check!("", [internal_fix!(Nanosecond3NoDot)]; TOO_SHORT);
check!("0", [internal_fix!(Nanosecond3NoDot)]; TOO_SHORT);
check!("4", [internal_fix!(Nanosecond3NoDot)]; TOO_SHORT);
check!("42", [internal_fix!(Nanosecond3NoDot)]; TOO_SHORT);
check!("421", [internal_fix!(Nanosecond3NoDot)]; nanosecond: 421_000_000);
check!("42143", [internal_fix!(Nanosecond3NoDot), num!(Second)]; nanosecond: 421_000_000, second: 43);
check!("42195", [internal_fix!(Nanosecond3NoDot)]; TOO_LONG);
check!("4x", [internal_fix!(Nanosecond3NoDot)]; TOO_SHORT);
check!(" 4", [internal_fix!(Nanosecond3NoDot)]; INVALID);
check!(".421", [internal_fix!(Nanosecond3NoDot)]; INVALID);
check!("", [internal_fix!(Nanosecond6NoDot)]; TOO_SHORT);
check!("0", [internal_fix!(Nanosecond6NoDot)]; TOO_SHORT);
check!("42195", [internal_fix!(Nanosecond6NoDot)]; TOO_SHORT);
check!("421950", [internal_fix!(Nanosecond6NoDot)]; nanosecond: 421_950_000);
check!("000003", [internal_fix!(Nanosecond6NoDot)]; nanosecond: 3000);
check!("000000", [internal_fix!(Nanosecond6NoDot)]; nanosecond: 0);
check!("4x", [internal_fix!(Nanosecond6NoDot)]; TOO_SHORT);
check!(" 4", [internal_fix!(Nanosecond6NoDot)]; INVALID);
check!(".42100", [internal_fix!(Nanosecond6NoDot)]; INVALID);
check!("", [internal_fix!(Nanosecond9NoDot)]; TOO_SHORT);
check!("42195", [internal_fix!(Nanosecond9NoDot)]; TOO_SHORT);
check!("421950803", [internal_fix!(Nanosecond9NoDot)]; nanosecond: 421_950_803);
check!("000000003", [internal_fix!(Nanosecond9NoDot)]; nanosecond: 3);
check!("42195080354", [internal_fix!(Nanosecond9NoDot), num!(Second)]; nanosecond: 421_950_803, second: 54); // don't skip digits that come after the 9
check!("421950803547", [internal_fix!(Nanosecond9NoDot)]; TOO_LONG);
check!("000000000", [internal_fix!(Nanosecond9NoDot)]; nanosecond: 0);
check!("00000000x", [internal_fix!(Nanosecond9NoDot)]; INVALID);
check!(" 4", [internal_fix!(Nanosecond9NoDot)]; INVALID);
check!(".42100000", [internal_fix!(Nanosecond9NoDot)]; INVALID);
// fixed: timezone offsets
check!("+00:00", [fix!(TimezoneOffset)]; offset: 0);
check!("-00:00", [fix!(TimezoneOffset)]; offset: 0);
check!("+00:01", [fix!(TimezoneOffset)]; offset: 60);
check!("-00:01", [fix!(TimezoneOffset)]; offset: -60);
check!("+00:30", [fix!(TimezoneOffset)]; offset: 30 * 60);
check!("-00:30", [fix!(TimezoneOffset)]; offset: -30 * 60);
check!("+04:56", [fix!(TimezoneOffset)]; offset: 296 * 60);
check!("-04:56", [fix!(TimezoneOffset)]; offset: -296 * 60);
check!("+24:00", [fix!(TimezoneOffset)]; offset: 24 * 60 * 60);
check!("-24:00", [fix!(TimezoneOffset)]; offset: -24 * 60 * 60);
check!("+99:59", [fix!(TimezoneOffset)]; offset: (100 * 60 - 1) * 60);
check!("-99:59", [fix!(TimezoneOffset)]; offset: -(100 * 60 - 1) * 60);
check!("+00:59", [fix!(TimezoneOffset)]; offset: 59 * 60);
check!("+00:60", [fix!(TimezoneOffset)]; OUT_OF_RANGE);
check!("+00:99", [fix!(TimezoneOffset)]; OUT_OF_RANGE);
check!("#12:34", [fix!(TimezoneOffset)]; INVALID);
check!("12:34", [fix!(TimezoneOffset)]; INVALID);
check!("+12:34 ", [fix!(TimezoneOffset)]; TOO_LONG);
check!(" +12:34", [fix!(TimezoneOffset)]; offset: 754 * 60);
check!("\t -12:34", [fix!(TimezoneOffset)]; offset: -754 * 60);
check!("", [fix!(TimezoneOffset)]; TOO_SHORT);
check!("+", [fix!(TimezoneOffset)]; TOO_SHORT);
check!("+1", [fix!(TimezoneOffset)]; TOO_SHORT);
check!("+12", [fix!(TimezoneOffset)]; TOO_SHORT);
check!("+123", [fix!(TimezoneOffset)]; TOO_SHORT);
check!("+1234", [fix!(TimezoneOffset)]; offset: 754 * 60);
check!("+12345", [fix!(TimezoneOffset)]; TOO_LONG);
check!("+12345", [fix!(TimezoneOffset), num!(Day)]; offset: 754 * 60, day: 5);
check!("Z", [fix!(TimezoneOffset)]; INVALID);
check!("z", [fix!(TimezoneOffset)]; INVALID);
check!("Z", [fix!(TimezoneOffsetZ)]; offset: 0);
check!("z", [fix!(TimezoneOffsetZ)]; offset: 0);
check!("Y", [fix!(TimezoneOffsetZ)]; INVALID);
check!("Zulu", [fix!(TimezoneOffsetZ), lit!("ulu")]; offset: 0);
check!("zulu", [fix!(TimezoneOffsetZ), lit!("ulu")]; offset: 0);
check!("+1234ulu", [fix!(TimezoneOffsetZ), lit!("ulu")]; offset: 754 * 60);
check!("+12:34ulu", [fix!(TimezoneOffsetZ), lit!("ulu")]; offset: 754 * 60);
check!("Z", [internal_fix!(TimezoneOffsetPermissive)]; offset: 0);
check!("z", [internal_fix!(TimezoneOffsetPermissive)]; offset: 0);
check!("+12:00", [internal_fix!(TimezoneOffsetPermissive)]; offset: 12 * 60 * 60);
check!("+12", [internal_fix!(TimezoneOffsetPermissive)]; offset: 12 * 60 * 60);
check!("CEST 5", [fix!(TimezoneName), lit!(" "), num!(Day)]; day: 5);
// some practical examples
check!("2015-02-04T14:37:05+09:00",
[num!(Year), lit!("-"), num!(Month), lit!("-"), num!(Day), lit!("T"),
num!(Hour), lit!(":"), num!(Minute), lit!(":"), num!(Second), fix!(TimezoneOffset)];
year: 2015, month: 2, day: 4, hour_div_12: 1, hour_mod_12: 2,
minute: 37, second: 5, offset: 32400);
check!("20150204143705567",
[num!(Year), num!(Month), num!(Day),
num!(Hour), num!(Minute), num!(Second), internal_fix!(Nanosecond3NoDot)];
year: 2015, month: 2, day: 4, hour_div_12: 1, hour_mod_12: 2,
minute: 37, second: 5, nanosecond: 567000000);
check!("Mon, 10 Jun 2013 09:32:37 GMT",
[fix!(ShortWeekdayName), lit!(","), sp!(" "), num!(Day), sp!(" "),
fix!(ShortMonthName), sp!(" "), num!(Year), sp!(" "), num!(Hour), lit!(":"),
num!(Minute), lit!(":"), num!(Second), sp!(" "), lit!("GMT")];
year: 2013, month: 6, day: 10, weekday: Weekday::Mon,
hour_div_12: 0, hour_mod_12: 9, minute: 32, second: 37);
check!("Sun Aug 02 13:39:15 CEST 2020",
[fix!(ShortWeekdayName), sp!(" "), fix!(ShortMonthName), sp!(" "),
num!(Day), sp!(" "), num!(Hour), lit!(":"), num!(Minute), lit!(":"),
num!(Second), sp!(" "), fix!(TimezoneName), sp!(" "), num!(Year)];
year: 2020, month: 8, day: 2, weekday: Weekday::Sun,
hour_div_12: 1, hour_mod_12: 1, minute: 39, second: 15);
check!("20060102150405",
[num!(Year), num!(Month), num!(Day), num!(Hour), num!(Minute), num!(Second)];
year: 2006, month: 1, day: 2, hour_div_12: 1, hour_mod_12: 3, minute: 4, second: 5);
check!("3:14PM",
[num!(Hour12), lit!(":"), num!(Minute), fix!(LowerAmPm)];
hour_div_12: 1, hour_mod_12: 3, minute: 14);
check!("12345678901234.56789",
[num!(Timestamp), lit!("."), num!(Nanosecond)];
nanosecond: 56_789, timestamp: 12_345_678_901_234);
check!("12345678901234.56789",
[num!(Timestamp), fix!(Nanosecond)];
nanosecond: 567_890_000, timestamp: 12_345_678_901_234);
}
#[cfg(test)]
#[test]
fn test_rfc2822() {
use super::NOT_ENOUGH;
use super::*;
use offset::FixedOffset;
use DateTime;
// Test data - (input, Ok(expected result after parse and format) or Err(error code))
let testdates = [
("Tue, 20 Jan 2015 17:35:20 -0800", Ok("Tue, 20 Jan 2015 17:35:20 -0800")), // normal case
("Fri, 2 Jan 2015 17:35:20 -0800", Ok("Fri, 02 Jan 2015 17:35:20 -0800")), // folding whitespace
("Fri, 02 Jan 2015 17:35:20 -0800", Ok("Fri, 02 Jan 2015 17:35:20 -0800")), // leading zero
("20 Jan 2015 17:35:20 -0800", Ok("Tue, 20 Jan 2015 17:35:20 -0800")), // no day of week
("20 JAN 2015 17:35:20 -0800", Ok("Tue, 20 Jan 2015 17:35:20 -0800")), // upper case month
("Tue, 20 Jan 2015 17:35 -0800", Ok("Tue, 20 Jan 2015 17:35:00 -0800")), // no second
("11 Sep 2001 09:45:00 EST", Ok("Tue, 11 Sep 2001 09:45:00 -0500")),
("30 Feb 2015 17:35:20 -0800", Err(OUT_OF_RANGE)), // bad day of month
("Tue, 20 Jan 2015", Err(TOO_SHORT)), // omitted fields
("Tue, 20 Avr 2015 17:35:20 -0800", Err(INVALID)), // bad month name
("Tue, 20 Jan 2015 25:35:20 -0800", Err(OUT_OF_RANGE)), // bad hour
("Tue, 20 Jan 2015 7:35:20 -0800", Err(INVALID)), // bad # of digits in hour
("Tue, 20 Jan 2015 17:65:20 -0800", Err(OUT_OF_RANGE)), // bad minute
("Tue, 20 Jan 2015 17:35:90 -0800", Err(OUT_OF_RANGE)), // bad second
("Tue, 20 Jan 2015 17:35:20 -0890", Err(OUT_OF_RANGE)), // bad offset
("6 Jun 1944 04:00:00Z", Err(INVALID)), // bad offset (zulu not allowed)
("Tue, 20 Jan 2015 17:35:20 HAS", Err(NOT_ENOUGH)), // bad named time zone
];
fn rfc2822_to_datetime(date: &str) -> ParseResult<DateTime<FixedOffset>> {
let mut parsed = Parsed::new();
parse(&mut parsed, date, [Item::Fixed(Fixed::RFC2822)].iter())?;
parsed.to_datetime()
}
fn fmt_rfc2822_datetime(dt: DateTime<FixedOffset>) -> String {
dt.format_with_items([Item::Fixed(Fixed::RFC2822)].iter()).to_string()
}
// Test against test data above
for &(date, checkdate) in testdates.iter() {
let d = rfc2822_to_datetime(date); // parse a date
let dt = match d {
// did we get a value?
Ok(dt) => Ok(fmt_rfc2822_datetime(dt)), // yes, go on
Err(e) => Err(e), // otherwise keep an error for the comparison
};
if dt != checkdate.map(|s| s.to_string()) {
// check for expected result
panic!(
"Date conversion failed for {}\nReceived: {:?}\nExpected: {:?}",
date, dt, checkdate
);
}
}
}
#[cfg(test)]
#[test]
fn parse_rfc850() {
use {TimeZone, Utc};
static RFC850_FMT: &'static str = "%A, %d-%b-%y %T GMT";
let dt_str = "Sunday, 06-Nov-94 08:49:37 GMT";
let dt = Utc.ymd(1994, 11, 6).and_hms(8, 49, 37);
// Check that the format is what we expect
assert_eq!(dt.format(RFC850_FMT).to_string(), dt_str);
// Check that it parses correctly
assert_eq!(Ok(dt), Utc.datetime_from_str("Sunday, 06-Nov-94 08:49:37 GMT", RFC850_FMT));
// Check that the rest of the weekdays parse correctly (this test originally failed because
// Sunday parsed incorrectly).
let testdates = [
(Utc.ymd(1994, 11, 7).and_hms(8, 49, 37), "Monday, 07-Nov-94 08:49:37 GMT"),
(Utc.ymd(1994, 11, 8).and_hms(8, 49, 37), "Tuesday, 08-Nov-94 08:49:37 GMT"),
(Utc.ymd(1994, 11, 9).and_hms(8, 49, 37), "Wednesday, 09-Nov-94 08:49:37 GMT"),
(Utc.ymd(1994, 11, 10).and_hms(8, 49, 37), "Thursday, 10-Nov-94 08:49:37 GMT"),
(Utc.ymd(1994, 11, 11).and_hms(8, 49, 37), "Friday, 11-Nov-94 08:49:37 GMT"),
(Utc.ymd(1994, 11, 12).and_hms(8, 49, 37), "Saturday, 12-Nov-94 08:49:37 GMT"),
];
for val in &testdates {
assert_eq!(Ok(val.0), Utc.datetime_from_str(val.1, RFC850_FMT));
}
}
#[cfg(test)]
#[test]
fn test_rfc3339() {
use super::*;
use offset::FixedOffset;
use DateTime;
// Test data - (input, Ok(expected result after parse and format) or Err(error code))
let testdates = [
("2015-01-20T17:35:20-08:00", Ok("2015-01-20T17:35:20-08:00")), // normal case
("1944-06-06T04:04:00Z", Ok("1944-06-06T04:04:00+00:00")), // D-day
("2001-09-11T09:45:00-08:00", Ok("2001-09-11T09:45:00-08:00")),
("2015-01-20T17:35:20.001-08:00", Ok("2015-01-20T17:35:20.001-08:00")),
("2015-01-20T17:35:20.000031-08:00", Ok("2015-01-20T17:35:20.000031-08:00")),
("2015-01-20T17:35:20.000000004-08:00", Ok("2015-01-20T17:35:20.000000004-08:00")),
("2015-01-20T17:35:20.000000000452-08:00", Ok("2015-01-20T17:35:20-08:00")), // too small
("2015-02-30T17:35:20-08:00", Err(OUT_OF_RANGE)), // bad day of month
("2015-01-20T25:35:20-08:00", Err(OUT_OF_RANGE)), // bad hour
("2015-01-20T17:65:20-08:00", Err(OUT_OF_RANGE)), // bad minute
("2015-01-20T17:35:90-08:00", Err(OUT_OF_RANGE)), // bad second
("2015-01-20T17:35:20-24:00", Err(OUT_OF_RANGE)), // bad offset
];
fn rfc3339_to_datetime(date: &str) -> ParseResult<DateTime<FixedOffset>> {
let mut parsed = Parsed::new();
parse(&mut parsed, date, [Item::Fixed(Fixed::RFC3339)].iter())?;
parsed.to_datetime()
}
fn fmt_rfc3339_datetime(dt: DateTime<FixedOffset>) -> String {
dt.format_with_items([Item::Fixed(Fixed::RFC3339)].iter()).to_string()
}
// Test against test data above
for &(date, checkdate) in testdates.iter() {
let d = rfc3339_to_datetime(date); // parse a date
let dt = match d {
// did we get a value?
Ok(dt) => Ok(fmt_rfc3339_datetime(dt)), // yes, go on
Err(e) => Err(e), // otherwise keep an error for the comparison
};
if dt != checkdate.map(|s| s.to_string()) {
// check for expected result
panic!(
"Date conversion failed for {}\nReceived: {:?}\nExpected: {:?}",
date, dt, checkdate
);
}
}
}

1283
zeroidc/vendor/chrono/src/format/parsed.rs vendored Normal file

File diff suppressed because it is too large Load Diff

350
zeroidc/vendor/chrono/src/format/scan.rs vendored Normal file
View File

@@ -0,0 +1,350 @@
// This is a part of Chrono.
// See README.md and LICENSE.txt for details.
/*!
* Various scanning routines for the parser.
*/
#![allow(deprecated)]
use super::{ParseResult, INVALID, OUT_OF_RANGE, TOO_SHORT};
use Weekday;
/// Returns true when two slices are equal case-insensitively (in ASCII).
/// Assumes that the `pattern` is already converted to lower case.
fn equals(s: &str, pattern: &str) -> bool {
let mut xs = s.as_bytes().iter().map(|&c| match c {
b'A'...b'Z' => c + 32,
_ => c,
});
let mut ys = pattern.as_bytes().iter().cloned();
loop {
match (xs.next(), ys.next()) {
(None, None) => return true,
(None, _) | (_, None) => return false,
(Some(x), Some(y)) if x != y => return false,
_ => (),
}
}
}
/// Tries to parse the non-negative number from `min` to `max` digits.
///
/// The absence of digits at all is an unconditional error.
/// More than `max` digits are consumed up to the first `max` digits.
/// Any number that does not fit in `i64` is an error.
#[inline]
pub fn number(s: &str, min: usize, max: usize) -> ParseResult<(&str, i64)> {
assert!(min <= max);
// We are only interested in ascii numbers, so we can work with the `str` as bytes. We stop on
// the first non-numeric byte, which may be another ascii character or beginning of multi-byte
// UTF-8 character.
let bytes = s.as_bytes();
if bytes.len() < min {
return Err(TOO_SHORT);
}
let mut n = 0i64;
for (i, c) in bytes.iter().take(max).cloned().enumerate() {
// cloned() = copied()
if c < b'0' || b'9' < c {
if i < min {
return Err(INVALID);
} else {
return Ok((&s[i..], n));
}
}
n = match n.checked_mul(10).and_then(|n| n.checked_add((c - b'0') as i64)) {
Some(n) => n,
None => return Err(OUT_OF_RANGE),
};
}
Ok((&s[::core::cmp::min(max, bytes.len())..], n))
}
/// Tries to consume at least one digits as a fractional second.
/// Returns the number of whole nanoseconds (0--999,999,999).
pub fn nanosecond(s: &str) -> ParseResult<(&str, i64)> {
// record the number of digits consumed for later scaling.
let origlen = s.len();
let (s, v) = number(s, 1, 9)?;
let consumed = origlen - s.len();
// scale the number accordingly.
static SCALE: [i64; 10] =
[0, 100_000_000, 10_000_000, 1_000_000, 100_000, 10_000, 1_000, 100, 10, 1];
let v = v.checked_mul(SCALE[consumed]).ok_or(OUT_OF_RANGE)?;
// if there are more than 9 digits, skip next digits.
let s = s.trim_left_matches(|c: char| '0' <= c && c <= '9');
Ok((s, v))
}
/// Tries to consume a fixed number of digits as a fractional second.
/// Returns the number of whole nanoseconds (0--999,999,999).
pub fn nanosecond_fixed(s: &str, digits: usize) -> ParseResult<(&str, i64)> {
// record the number of digits consumed for later scaling.
let (s, v) = number(s, digits, digits)?;
// scale the number accordingly.
static SCALE: [i64; 10] =
[0, 100_000_000, 10_000_000, 1_000_000, 100_000, 10_000, 1_000, 100, 10, 1];
let v = v.checked_mul(SCALE[digits]).ok_or(OUT_OF_RANGE)?;
Ok((s, v))
}
/// Tries to parse the month index (0 through 11) with the first three ASCII letters.
pub fn short_month0(s: &str) -> ParseResult<(&str, u8)> {
if s.len() < 3 {
return Err(TOO_SHORT);
}
let buf = s.as_bytes();
let month0 = match (buf[0] | 32, buf[1] | 32, buf[2] | 32) {
(b'j', b'a', b'n') => 0,
(b'f', b'e', b'b') => 1,
(b'm', b'a', b'r') => 2,
(b'a', b'p', b'r') => 3,
(b'm', b'a', b'y') => 4,
(b'j', b'u', b'n') => 5,
(b'j', b'u', b'l') => 6,
(b'a', b'u', b'g') => 7,
(b's', b'e', b'p') => 8,
(b'o', b'c', b't') => 9,
(b'n', b'o', b'v') => 10,
(b'd', b'e', b'c') => 11,
_ => return Err(INVALID),
};
Ok((&s[3..], month0))
}
/// Tries to parse the weekday with the first three ASCII letters.
pub fn short_weekday(s: &str) -> ParseResult<(&str, Weekday)> {
if s.len() < 3 {
return Err(TOO_SHORT);
}
let buf = s.as_bytes();
let weekday = match (buf[0] | 32, buf[1] | 32, buf[2] | 32) {
(b'm', b'o', b'n') => Weekday::Mon,
(b't', b'u', b'e') => Weekday::Tue,
(b'w', b'e', b'd') => Weekday::Wed,
(b't', b'h', b'u') => Weekday::Thu,
(b'f', b'r', b'i') => Weekday::Fri,
(b's', b'a', b't') => Weekday::Sat,
(b's', b'u', b'n') => Weekday::Sun,
_ => return Err(INVALID),
};
Ok((&s[3..], weekday))
}
/// Tries to parse the month index (0 through 11) with short or long month names.
/// It prefers long month names to short month names when both are possible.
pub fn short_or_long_month0(s: &str) -> ParseResult<(&str, u8)> {
// lowercased month names, minus first three chars
static LONG_MONTH_SUFFIXES: [&'static str; 12] =
["uary", "ruary", "ch", "il", "", "e", "y", "ust", "tember", "ober", "ember", "ember"];
let (mut s, month0) = short_month0(s)?;
// tries to consume the suffix if possible
let suffix = LONG_MONTH_SUFFIXES[month0 as usize];
if s.len() >= suffix.len() && equals(&s[..suffix.len()], suffix) {
s = &s[suffix.len()..];
}
Ok((s, month0))
}
/// Tries to parse the weekday with short or long weekday names.
/// It prefers long weekday names to short weekday names when both are possible.
pub fn short_or_long_weekday(s: &str) -> ParseResult<(&str, Weekday)> {
// lowercased weekday names, minus first three chars
static LONG_WEEKDAY_SUFFIXES: [&'static str; 7] =
["day", "sday", "nesday", "rsday", "day", "urday", "day"];
let (mut s, weekday) = short_weekday(s)?;
// tries to consume the suffix if possible
let suffix = LONG_WEEKDAY_SUFFIXES[weekday.num_days_from_monday() as usize];
if s.len() >= suffix.len() && equals(&s[..suffix.len()], suffix) {
s = &s[suffix.len()..];
}
Ok((s, weekday))
}
/// Tries to consume exactly one given character.
pub fn char(s: &str, c1: u8) -> ParseResult<&str> {
match s.as_bytes().first() {
Some(&c) if c == c1 => Ok(&s[1..]),
Some(_) => Err(INVALID),
None => Err(TOO_SHORT),
}
}
/// Tries to consume one or more whitespace.
pub fn space(s: &str) -> ParseResult<&str> {
let s_ = s.trim_left();
if s_.len() < s.len() {
Ok(s_)
} else if s.is_empty() {
Err(TOO_SHORT)
} else {
Err(INVALID)
}
}
/// Consumes any number (including zero) of colon or spaces.
pub fn colon_or_space(s: &str) -> ParseResult<&str> {
Ok(s.trim_left_matches(|c: char| c == ':' || c.is_whitespace()))
}
/// Tries to parse `[-+]\d\d` continued by `\d\d`. Return an offset in seconds if possible.
///
/// The additional `colon` may be used to parse a mandatory or optional `:`
/// between hours and minutes, and should return either a new suffix or `Err` when parsing fails.
pub fn timezone_offset<F>(s: &str, consume_colon: F) -> ParseResult<(&str, i32)>
where
F: FnMut(&str) -> ParseResult<&str>,
{
timezone_offset_internal(s, consume_colon, false)
}
fn timezone_offset_internal<F>(
mut s: &str,
mut consume_colon: F,
allow_missing_minutes: bool,
) -> ParseResult<(&str, i32)>
where
F: FnMut(&str) -> ParseResult<&str>,
{
fn digits(s: &str) -> ParseResult<(u8, u8)> {
let b = s.as_bytes();
if b.len() < 2 {
Err(TOO_SHORT)
} else {
Ok((b[0], b[1]))
}
}
let negative = match s.as_bytes().first() {
Some(&b'+') => false,
Some(&b'-') => true,
Some(_) => return Err(INVALID),
None => return Err(TOO_SHORT),
};
s = &s[1..];
// hours (00--99)
let hours = match digits(s)? {
(h1 @ b'0'...b'9', h2 @ b'0'...b'9') => i32::from((h1 - b'0') * 10 + (h2 - b'0')),
_ => return Err(INVALID),
};
s = &s[2..];
// colons (and possibly other separators)
s = consume_colon(s)?;
// minutes (00--59)
// if the next two items are digits then we have to add minutes
let minutes = if let Ok(ds) = digits(s) {
match ds {
(m1 @ b'0'...b'5', m2 @ b'0'...b'9') => i32::from((m1 - b'0') * 10 + (m2 - b'0')),
(b'6'...b'9', b'0'...b'9') => return Err(OUT_OF_RANGE),
_ => return Err(INVALID),
}
} else if allow_missing_minutes {
0
} else {
return Err(TOO_SHORT);
};
s = match s.len() {
len if len >= 2 => &s[2..],
len if len == 0 => s,
_ => return Err(TOO_SHORT),
};
let seconds = hours * 3600 + minutes * 60;
Ok((s, if negative { -seconds } else { seconds }))
}
/// Same as `timezone_offset` but also allows for `z`/`Z` which is the same as `+00:00`.
pub fn timezone_offset_zulu<F>(s: &str, colon: F) -> ParseResult<(&str, i32)>
where
F: FnMut(&str) -> ParseResult<&str>,
{
let bytes = s.as_bytes();
match bytes.first() {
Some(&b'z') | Some(&b'Z') => Ok((&s[1..], 0)),
Some(&b'u') | Some(&b'U') => {
if bytes.len() >= 3 {
let (b, c) = (bytes[1], bytes[2]);
match (b | 32, c | 32) {
(b't', b'c') => Ok((&s[3..], 0)),
_ => Err(INVALID),
}
} else {
Err(INVALID)
}
}
_ => timezone_offset(s, colon),
}
}
/// Same as `timezone_offset` but also allows for `z`/`Z` which is the same as
/// `+00:00`, and allows missing minutes entirely.
pub fn timezone_offset_permissive<F>(s: &str, colon: F) -> ParseResult<(&str, i32)>
where
F: FnMut(&str) -> ParseResult<&str>,
{
match s.as_bytes().first() {
Some(&b'z') | Some(&b'Z') => Ok((&s[1..], 0)),
_ => timezone_offset_internal(s, colon, true),
}
}
/// Same as `timezone_offset` but also allows for RFC 2822 legacy timezones.
/// May return `None` which indicates an insufficient offset data (i.e. `-0000`).
pub fn timezone_offset_2822(s: &str) -> ParseResult<(&str, Option<i32>)> {
// tries to parse legacy time zone names
let upto = s
.as_bytes()
.iter()
.position(|&c| match c {
b'a'...b'z' | b'A'...b'Z' => false,
_ => true,
})
.unwrap_or_else(|| s.len());
if upto > 0 {
let name = &s[..upto];
let s = &s[upto..];
let offset_hours = |o| Ok((s, Some(o * 3600)));
if equals(name, "gmt") || equals(name, "ut") {
offset_hours(0)
} else if equals(name, "edt") {
offset_hours(-4)
} else if equals(name, "est") || equals(name, "cdt") {
offset_hours(-5)
} else if equals(name, "cst") || equals(name, "mdt") {
offset_hours(-6)
} else if equals(name, "mst") || equals(name, "pdt") {
offset_hours(-7)
} else if equals(name, "pst") {
offset_hours(-8)
} else {
Ok((s, None)) // recommended by RFC 2822: consume but treat it as -0000
}
} else {
let (s_, offset) = timezone_offset(s, |s| Ok(s))?;
Ok((s_, Some(offset)))
}
}
/// Tries to consume everyting until next whitespace-like symbol.
/// Does not provide any offset information from the consumed data.
pub fn timezone_name_skip(s: &str) -> ParseResult<(&str, ())> {
Ok((s.trim_left_matches(|c: char| !c.is_whitespace()), ()))
}

View File

@@ -0,0 +1,649 @@
// This is a part of Chrono.
// See README.md and LICENSE.txt for details.
/*!
`strftime`/`strptime`-inspired date and time formatting syntax.
## Specifiers
The following specifiers are available both to formatting and parsing.
| Spec. | Example | Description |
|-------|----------|----------------------------------------------------------------------------|
| | | **DATE SPECIFIERS:** |
| `%Y` | `2001` | The full proleptic Gregorian year, zero-padded to 4 digits. [^1] |
| `%C` | `20` | The proleptic Gregorian year divided by 100, zero-padded to 2 digits. [^2] |
| `%y` | `01` | The proleptic Gregorian year modulo 100, zero-padded to 2 digits. [^2] |
| | | |
| `%m` | `07` | Month number (01--12), zero-padded to 2 digits. |
| `%b` | `Jul` | Abbreviated month name. Always 3 letters. |
| `%B` | `July` | Full month name. Also accepts corresponding abbreviation in parsing. |
| `%h` | `Jul` | Same as `%b`. |
| | | |
| `%d` | `08` | Day number (01--31), zero-padded to 2 digits. |
| `%e` | ` 8` | Same as `%d` but space-padded. Same as `%_d`. |
| | | |
| `%a` | `Sun` | Abbreviated weekday name. Always 3 letters. |
| `%A` | `Sunday` | Full weekday name. Also accepts corresponding abbreviation in parsing. |
| `%w` | `0` | Sunday = 0, Monday = 1, ..., Saturday = 6. |
| `%u` | `7` | Monday = 1, Tuesday = 2, ..., Sunday = 7. (ISO 8601) |
| | | |
| `%U` | `28` | Week number starting with Sunday (00--53), zero-padded to 2 digits. [^3] |
| `%W` | `27` | Same as `%U`, but week 1 starts with the first Monday in that year instead.|
| | | |
| `%G` | `2001` | Same as `%Y` but uses the year number in ISO 8601 week date. [^4] |
| `%g` | `01` | Same as `%y` but uses the year number in ISO 8601 week date. [^4] |
| `%V` | `27` | Same as `%U` but uses the week number in ISO 8601 week date (01--53). [^4] |
| | | |
| `%j` | `189` | Day of the year (001--366), zero-padded to 3 digits. |
| | | |
| `%D` | `07/08/01` | Month-day-year format. Same as `%m/%d/%y`. |
| `%x` | `07/08/01` | Locale's date representation (e.g., 12/31/99). |
| `%F` | `2001-07-08` | Year-month-day format (ISO 8601). Same as `%Y-%m-%d`. |
| `%v` | ` 8-Jul-2001` | Day-month-year format. Same as `%e-%b-%Y`. |
| | | |
| | | **TIME SPECIFIERS:** |
| `%H` | `00` | Hour number (00--23), zero-padded to 2 digits. |
| `%k` | ` 0` | Same as `%H` but space-padded. Same as `%_H`. |
| `%I` | `12` | Hour number in 12-hour clocks (01--12), zero-padded to 2 digits. |
| `%l` | `12` | Same as `%I` but space-padded. Same as `%_I`. |
| | | |
| `%P` | `am` | `am` or `pm` in 12-hour clocks. |
| `%p` | `AM` | `AM` or `PM` in 12-hour clocks. |
| | | |
| `%M` | `34` | Minute number (00--59), zero-padded to 2 digits. |
| `%S` | `60` | Second number (00--60), zero-padded to 2 digits. [^5] |
| `%f` | `026490000` | The fractional seconds (in nanoseconds) since last whole second. [^8] |
| `%.f` | `.026490`| Similar to `.%f` but left-aligned. These all consume the leading dot. [^8] |
| `%.3f`| `.026` | Similar to `.%f` but left-aligned but fixed to a length of 3. [^8] |
| `%.6f`| `.026490` | Similar to `.%f` but left-aligned but fixed to a length of 6. [^8] |
| `%.9f`| `.026490000` | Similar to `.%f` but left-aligned but fixed to a length of 9. [^8] |
| `%3f` | `026` | Similar to `%.3f` but without the leading dot. [^8] |
| `%6f` | `026490` | Similar to `%.6f` but without the leading dot. [^8] |
| `%9f` | `026490000` | Similar to `%.9f` but without the leading dot. [^8] |
| | | |
| `%R` | `00:34` | Hour-minute format. Same as `%H:%M`. |
| `%T` | `00:34:60` | Hour-minute-second format. Same as `%H:%M:%S`. |
| `%X` | `00:34:60` | Locale's time representation (e.g., 23:13:48). |
| `%r` | `12:34:60 AM` | Hour-minute-second format in 12-hour clocks. Same as `%I:%M:%S %p`. |
| | | |
| | | **TIME ZONE SPECIFIERS:** |
| `%Z` | `ACST` | Local time zone name. Skips all non-whitespace characters during parsing. [^9] |
| `%z` | `+0930` | Offset from the local time to UTC (with UTC being `+0000`). |
| `%:z` | `+09:30` | Same as `%z` but with a colon. |
| `%#z` | `+09` | *Parsing only:* Same as `%z` but allows minutes to be missing or present. |
| | | |
| | | **DATE & TIME SPECIFIERS:** |
|`%c`|`Sun Jul 8 00:34:60 2001`|Locale's date and time (e.g., Thu Mar 3 23:05:25 2005). |
| `%+` | `2001-07-08T00:34:60.026490+09:30` | ISO 8601 / RFC 3339 date & time format. [^6] |
| | | |
| `%s` | `994518299` | UNIX timestamp, the number of seconds since 1970-01-01 00:00 UTC. [^7]|
| | | |
| | | **SPECIAL SPECIFIERS:** |
| `%t` | | Literal tab (`\t`). |
| `%n` | | Literal newline (`\n`). |
| `%%` | | Literal percent sign. |
It is possible to override the default padding behavior of numeric specifiers `%?`.
This is not allowed for other specifiers and will result in the `BAD_FORMAT` error.
Modifier | Description
-------- | -----------
`%-?` | Suppresses any padding including spaces and zeroes. (e.g. `%j` = `012`, `%-j` = `12`)
`%_?` | Uses spaces as a padding. (e.g. `%j` = `012`, `%_j` = ` 12`)
`%0?` | Uses zeroes as a padding. (e.g. `%e` = ` 9`, `%0e` = `09`)
Notes:
[^1]: `%Y`:
Negative years are allowed in formatting but not in parsing.
[^2]: `%C`, `%y`:
This is floor division, so 100 BCE (year number -99) will print `-1` and `99` respectively.
[^3]: `%U`:
Week 1 starts with the first Sunday in that year.
It is possible to have week 0 for days before the first Sunday.
[^4]: `%G`, `%g`, `%V`:
Week 1 is the first week with at least 4 days in that year.
Week 0 does not exist, so this should be used with `%G` or `%g`.
[^5]: `%S`:
It accounts for leap seconds, so `60` is possible.
[^6]: `%+`: Same as `%Y-%m-%dT%H:%M:%S%.f%:z`, i.e. 0, 3, 6 or 9 fractional
digits for seconds and colons in the time zone offset.
<br>
<br>
The typical `strftime` implementations have different (and locale-dependent)
formats for this specifier. While Chrono's format for `%+` is far more
stable, it is best to avoid this specifier if you want to control the exact
output.
[^7]: `%s`:
This is not padded and can be negative.
For the purpose of Chrono, it only accounts for non-leap seconds
so it slightly differs from ISO C `strftime` behavior.
[^8]: `%f`, `%.f`, `%.3f`, `%.6f`, `%.9f`, `%3f`, `%6f`, `%9f`:
<br>
The default `%f` is right-aligned and always zero-padded to 9 digits
for the compatibility with glibc and others,
so it always counts the number of nanoseconds since the last whole second.
E.g. 7ms after the last second will print `007000000`,
and parsing `7000000` will yield the same.
<br>
<br>
The variant `%.f` is left-aligned and print 0, 3, 6 or 9 fractional digits
according to the precision.
E.g. 70ms after the last second under `%.f` will print `.070` (note: not `.07`),
and parsing `.07`, `.070000` etc. will yield the same.
Note that they can print or read nothing if the fractional part is zero or
the next character is not `.`.
<br>
<br>
The variant `%.3f`, `%.6f` and `%.9f` are left-aligned and print 3, 6 or 9 fractional digits
according to the number preceding `f`.
E.g. 70ms after the last second under `%.3f` will print `.070` (note: not `.07`),
and parsing `.07`, `.070000` etc. will yield the same.
Note that they can read nothing if the fractional part is zero or
the next character is not `.` however will print with the specified length.
<br>
<br>
The variant `%3f`, `%6f` and `%9f` are left-aligned and print 3, 6 or 9 fractional digits
according to the number preceding `f`, but without the leading dot.
E.g. 70ms after the last second under `%3f` will print `070` (note: not `07`),
and parsing `07`, `070000` etc. will yield the same.
Note that they can read nothing if the fractional part is zero.
[^9]: `%Z`:
Offset will not be populated from the parsed data, nor will it be validated.
Timezone is completely ignored. Similar to the glibc `strptime` treatment of
this format code.
<br>
<br>
It is not possible to reliably convert from an abbreviation to an offset,
for example CDT can mean either Central Daylight Time (North America) or
China Daylight Time.
*/
#[cfg(feature = "unstable-locales")]
use super::{locales, Locale};
use super::{Fixed, InternalFixed, InternalInternal, Item, Numeric, Pad};
#[cfg(feature = "unstable-locales")]
type Fmt<'a> = Vec<Item<'a>>;
#[cfg(not(feature = "unstable-locales"))]
type Fmt<'a> = &'static [Item<'static>];
static D_FMT: &'static [Item<'static>] =
&[num0!(Month), lit!("/"), num0!(Day), lit!("/"), num0!(YearMod100)];
static D_T_FMT: &'static [Item<'static>] = &[
fix!(ShortWeekdayName),
sp!(" "),
fix!(ShortMonthName),
sp!(" "),
nums!(Day),
sp!(" "),
num0!(Hour),
lit!(":"),
num0!(Minute),
lit!(":"),
num0!(Second),
sp!(" "),
num0!(Year),
];
static T_FMT: &'static [Item<'static>] =
&[num0!(Hour), lit!(":"), num0!(Minute), lit!(":"), num0!(Second)];
/// Parsing iterator for `strftime`-like format strings.
#[derive(Clone, Debug)]
pub struct StrftimeItems<'a> {
/// Remaining portion of the string.
remainder: &'a str,
/// If the current specifier is composed of multiple formatting items (e.g. `%+`),
/// parser refers to the statically reconstructed slice of them.
/// If `recons` is not empty they have to be returned earlier than the `remainder`.
recons: Fmt<'a>,
/// Date format
d_fmt: Fmt<'a>,
/// Date and time format
d_t_fmt: Fmt<'a>,
/// Time format
t_fmt: Fmt<'a>,
}
impl<'a> StrftimeItems<'a> {
/// Creates a new parsing iterator from the `strftime`-like format string.
pub fn new(s: &'a str) -> StrftimeItems<'a> {
Self::with_remainer(s)
}
/// Creates a new parsing iterator from the `strftime`-like format string.
#[cfg(feature = "unstable-locales")]
pub fn new_with_locale(s: &'a str, locale: Locale) -> StrftimeItems<'a> {
let d_fmt = StrftimeItems::new(locales::d_fmt(locale)).collect();
let d_t_fmt = StrftimeItems::new(locales::d_t_fmt(locale)).collect();
let t_fmt = StrftimeItems::new(locales::t_fmt(locale)).collect();
StrftimeItems {
remainder: s,
recons: Vec::new(),
d_fmt: d_fmt,
d_t_fmt: d_t_fmt,
t_fmt: t_fmt,
}
}
#[cfg(not(feature = "unstable-locales"))]
fn with_remainer(s: &'a str) -> StrftimeItems<'a> {
static FMT_NONE: &'static [Item<'static>; 0] = &[];
StrftimeItems {
remainder: s,
recons: FMT_NONE,
d_fmt: D_FMT,
d_t_fmt: D_T_FMT,
t_fmt: T_FMT,
}
}
#[cfg(feature = "unstable-locales")]
fn with_remainer(s: &'a str) -> StrftimeItems<'a> {
StrftimeItems {
remainder: s,
recons: Vec::new(),
d_fmt: D_FMT.to_vec(),
d_t_fmt: D_T_FMT.to_vec(),
t_fmt: T_FMT.to_vec(),
}
}
}
const HAVE_ALTERNATES: &'static str = "z";
impl<'a> Iterator for StrftimeItems<'a> {
type Item = Item<'a>;
fn next(&mut self) -> Option<Item<'a>> {
// we have some reconstructed items to return
if !self.recons.is_empty() {
let item;
#[cfg(feature = "unstable-locales")]
{
item = self.recons.remove(0);
}
#[cfg(not(feature = "unstable-locales"))]
{
item = self.recons[0].clone();
self.recons = &self.recons[1..];
}
return Some(item);
}
match self.remainder.chars().next() {
// we are done
None => None,
// the next item is a specifier
Some('%') => {
self.remainder = &self.remainder[1..];
macro_rules! next {
() => {
match self.remainder.chars().next() {
Some(x) => {
self.remainder = &self.remainder[x.len_utf8()..];
x
}
None => return Some(Item::Error), // premature end of string
}
};
}
let spec = next!();
let pad_override = match spec {
'-' => Some(Pad::None),
'0' => Some(Pad::Zero),
'_' => Some(Pad::Space),
_ => None,
};
let is_alternate = spec == '#';
let spec = if pad_override.is_some() || is_alternate { next!() } else { spec };
if is_alternate && !HAVE_ALTERNATES.contains(spec) {
return Some(Item::Error);
}
macro_rules! recons {
[$head:expr, $($tail:expr),+ $(,)*] => ({
#[cfg(feature = "unstable-locales")]
{
self.recons.clear();
$(self.recons.push($tail);)+
}
#[cfg(not(feature = "unstable-locales"))]
{
const RECONS: &'static [Item<'static>] = &[$($tail),+];
self.recons = RECONS;
}
$head
})
}
macro_rules! recons_from_slice {
($slice:expr) => {{
#[cfg(feature = "unstable-locales")]
{
self.recons.clear();
self.recons.extend_from_slice(&$slice[1..]);
}
#[cfg(not(feature = "unstable-locales"))]
{
self.recons = &$slice[1..];
}
$slice[0].clone()
}};
}
let item = match spec {
'A' => fix!(LongWeekdayName),
'B' => fix!(LongMonthName),
'C' => num0!(YearDiv100),
'D' => {
recons![num0!(Month), lit!("/"), num0!(Day), lit!("/"), num0!(YearMod100)]
}
'F' => recons![num0!(Year), lit!("-"), num0!(Month), lit!("-"), num0!(Day)],
'G' => num0!(IsoYear),
'H' => num0!(Hour),
'I' => num0!(Hour12),
'M' => num0!(Minute),
'P' => fix!(LowerAmPm),
'R' => recons![num0!(Hour), lit!(":"), num0!(Minute)],
'S' => num0!(Second),
'T' => recons![num0!(Hour), lit!(":"), num0!(Minute), lit!(":"), num0!(Second)],
'U' => num0!(WeekFromSun),
'V' => num0!(IsoWeek),
'W' => num0!(WeekFromMon),
'X' => recons_from_slice!(self.t_fmt),
'Y' => num0!(Year),
'Z' => fix!(TimezoneName),
'a' => fix!(ShortWeekdayName),
'b' | 'h' => fix!(ShortMonthName),
'c' => recons_from_slice!(self.d_t_fmt),
'd' => num0!(Day),
'e' => nums!(Day),
'f' => num0!(Nanosecond),
'g' => num0!(IsoYearMod100),
'j' => num0!(Ordinal),
'k' => nums!(Hour),
'l' => nums!(Hour12),
'm' => num0!(Month),
'n' => sp!("\n"),
'p' => fix!(UpperAmPm),
'r' => recons![
num0!(Hour12),
lit!(":"),
num0!(Minute),
lit!(":"),
num0!(Second),
sp!(" "),
fix!(UpperAmPm)
],
's' => num!(Timestamp),
't' => sp!("\t"),
'u' => num!(WeekdayFromMon),
'v' => {
recons![nums!(Day), lit!("-"), fix!(ShortMonthName), lit!("-"), num0!(Year)]
}
'w' => num!(NumDaysFromSun),
'x' => recons_from_slice!(self.d_fmt),
'y' => num0!(YearMod100),
'z' => {
if is_alternate {
internal_fix!(TimezoneOffsetPermissive)
} else {
fix!(TimezoneOffset)
}
}
'+' => fix!(RFC3339),
':' => match next!() {
'z' => fix!(TimezoneOffsetColon),
_ => Item::Error,
},
'.' => match next!() {
'3' => match next!() {
'f' => fix!(Nanosecond3),
_ => Item::Error,
},
'6' => match next!() {
'f' => fix!(Nanosecond6),
_ => Item::Error,
},
'9' => match next!() {
'f' => fix!(Nanosecond9),
_ => Item::Error,
},
'f' => fix!(Nanosecond),
_ => Item::Error,
},
'3' => match next!() {
'f' => internal_fix!(Nanosecond3NoDot),
_ => Item::Error,
},
'6' => match next!() {
'f' => internal_fix!(Nanosecond6NoDot),
_ => Item::Error,
},
'9' => match next!() {
'f' => internal_fix!(Nanosecond9NoDot),
_ => Item::Error,
},
'%' => lit!("%"),
_ => Item::Error, // no such specifier
};
// adjust `item` if we have any padding modifier
if let Some(new_pad) = pad_override {
match item {
Item::Numeric(ref kind, _pad) if self.recons.is_empty() => {
Some(Item::Numeric(kind.clone(), new_pad))
}
_ => Some(Item::Error), // no reconstructed or non-numeric item allowed
}
} else {
Some(item)
}
}
// the next item is space
Some(c) if c.is_whitespace() => {
// `%` is not a whitespace, so `c != '%'` is redundant
let nextspec = self
.remainder
.find(|c: char| !c.is_whitespace())
.unwrap_or_else(|| self.remainder.len());
assert!(nextspec > 0);
let item = sp!(&self.remainder[..nextspec]);
self.remainder = &self.remainder[nextspec..];
Some(item)
}
// the next item is literal
_ => {
let nextspec = self
.remainder
.find(|c: char| c.is_whitespace() || c == '%')
.unwrap_or_else(|| self.remainder.len());
assert!(nextspec > 0);
let item = lit!(&self.remainder[..nextspec]);
self.remainder = &self.remainder[nextspec..];
Some(item)
}
}
}
}
#[cfg(test)]
#[test]
fn test_strftime_items() {
fn parse_and_collect<'a>(s: &'a str) -> Vec<Item<'a>> {
// map any error into `[Item::Error]`. useful for easy testing.
let items = StrftimeItems::new(s);
let items = items.map(|spec| if spec == Item::Error { None } else { Some(spec) });
items.collect::<Option<Vec<_>>>().unwrap_or(vec![Item::Error])
}
assert_eq!(parse_and_collect(""), []);
assert_eq!(parse_and_collect(" \t\n\r "), [sp!(" \t\n\r ")]);
assert_eq!(parse_and_collect("hello?"), [lit!("hello?")]);
assert_eq!(
parse_and_collect("a b\t\nc"),
[lit!("a"), sp!(" "), lit!("b"), sp!("\t\n"), lit!("c")]
);
assert_eq!(parse_and_collect("100%%"), [lit!("100"), lit!("%")]);
assert_eq!(parse_and_collect("100%% ok"), [lit!("100"), lit!("%"), sp!(" "), lit!("ok")]);
assert_eq!(parse_and_collect("%%PDF-1.0"), [lit!("%"), lit!("PDF-1.0")]);
assert_eq!(
parse_and_collect("%Y-%m-%d"),
[num0!(Year), lit!("-"), num0!(Month), lit!("-"), num0!(Day)]
);
assert_eq!(parse_and_collect("[%F]"), parse_and_collect("[%Y-%m-%d]"));
assert_eq!(parse_and_collect("%m %d"), [num0!(Month), sp!(" "), num0!(Day)]);
assert_eq!(parse_and_collect("%"), [Item::Error]);
assert_eq!(parse_and_collect("%%"), [lit!("%")]);
assert_eq!(parse_and_collect("%%%"), [Item::Error]);
assert_eq!(parse_and_collect("%%%%"), [lit!("%"), lit!("%")]);
assert_eq!(parse_and_collect("foo%?"), [Item::Error]);
assert_eq!(parse_and_collect("bar%42"), [Item::Error]);
assert_eq!(parse_and_collect("quux% +"), [Item::Error]);
assert_eq!(parse_and_collect("%.Z"), [Item::Error]);
assert_eq!(parse_and_collect("%:Z"), [Item::Error]);
assert_eq!(parse_and_collect("%-Z"), [Item::Error]);
assert_eq!(parse_and_collect("%0Z"), [Item::Error]);
assert_eq!(parse_and_collect("%_Z"), [Item::Error]);
assert_eq!(parse_and_collect("%.j"), [Item::Error]);
assert_eq!(parse_and_collect("%:j"), [Item::Error]);
assert_eq!(parse_and_collect("%-j"), [num!(Ordinal)]);
assert_eq!(parse_and_collect("%0j"), [num0!(Ordinal)]);
assert_eq!(parse_and_collect("%_j"), [nums!(Ordinal)]);
assert_eq!(parse_and_collect("%.e"), [Item::Error]);
assert_eq!(parse_and_collect("%:e"), [Item::Error]);
assert_eq!(parse_and_collect("%-e"), [num!(Day)]);
assert_eq!(parse_and_collect("%0e"), [num0!(Day)]);
assert_eq!(parse_and_collect("%_e"), [nums!(Day)]);
assert_eq!(parse_and_collect("%z"), [fix!(TimezoneOffset)]);
assert_eq!(parse_and_collect("%#z"), [internal_fix!(TimezoneOffsetPermissive)]);
assert_eq!(parse_and_collect("%#m"), [Item::Error]);
}
#[cfg(test)]
#[test]
fn test_strftime_docs() {
use {FixedOffset, TimeZone, Timelike};
let dt = FixedOffset::east(34200).ymd(2001, 7, 8).and_hms_nano(0, 34, 59, 1_026_490_708);
// date specifiers
assert_eq!(dt.format("%Y").to_string(), "2001");
assert_eq!(dt.format("%C").to_string(), "20");
assert_eq!(dt.format("%y").to_string(), "01");
assert_eq!(dt.format("%m").to_string(), "07");
assert_eq!(dt.format("%b").to_string(), "Jul");
assert_eq!(dt.format("%B").to_string(), "July");
assert_eq!(dt.format("%h").to_string(), "Jul");
assert_eq!(dt.format("%d").to_string(), "08");
assert_eq!(dt.format("%e").to_string(), " 8");
assert_eq!(dt.format("%e").to_string(), dt.format("%_d").to_string());
assert_eq!(dt.format("%a").to_string(), "Sun");
assert_eq!(dt.format("%A").to_string(), "Sunday");
assert_eq!(dt.format("%w").to_string(), "0");
assert_eq!(dt.format("%u").to_string(), "7");
assert_eq!(dt.format("%U").to_string(), "28");
assert_eq!(dt.format("%W").to_string(), "27");
assert_eq!(dt.format("%G").to_string(), "2001");
assert_eq!(dt.format("%g").to_string(), "01");
assert_eq!(dt.format("%V").to_string(), "27");
assert_eq!(dt.format("%j").to_string(), "189");
assert_eq!(dt.format("%D").to_string(), "07/08/01");
assert_eq!(dt.format("%x").to_string(), "07/08/01");
assert_eq!(dt.format("%F").to_string(), "2001-07-08");
assert_eq!(dt.format("%v").to_string(), " 8-Jul-2001");
// time specifiers
assert_eq!(dt.format("%H").to_string(), "00");
assert_eq!(dt.format("%k").to_string(), " 0");
assert_eq!(dt.format("%k").to_string(), dt.format("%_H").to_string());
assert_eq!(dt.format("%I").to_string(), "12");
assert_eq!(dt.format("%l").to_string(), "12");
assert_eq!(dt.format("%l").to_string(), dt.format("%_I").to_string());
assert_eq!(dt.format("%P").to_string(), "am");
assert_eq!(dt.format("%p").to_string(), "AM");
assert_eq!(dt.format("%M").to_string(), "34");
assert_eq!(dt.format("%S").to_string(), "60");
assert_eq!(dt.format("%f").to_string(), "026490708");
assert_eq!(dt.format("%.f").to_string(), ".026490708");
assert_eq!(dt.with_nanosecond(1_026_490_000).unwrap().format("%.f").to_string(), ".026490");
assert_eq!(dt.format("%.3f").to_string(), ".026");
assert_eq!(dt.format("%.6f").to_string(), ".026490");
assert_eq!(dt.format("%.9f").to_string(), ".026490708");
assert_eq!(dt.format("%3f").to_string(), "026");
assert_eq!(dt.format("%6f").to_string(), "026490");
assert_eq!(dt.format("%9f").to_string(), "026490708");
assert_eq!(dt.format("%R").to_string(), "00:34");
assert_eq!(dt.format("%T").to_string(), "00:34:60");
assert_eq!(dt.format("%X").to_string(), "00:34:60");
assert_eq!(dt.format("%r").to_string(), "12:34:60 AM");
// time zone specifiers
//assert_eq!(dt.format("%Z").to_string(), "ACST");
assert_eq!(dt.format("%z").to_string(), "+0930");
assert_eq!(dt.format("%:z").to_string(), "+09:30");
// date & time specifiers
assert_eq!(dt.format("%c").to_string(), "Sun Jul 8 00:34:60 2001");
assert_eq!(dt.format("%+").to_string(), "2001-07-08T00:34:60.026490708+09:30");
assert_eq!(
dt.with_nanosecond(1_026_490_000).unwrap().format("%+").to_string(),
"2001-07-08T00:34:60.026490+09:30"
);
assert_eq!(dt.format("%s").to_string(), "994518299");
// special specifiers
assert_eq!(dt.format("%t").to_string(), "\t");
assert_eq!(dt.format("%n").to_string(), "\n");
assert_eq!(dt.format("%%").to_string(), "%");
}
#[cfg(feature = "unstable-locales")]
#[test]
fn test_strftime_docs_localized() {
use {FixedOffset, TimeZone};
let dt = FixedOffset::east(34200).ymd(2001, 7, 8).and_hms_nano(0, 34, 59, 1_026_490_708);
// date specifiers
assert_eq!(dt.format_localized("%b", Locale::fr_BE).to_string(), "jui");
assert_eq!(dt.format_localized("%B", Locale::fr_BE).to_string(), "juillet");
assert_eq!(dt.format_localized("%h", Locale::fr_BE).to_string(), "jui");
assert_eq!(dt.format_localized("%a", Locale::fr_BE).to_string(), "dim");
assert_eq!(dt.format_localized("%A", Locale::fr_BE).to_string(), "dimanche");
assert_eq!(dt.format_localized("%D", Locale::fr_BE).to_string(), "07/08/01");
assert_eq!(dt.format_localized("%x", Locale::fr_BE).to_string(), "08/07/01");
assert_eq!(dt.format_localized("%F", Locale::fr_BE).to_string(), "2001-07-08");
assert_eq!(dt.format_localized("%v", Locale::fr_BE).to_string(), " 8-jui-2001");
// time specifiers
assert_eq!(dt.format_localized("%P", Locale::fr_BE).to_string(), "");
assert_eq!(dt.format_localized("%p", Locale::fr_BE).to_string(), "");
assert_eq!(dt.format_localized("%R", Locale::fr_BE).to_string(), "00:34");
assert_eq!(dt.format_localized("%T", Locale::fr_BE).to_string(), "00:34:60");
assert_eq!(dt.format_localized("%X", Locale::fr_BE).to_string(), "00:34:60");
assert_eq!(dt.format_localized("%r", Locale::fr_BE).to_string(), "12:34:60 ");
// date & time specifiers
assert_eq!(
dt.format_localized("%c", Locale::fr_BE).to_string(),
"dim 08 jui 2001 00:34:60 +09:30"
);
}

1535
zeroidc/vendor/chrono/src/lib.rs vendored Normal file

File diff suppressed because it is too large Load Diff

2392
zeroidc/vendor/chrono/src/naive/date.rs vendored Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,815 @@
// This is a part of Chrono.
// See README.md and LICENSE.txt for details.
//! The internal implementation of the calendar and ordinal date.
//!
//! The current implementation is optimized for determining year, month, day and day of week.
//! 4-bit `YearFlags` map to one of 14 possible classes of year in the Gregorian calendar,
//! which are included in every packed `NaiveDate` instance.
//! The conversion between the packed calendar date (`Mdf`) and the ordinal date (`Of`) is
//! based on the moderately-sized lookup table (~1.5KB)
//! and the packed representation is chosen for the efficient lookup.
//! Every internal data structure does not validate its input,
//! but the conversion keeps the valid value valid and the invalid value invalid
//! so that the user-facing `NaiveDate` can validate the input as late as possible.
#![allow(dead_code)] // some internal methods have been left for consistency
#![cfg_attr(feature = "__internal_bench", allow(missing_docs))]
use core::{fmt, i32};
use div::{div_rem, mod_floor};
use num_traits::FromPrimitive;
use Weekday;
/// The internal date representation. This also includes the packed `Mdf` value.
pub type DateImpl = i32;
pub const MAX_YEAR: DateImpl = i32::MAX >> 13;
pub const MIN_YEAR: DateImpl = i32::MIN >> 13;
/// The year flags (aka the dominical letter).
///
/// There are 14 possible classes of year in the Gregorian calendar:
/// common and leap years starting with Monday through Sunday.
/// The `YearFlags` stores this information into 4 bits `abbb`,
/// where `a` is `1` for the common year (simplifies the `Of` validation)
/// and `bbb` is a non-zero `Weekday` (mapping `Mon` to 7) of the last day in the past year
/// (simplifies the day of week calculation from the 1-based ordinal).
#[derive(PartialEq, Eq, Copy, Clone)]
pub struct YearFlags(pub u8);
pub const A: YearFlags = YearFlags(0o15);
pub const AG: YearFlags = YearFlags(0o05);
pub const B: YearFlags = YearFlags(0o14);
pub const BA: YearFlags = YearFlags(0o04);
pub const C: YearFlags = YearFlags(0o13);
pub const CB: YearFlags = YearFlags(0o03);
pub const D: YearFlags = YearFlags(0o12);
pub const DC: YearFlags = YearFlags(0o02);
pub const E: YearFlags = YearFlags(0o11);
pub const ED: YearFlags = YearFlags(0o01);
pub const F: YearFlags = YearFlags(0o17);
pub const FE: YearFlags = YearFlags(0o07);
pub const G: YearFlags = YearFlags(0o16);
pub const GF: YearFlags = YearFlags(0o06);
static YEAR_TO_FLAGS: [YearFlags; 400] = [
BA, G, F, E, DC, B, A, G, FE, D, C, B, AG, F, E, D, CB, A, G, F, ED, C, B, A, GF, E, D, C, BA,
G, F, E, DC, B, A, G, FE, D, C, B, AG, F, E, D, CB, A, G, F, ED, C, B, A, GF, E, D, C, BA, G,
F, E, DC, B, A, G, FE, D, C, B, AG, F, E, D, CB, A, G, F, ED, C, B, A, GF, E, D, C, BA, G, F,
E, DC, B, A, G, FE, D, C, B, AG, F, E, D, // 100
C, B, A, G, FE, D, C, B, AG, F, E, D, CB, A, G, F, ED, C, B, A, GF, E, D, C, BA, G, F, E, DC,
B, A, G, FE, D, C, B, AG, F, E, D, CB, A, G, F, ED, C, B, A, GF, E, D, C, BA, G, F, E, DC, B,
A, G, FE, D, C, B, AG, F, E, D, CB, A, G, F, ED, C, B, A, GF, E, D, C, BA, G, F, E, DC, B, A,
G, FE, D, C, B, AG, F, E, D, CB, A, G, F, // 200
E, D, C, B, AG, F, E, D, CB, A, G, F, ED, C, B, A, GF, E, D, C, BA, G, F, E, DC, B, A, G, FE,
D, C, B, AG, F, E, D, CB, A, G, F, ED, C, B, A, GF, E, D, C, BA, G, F, E, DC, B, A, G, FE, D,
C, B, AG, F, E, D, CB, A, G, F, ED, C, B, A, GF, E, D, C, BA, G, F, E, DC, B, A, G, FE, D, C,
B, AG, F, E, D, CB, A, G, F, ED, C, B, A, // 300
G, F, E, D, CB, A, G, F, ED, C, B, A, GF, E, D, C, BA, G, F, E, DC, B, A, G, FE, D, C, B, AG,
F, E, D, CB, A, G, F, ED, C, B, A, GF, E, D, C, BA, G, F, E, DC, B, A, G, FE, D, C, B, AG, F,
E, D, CB, A, G, F, ED, C, B, A, GF, E, D, C, BA, G, F, E, DC, B, A, G, FE, D, C, B, AG, F, E,
D, CB, A, G, F, ED, C, B, A, GF, E, D, C, // 400
];
static YEAR_DELTAS: [u8; 401] = [
0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8,
8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14,
15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20,
21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24, 25, 25, 25, // 100
25, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 28, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30,
30, 31, 31, 31, 31, 32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34, 35, 35, 35, 35, 36, 36, 36,
36, 37, 37, 37, 37, 38, 38, 38, 38, 39, 39, 39, 39, 40, 40, 40, 40, 41, 41, 41, 41, 42, 42, 42,
42, 43, 43, 43, 43, 44, 44, 44, 44, 45, 45, 45, 45, 46, 46, 46, 46, 47, 47, 47, 47, 48, 48, 48,
48, 49, 49, 49, // 200
49, 49, 49, 49, 49, 50, 50, 50, 50, 51, 51, 51, 51, 52, 52, 52, 52, 53, 53, 53, 53, 54, 54, 54,
54, 55, 55, 55, 55, 56, 56, 56, 56, 57, 57, 57, 57, 58, 58, 58, 58, 59, 59, 59, 59, 60, 60, 60,
60, 61, 61, 61, 61, 62, 62, 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 65, 65, 65, 65, 66, 66, 66,
66, 67, 67, 67, 67, 68, 68, 68, 68, 69, 69, 69, 69, 70, 70, 70, 70, 71, 71, 71, 71, 72, 72, 72,
72, 73, 73, 73, // 300
73, 73, 73, 73, 73, 74, 74, 74, 74, 75, 75, 75, 75, 76, 76, 76, 76, 77, 77, 77, 77, 78, 78, 78,
78, 79, 79, 79, 79, 80, 80, 80, 80, 81, 81, 81, 81, 82, 82, 82, 82, 83, 83, 83, 83, 84, 84, 84,
84, 85, 85, 85, 85, 86, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90,
90, 91, 91, 91, 91, 92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 94, 94, 95, 95, 95, 95, 96, 96, 96,
96, 97, 97, 97, 97, // 400+1
];
pub fn cycle_to_yo(cycle: u32) -> (u32, u32) {
let (mut year_mod_400, mut ordinal0) = div_rem(cycle, 365);
let delta = u32::from(YEAR_DELTAS[year_mod_400 as usize]);
if ordinal0 < delta {
year_mod_400 -= 1;
ordinal0 += 365 - u32::from(YEAR_DELTAS[year_mod_400 as usize]);
} else {
ordinal0 -= delta;
}
(year_mod_400, ordinal0 + 1)
}
pub fn yo_to_cycle(year_mod_400: u32, ordinal: u32) -> u32 {
year_mod_400 * 365 + u32::from(YEAR_DELTAS[year_mod_400 as usize]) + ordinal - 1
}
impl YearFlags {
#[inline]
pub fn from_year(year: i32) -> YearFlags {
let year = mod_floor(year, 400);
YearFlags::from_year_mod_400(year)
}
#[inline]
pub fn from_year_mod_400(year: i32) -> YearFlags {
YEAR_TO_FLAGS[year as usize]
}
#[inline]
pub fn ndays(&self) -> u32 {
let YearFlags(flags) = *self;
366 - u32::from(flags >> 3)
}
#[inline]
pub fn isoweek_delta(&self) -> u32 {
let YearFlags(flags) = *self;
let mut delta = u32::from(flags) & 0b0111;
if delta < 3 {
delta += 7;
}
delta
}
#[inline]
pub fn nisoweeks(&self) -> u32 {
let YearFlags(flags) = *self;
52 + ((0b0000_0100_0000_0110 >> flags as usize) & 1)
}
}
impl fmt::Debug for YearFlags {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let YearFlags(flags) = *self;
match flags {
0o15 => "A".fmt(f),
0o05 => "AG".fmt(f),
0o14 => "B".fmt(f),
0o04 => "BA".fmt(f),
0o13 => "C".fmt(f),
0o03 => "CB".fmt(f),
0o12 => "D".fmt(f),
0o02 => "DC".fmt(f),
0o11 => "E".fmt(f),
0o01 => "ED".fmt(f),
0o10 => "F?".fmt(f),
0o00 => "FE?".fmt(f), // non-canonical
0o17 => "F".fmt(f),
0o07 => "FE".fmt(f),
0o16 => "G".fmt(f),
0o06 => "GF".fmt(f),
_ => write!(f, "YearFlags({})", flags),
}
}
}
pub const MIN_OL: u32 = 1 << 1;
pub const MAX_OL: u32 = 366 << 1; // larger than the non-leap last day `(365 << 1) | 1`
pub const MIN_MDL: u32 = (1 << 6) | (1 << 1);
pub const MAX_MDL: u32 = (12 << 6) | (31 << 1) | 1;
const XX: i8 = -128;
static MDL_TO_OL: [i8; MAX_MDL as usize + 1] = [
XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX,
XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX,
XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, XX, // 0
XX, XX, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, // 1
XX, XX, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66,
66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66,
66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, XX, XX, XX, XX, XX, // 2
XX, XX, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74,
72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74,
72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, // 3
XX, XX, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76,
74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76,
74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, XX, XX, // 4
XX, XX, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80,
78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80,
78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, // 5
XX, XX, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82,
80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82,
80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, XX, XX, // 6
XX, XX, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86,
84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86,
84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, // 7
XX, XX, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88,
86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88,
86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, // 8
XX, XX, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90,
88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90,
88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, XX, XX, // 9
XX, XX, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94,
92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94,
92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, // 10
XX, XX, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96,
94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96,
94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, XX, XX, // 11
XX, XX, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98,
100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100,
98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98,
100, // 12
];
static OL_TO_MDL: [u8; MAX_OL as usize + 1] = [
0, 0, // 0
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, // 1
66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66,
66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66,
66, 66, 66, 66, 66, 66, 66, 66, 66, // 2
74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72,
74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72,
74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, 74, 72, // 3
76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74,
76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74,
76, 74, 76, 74, 76, 74, 76, 74, 76, 74, 76, 74, // 4
80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78,
80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78,
80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, 80, 78, // 5
82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80,
82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80,
82, 80, 82, 80, 82, 80, 82, 80, 82, 80, 82, 80, // 6
86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84,
86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84,
86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, 86, 84, // 7
88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86,
88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86,
88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, 88, 86, // 8
90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88,
90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88,
90, 88, 90, 88, 90, 88, 90, 88, 90, 88, 90, 88, // 9
94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92,
94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92,
94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, 94, 92, // 10
96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94,
96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94,
96, 94, 96, 94, 96, 94, 96, 94, 96, 94, 96, 94, // 11
100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100,
98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98,
100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100, 98, 100,
98, // 12
];
/// Ordinal (day of year) and year flags: `(ordinal << 4) | flags`.
///
/// The whole bits except for the least 3 bits are referred as `Ol` (ordinal and leap flag),
/// which is an index to the `OL_TO_MDL` lookup table.
#[derive(PartialEq, PartialOrd, Copy, Clone)]
pub struct Of(pub u32);
impl Of {
#[inline]
fn clamp_ordinal(ordinal: u32) -> u32 {
if ordinal > 366 {
0
} else {
ordinal
}
}
#[inline]
pub fn new(ordinal: u32, YearFlags(flags): YearFlags) -> Of {
let ordinal = Of::clamp_ordinal(ordinal);
Of((ordinal << 4) | u32::from(flags))
}
#[inline]
pub fn from_mdf(Mdf(mdf): Mdf) -> Of {
let mdl = mdf >> 3;
match MDL_TO_OL.get(mdl as usize) {
Some(&v) => Of(mdf.wrapping_sub((i32::from(v) as u32 & 0x3ff) << 3)),
None => Of(0),
}
}
#[inline]
pub fn valid(&self) -> bool {
let Of(of) = *self;
let ol = of >> 3;
MIN_OL <= ol && ol <= MAX_OL
}
#[inline]
pub fn ordinal(&self) -> u32 {
let Of(of) = *self;
of >> 4
}
#[inline]
pub fn with_ordinal(&self, ordinal: u32) -> Of {
let ordinal = Of::clamp_ordinal(ordinal);
let Of(of) = *self;
Of((of & 0b1111) | (ordinal << 4))
}
#[inline]
pub fn flags(&self) -> YearFlags {
let Of(of) = *self;
YearFlags((of & 0b1111) as u8)
}
#[inline]
pub fn with_flags(&self, YearFlags(flags): YearFlags) -> Of {
let Of(of) = *self;
Of((of & !0b1111) | u32::from(flags))
}
#[inline]
pub fn weekday(&self) -> Weekday {
let Of(of) = *self;
Weekday::from_u32(((of >> 4) + (of & 0b111)) % 7).unwrap()
}
#[inline]
pub fn isoweekdate_raw(&self) -> (u32, Weekday) {
// week ordinal = ordinal + delta
let Of(of) = *self;
let weekord = (of >> 4).wrapping_add(self.flags().isoweek_delta());
(weekord / 7, Weekday::from_u32(weekord % 7).unwrap())
}
#[inline]
pub fn to_mdf(&self) -> Mdf {
Mdf::from_of(*self)
}
#[inline]
pub fn succ(&self) -> Of {
let Of(of) = *self;
Of(of + (1 << 4))
}
#[inline]
pub fn pred(&self) -> Of {
let Of(of) = *self;
Of(of - (1 << 4))
}
}
impl fmt::Debug for Of {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let Of(of) = *self;
write!(
f,
"Of(({} << 4) | {:#04o} /*{:?}*/)",
of >> 4,
of & 0b1111,
YearFlags((of & 0b1111) as u8)
)
}
}
/// Month, day of month and year flags: `(month << 9) | (day << 4) | flags`
///
/// The whole bits except for the least 3 bits are referred as `Mdl`
/// (month, day of month and leap flag),
/// which is an index to the `MDL_TO_OL` lookup table.
#[derive(PartialEq, PartialOrd, Copy, Clone)]
pub struct Mdf(pub u32);
impl Mdf {
#[inline]
fn clamp_month(month: u32) -> u32 {
if month > 12 {
0
} else {
month
}
}
#[inline]
fn clamp_day(day: u32) -> u32 {
if day > 31 {
0
} else {
day
}
}
#[inline]
pub fn new(month: u32, day: u32, YearFlags(flags): YearFlags) -> Mdf {
let month = Mdf::clamp_month(month);
let day = Mdf::clamp_day(day);
Mdf((month << 9) | (day << 4) | u32::from(flags))
}
#[inline]
pub fn from_of(Of(of): Of) -> Mdf {
let ol = of >> 3;
match OL_TO_MDL.get(ol as usize) {
Some(&v) => Mdf(of + (u32::from(v) << 3)),
None => Mdf(0),
}
}
#[inline]
pub fn valid(&self) -> bool {
let Mdf(mdf) = *self;
let mdl = mdf >> 3;
match MDL_TO_OL.get(mdl as usize) {
Some(&v) => v >= 0,
None => false,
}
}
#[inline]
pub fn month(&self) -> u32 {
let Mdf(mdf) = *self;
mdf >> 9
}
#[inline]
pub fn with_month(&self, month: u32) -> Mdf {
let month = Mdf::clamp_month(month);
let Mdf(mdf) = *self;
Mdf((mdf & 0b1_1111_1111) | (month << 9))
}
#[inline]
pub fn day(&self) -> u32 {
let Mdf(mdf) = *self;
(mdf >> 4) & 0b1_1111
}
#[inline]
pub fn with_day(&self, day: u32) -> Mdf {
let day = Mdf::clamp_day(day);
let Mdf(mdf) = *self;
Mdf((mdf & !0b1_1111_0000) | (day << 4))
}
#[inline]
pub fn flags(&self) -> YearFlags {
let Mdf(mdf) = *self;
YearFlags((mdf & 0b1111) as u8)
}
#[inline]
pub fn with_flags(&self, YearFlags(flags): YearFlags) -> Mdf {
let Mdf(mdf) = *self;
Mdf((mdf & !0b1111) | u32::from(flags))
}
#[inline]
pub fn to_of(&self) -> Of {
Of::from_mdf(*self)
}
}
impl fmt::Debug for Mdf {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let Mdf(mdf) = *self;
write!(
f,
"Mdf(({} << 9) | ({} << 4) | {:#04o} /*{:?}*/)",
mdf >> 9,
(mdf >> 4) & 0b1_1111,
mdf & 0b1111,
YearFlags((mdf & 0b1111) as u8)
)
}
}
#[cfg(test)]
mod tests {
#[cfg(test)]
extern crate num_iter;
use self::num_iter::range_inclusive;
use super::{Mdf, Of};
use super::{YearFlags, A, AG, B, BA, C, CB, D, DC, E, ED, F, FE, G, GF};
use std::u32;
use Weekday;
const NONLEAP_FLAGS: [YearFlags; 7] = [A, B, C, D, E, F, G];
const LEAP_FLAGS: [YearFlags; 7] = [AG, BA, CB, DC, ED, FE, GF];
const FLAGS: [YearFlags; 14] = [A, B, C, D, E, F, G, AG, BA, CB, DC, ED, FE, GF];
#[test]
fn test_year_flags_ndays_from_year() {
assert_eq!(YearFlags::from_year(2014).ndays(), 365);
assert_eq!(YearFlags::from_year(2012).ndays(), 366);
assert_eq!(YearFlags::from_year(2000).ndays(), 366);
assert_eq!(YearFlags::from_year(1900).ndays(), 365);
assert_eq!(YearFlags::from_year(1600).ndays(), 366);
assert_eq!(YearFlags::from_year(1).ndays(), 365);
assert_eq!(YearFlags::from_year(0).ndays(), 366); // 1 BCE (proleptic Gregorian)
assert_eq!(YearFlags::from_year(-1).ndays(), 365); // 2 BCE
assert_eq!(YearFlags::from_year(-4).ndays(), 366); // 5 BCE
assert_eq!(YearFlags::from_year(-99).ndays(), 365); // 100 BCE
assert_eq!(YearFlags::from_year(-100).ndays(), 365); // 101 BCE
assert_eq!(YearFlags::from_year(-399).ndays(), 365); // 400 BCE
assert_eq!(YearFlags::from_year(-400).ndays(), 366); // 401 BCE
}
#[test]
fn test_year_flags_nisoweeks() {
assert_eq!(A.nisoweeks(), 52);
assert_eq!(B.nisoweeks(), 52);
assert_eq!(C.nisoweeks(), 52);
assert_eq!(D.nisoweeks(), 53);
assert_eq!(E.nisoweeks(), 52);
assert_eq!(F.nisoweeks(), 52);
assert_eq!(G.nisoweeks(), 52);
assert_eq!(AG.nisoweeks(), 52);
assert_eq!(BA.nisoweeks(), 52);
assert_eq!(CB.nisoweeks(), 52);
assert_eq!(DC.nisoweeks(), 53);
assert_eq!(ED.nisoweeks(), 53);
assert_eq!(FE.nisoweeks(), 52);
assert_eq!(GF.nisoweeks(), 52);
}
#[test]
fn test_of() {
fn check(expected: bool, flags: YearFlags, ordinal1: u32, ordinal2: u32) {
for ordinal in range_inclusive(ordinal1, ordinal2) {
let of = Of::new(ordinal, flags);
assert!(
of.valid() == expected,
"ordinal {} = {:?} should be {} for dominical year {:?}",
ordinal,
of,
if expected { "valid" } else { "invalid" },
flags
);
}
}
for &flags in NONLEAP_FLAGS.iter() {
check(false, flags, 0, 0);
check(true, flags, 1, 365);
check(false, flags, 366, 1024);
check(false, flags, u32::MAX, u32::MAX);
}
for &flags in LEAP_FLAGS.iter() {
check(false, flags, 0, 0);
check(true, flags, 1, 366);
check(false, flags, 367, 1024);
check(false, flags, u32::MAX, u32::MAX);
}
}
#[test]
fn test_mdf_valid() {
fn check(expected: bool, flags: YearFlags, month1: u32, day1: u32, month2: u32, day2: u32) {
for month in range_inclusive(month1, month2) {
for day in range_inclusive(day1, day2) {
let mdf = Mdf::new(month, day, flags);
assert!(
mdf.valid() == expected,
"month {} day {} = {:?} should be {} for dominical year {:?}",
month,
day,
mdf,
if expected { "valid" } else { "invalid" },
flags
);
}
}
}
for &flags in NONLEAP_FLAGS.iter() {
check(false, flags, 0, 0, 0, 1024);
check(false, flags, 0, 0, 16, 0);
check(true, flags, 1, 1, 1, 31);
check(false, flags, 1, 32, 1, 1024);
check(true, flags, 2, 1, 2, 28);
check(false, flags, 2, 29, 2, 1024);
check(true, flags, 3, 1, 3, 31);
check(false, flags, 3, 32, 3, 1024);
check(true, flags, 4, 1, 4, 30);
check(false, flags, 4, 31, 4, 1024);
check(true, flags, 5, 1, 5, 31);
check(false, flags, 5, 32, 5, 1024);
check(true, flags, 6, 1, 6, 30);
check(false, flags, 6, 31, 6, 1024);
check(true, flags, 7, 1, 7, 31);
check(false, flags, 7, 32, 7, 1024);
check(true, flags, 8, 1, 8, 31);
check(false, flags, 8, 32, 8, 1024);
check(true, flags, 9, 1, 9, 30);
check(false, flags, 9, 31, 9, 1024);
check(true, flags, 10, 1, 10, 31);
check(false, flags, 10, 32, 10, 1024);
check(true, flags, 11, 1, 11, 30);
check(false, flags, 11, 31, 11, 1024);
check(true, flags, 12, 1, 12, 31);
check(false, flags, 12, 32, 12, 1024);
check(false, flags, 13, 0, 16, 1024);
check(false, flags, u32::MAX, 0, u32::MAX, 1024);
check(false, flags, 0, u32::MAX, 16, u32::MAX);
check(false, flags, u32::MAX, u32::MAX, u32::MAX, u32::MAX);
}
for &flags in LEAP_FLAGS.iter() {
check(false, flags, 0, 0, 0, 1024);
check(false, flags, 0, 0, 16, 0);
check(true, flags, 1, 1, 1, 31);
check(false, flags, 1, 32, 1, 1024);
check(true, flags, 2, 1, 2, 29);
check(false, flags, 2, 30, 2, 1024);
check(true, flags, 3, 1, 3, 31);
check(false, flags, 3, 32, 3, 1024);
check(true, flags, 4, 1, 4, 30);
check(false, flags, 4, 31, 4, 1024);
check(true, flags, 5, 1, 5, 31);
check(false, flags, 5, 32, 5, 1024);
check(true, flags, 6, 1, 6, 30);
check(false, flags, 6, 31, 6, 1024);
check(true, flags, 7, 1, 7, 31);
check(false, flags, 7, 32, 7, 1024);
check(true, flags, 8, 1, 8, 31);
check(false, flags, 8, 32, 8, 1024);
check(true, flags, 9, 1, 9, 30);
check(false, flags, 9, 31, 9, 1024);
check(true, flags, 10, 1, 10, 31);
check(false, flags, 10, 32, 10, 1024);
check(true, flags, 11, 1, 11, 30);
check(false, flags, 11, 31, 11, 1024);
check(true, flags, 12, 1, 12, 31);
check(false, flags, 12, 32, 12, 1024);
check(false, flags, 13, 0, 16, 1024);
check(false, flags, u32::MAX, 0, u32::MAX, 1024);
check(false, flags, 0, u32::MAX, 16, u32::MAX);
check(false, flags, u32::MAX, u32::MAX, u32::MAX, u32::MAX);
}
}
#[test]
fn test_of_fields() {
for &flags in FLAGS.iter() {
for ordinal in range_inclusive(1u32, 366) {
let of = Of::new(ordinal, flags);
if of.valid() {
assert_eq!(of.ordinal(), ordinal);
}
}
}
}
#[test]
fn test_of_with_fields() {
fn check(flags: YearFlags, ordinal: u32) {
let of = Of::new(ordinal, flags);
for ordinal in range_inclusive(0u32, 1024) {
let of = of.with_ordinal(ordinal);
assert_eq!(of.valid(), Of::new(ordinal, flags).valid());
if of.valid() {
assert_eq!(of.ordinal(), ordinal);
}
}
}
for &flags in NONLEAP_FLAGS.iter() {
check(flags, 1);
check(flags, 365);
}
for &flags in LEAP_FLAGS.iter() {
check(flags, 1);
check(flags, 366);
}
}
#[test]
fn test_of_weekday() {
assert_eq!(Of::new(1, A).weekday(), Weekday::Sun);
assert_eq!(Of::new(1, B).weekday(), Weekday::Sat);
assert_eq!(Of::new(1, C).weekday(), Weekday::Fri);
assert_eq!(Of::new(1, D).weekday(), Weekday::Thu);
assert_eq!(Of::new(1, E).weekday(), Weekday::Wed);
assert_eq!(Of::new(1, F).weekday(), Weekday::Tue);
assert_eq!(Of::new(1, G).weekday(), Weekday::Mon);
assert_eq!(Of::new(1, AG).weekday(), Weekday::Sun);
assert_eq!(Of::new(1, BA).weekday(), Weekday::Sat);
assert_eq!(Of::new(1, CB).weekday(), Weekday::Fri);
assert_eq!(Of::new(1, DC).weekday(), Weekday::Thu);
assert_eq!(Of::new(1, ED).weekday(), Weekday::Wed);
assert_eq!(Of::new(1, FE).weekday(), Weekday::Tue);
assert_eq!(Of::new(1, GF).weekday(), Weekday::Mon);
for &flags in FLAGS.iter() {
let mut prev = Of::new(1, flags).weekday();
for ordinal in range_inclusive(2u32, flags.ndays()) {
let of = Of::new(ordinal, flags);
let expected = prev.succ();
assert_eq!(of.weekday(), expected);
prev = expected;
}
}
}
#[test]
fn test_mdf_fields() {
for &flags in FLAGS.iter() {
for month in range_inclusive(1u32, 12) {
for day in range_inclusive(1u32, 31) {
let mdf = Mdf::new(month, day, flags);
if mdf.valid() {
assert_eq!(mdf.month(), month);
assert_eq!(mdf.day(), day);
}
}
}
}
}
#[test]
fn test_mdf_with_fields() {
fn check(flags: YearFlags, month: u32, day: u32) {
let mdf = Mdf::new(month, day, flags);
for month in range_inclusive(0u32, 16) {
let mdf = mdf.with_month(month);
assert_eq!(mdf.valid(), Mdf::new(month, day, flags).valid());
if mdf.valid() {
assert_eq!(mdf.month(), month);
assert_eq!(mdf.day(), day);
}
}
for day in range_inclusive(0u32, 1024) {
let mdf = mdf.with_day(day);
assert_eq!(mdf.valid(), Mdf::new(month, day, flags).valid());
if mdf.valid() {
assert_eq!(mdf.month(), month);
assert_eq!(mdf.day(), day);
}
}
}
for &flags in NONLEAP_FLAGS.iter() {
check(flags, 1, 1);
check(flags, 1, 31);
check(flags, 2, 1);
check(flags, 2, 28);
check(flags, 2, 29);
check(flags, 12, 31);
}
for &flags in LEAP_FLAGS.iter() {
check(flags, 1, 1);
check(flags, 1, 31);
check(flags, 2, 1);
check(flags, 2, 29);
check(flags, 2, 30);
check(flags, 12, 31);
}
}
#[test]
fn test_of_isoweekdate_raw() {
for &flags in FLAGS.iter() {
// January 4 should be in the first week
let (week, _) = Of::new(4 /* January 4 */, flags).isoweekdate_raw();
assert_eq!(week, 1);
}
}
#[test]
fn test_of_to_mdf() {
for i in range_inclusive(0u32, 8192) {
let of = Of(i);
assert_eq!(of.valid(), of.to_mdf().valid());
}
}
#[test]
fn test_mdf_to_of() {
for i in range_inclusive(0u32, 8192) {
let mdf = Mdf(i);
assert_eq!(mdf.valid(), mdf.to_of().valid());
}
}
#[test]
fn test_of_to_mdf_to_of() {
for i in range_inclusive(0u32, 8192) {
let of = Of(i);
if of.valid() {
assert_eq!(of, of.to_mdf().to_of());
}
}
}
#[test]
fn test_mdf_to_of_to_mdf() {
for i in range_inclusive(0u32, 8192) {
let mdf = Mdf(i);
if mdf.valid() {
assert_eq!(mdf, mdf.to_of().to_mdf());
}
}
}
}

View File

@@ -0,0 +1,163 @@
// This is a part of Chrono.
// See README.md and LICENSE.txt for details.
//! ISO 8601 week.
use core::fmt;
use super::internals::{DateImpl, Of, YearFlags};
/// ISO 8601 week.
///
/// This type, combined with [`Weekday`](../enum.Weekday.html),
/// constitues the ISO 8601 [week date](./struct.NaiveDate.html#week-date).
/// One can retrieve this type from the existing [`Datelike`](../trait.Datelike.html) types
/// via the [`Datelike::iso_week`](../trait.Datelike.html#tymethod.iso_week) method.
#[derive(PartialEq, Eq, PartialOrd, Ord, Copy, Clone)]
pub struct IsoWeek {
// note that this allows for larger year range than `NaiveDate`.
// this is crucial because we have an edge case for the first and last week supported,
// which year number might not match the calendar year number.
ywf: DateImpl, // (year << 10) | (week << 4) | flag
}
/// Returns the corresponding `IsoWeek` from the year and the `Of` internal value.
//
// internal use only. we don't expose the public constructor for `IsoWeek` for now,
// because the year range for the week date and the calendar date do not match and
// it is confusing to have a date that is out of range in one and not in another.
// currently we sidestep this issue by making `IsoWeek` fully dependent of `Datelike`.
pub fn iso_week_from_yof(year: i32, of: Of) -> IsoWeek {
let (rawweek, _) = of.isoweekdate_raw();
let (year, week) = if rawweek < 1 {
// previous year
let prevlastweek = YearFlags::from_year(year - 1).nisoweeks();
(year - 1, prevlastweek)
} else {
let lastweek = of.flags().nisoweeks();
if rawweek > lastweek {
// next year
(year + 1, 1)
} else {
(year, rawweek)
}
};
IsoWeek { ywf: (year << 10) | (week << 4) as DateImpl | DateImpl::from(of.flags().0) }
}
impl IsoWeek {
/// Returns the year number for this ISO week.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, Datelike, Weekday};
///
/// let d = NaiveDate::from_isoywd(2015, 1, Weekday::Mon);
/// assert_eq!(d.iso_week().year(), 2015);
/// ~~~~
///
/// This year number might not match the calendar year number.
/// Continuing the example...
///
/// ~~~~
/// # use chrono::{NaiveDate, Datelike, Weekday};
/// # let d = NaiveDate::from_isoywd(2015, 1, Weekday::Mon);
/// assert_eq!(d.year(), 2014);
/// assert_eq!(d, NaiveDate::from_ymd(2014, 12, 29));
/// ~~~~
#[inline]
pub fn year(&self) -> i32 {
self.ywf >> 10
}
/// Returns the ISO week number starting from 1.
///
/// The return value ranges from 1 to 53. (The last week of year differs by years.)
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, Datelike, Weekday};
///
/// let d = NaiveDate::from_isoywd(2015, 15, Weekday::Mon);
/// assert_eq!(d.iso_week().week(), 15);
/// ~~~~
#[inline]
pub fn week(&self) -> u32 {
((self.ywf >> 4) & 0x3f) as u32
}
/// Returns the ISO week number starting from 0.
///
/// The return value ranges from 0 to 52. (The last week of year differs by years.)
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, Datelike, Weekday};
///
/// let d = NaiveDate::from_isoywd(2015, 15, Weekday::Mon);
/// assert_eq!(d.iso_week().week0(), 14);
/// ~~~~
#[inline]
pub fn week0(&self) -> u32 {
((self.ywf >> 4) & 0x3f) as u32 - 1
}
}
/// The `Debug` output of the ISO week `w` is the same as
/// [`d.format("%G-W%V")`](../format/strftime/index.html)
/// where `d` is any `NaiveDate` value in that week.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, Datelike};
///
/// assert_eq!(format!("{:?}", NaiveDate::from_ymd(2015, 9, 5).iso_week()), "2015-W36");
/// assert_eq!(format!("{:?}", NaiveDate::from_ymd( 0, 1, 3).iso_week()), "0000-W01");
/// assert_eq!(format!("{:?}", NaiveDate::from_ymd(9999, 12, 31).iso_week()), "9999-W52");
/// ~~~~
///
/// ISO 8601 requires an explicit sign for years before 1 BCE or after 9999 CE.
///
/// ~~~~
/// # use chrono::{NaiveDate, Datelike};
/// assert_eq!(format!("{:?}", NaiveDate::from_ymd( 0, 1, 2).iso_week()), "-0001-W52");
/// assert_eq!(format!("{:?}", NaiveDate::from_ymd(10000, 12, 31).iso_week()), "+10000-W52");
/// ~~~~
impl fmt::Debug for IsoWeek {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let year = self.year();
let week = self.week();
if 0 <= year && year <= 9999 {
write!(f, "{:04}-W{:02}", year, week)
} else {
// ISO 8601 requires the explicit sign for out-of-range years
write!(f, "{:+05}-W{:02}", year, week)
}
}
}
#[cfg(test)]
mod tests {
use naive::{internals, MAX_DATE, MIN_DATE};
use Datelike;
#[test]
fn test_iso_week_extremes() {
let minweek = MIN_DATE.iso_week();
let maxweek = MAX_DATE.iso_week();
assert_eq!(minweek.year(), internals::MIN_YEAR);
assert_eq!(minweek.week(), 1);
assert_eq!(minweek.week0(), 0);
assert_eq!(format!("{:?}", minweek), MIN_DATE.format("%G-W%V").to_string());
assert_eq!(maxweek.year(), internals::MAX_YEAR + 1);
assert_eq!(maxweek.week(), 1);
assert_eq!(maxweek.week0(), 0);
assert_eq!(format!("{:?}", maxweek), MAX_DATE.format("%G-W%V").to_string());
}
}

1814
zeroidc/vendor/chrono/src/naive/time.rs vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,244 @@
// This is a part of Chrono.
// See README.md and LICENSE.txt for details.
//! The time zone which has a fixed offset from UTC.
use core::fmt;
use core::ops::{Add, Sub};
use oldtime::Duration as OldDuration;
use super::{LocalResult, Offset, TimeZone};
use div::div_mod_floor;
use naive::{NaiveDate, NaiveDateTime, NaiveTime};
use DateTime;
use Timelike;
/// The time zone with fixed offset, from UTC-23:59:59 to UTC+23:59:59.
///
/// Using the [`TimeZone`](./trait.TimeZone.html) methods
/// on a `FixedOffset` struct is the preferred way to construct
/// `DateTime<FixedOffset>` instances. See the [`east`](#method.east) and
/// [`west`](#method.west) methods for examples.
#[derive(PartialEq, Eq, Hash, Copy, Clone)]
pub struct FixedOffset {
local_minus_utc: i32,
}
impl FixedOffset {
/// Makes a new `FixedOffset` for the Eastern Hemisphere with given timezone difference.
/// The negative `secs` means the Western Hemisphere.
///
/// Panics on the out-of-bound `secs`.
///
/// # Example
///
/// ~~~~
/// use chrono::{FixedOffset, TimeZone};
/// let hour = 3600;
/// let datetime = FixedOffset::east(5 * hour).ymd(2016, 11, 08)
/// .and_hms(0, 0, 0);
/// assert_eq!(&datetime.to_rfc3339(), "2016-11-08T00:00:00+05:00")
/// ~~~~
pub fn east(secs: i32) -> FixedOffset {
FixedOffset::east_opt(secs).expect("FixedOffset::east out of bounds")
}
/// Makes a new `FixedOffset` for the Eastern Hemisphere with given timezone difference.
/// The negative `secs` means the Western Hemisphere.
///
/// Returns `None` on the out-of-bound `secs`.
pub fn east_opt(secs: i32) -> Option<FixedOffset> {
if -86_400 < secs && secs < 86_400 {
Some(FixedOffset { local_minus_utc: secs })
} else {
None
}
}
/// Makes a new `FixedOffset` for the Western Hemisphere with given timezone difference.
/// The negative `secs` means the Eastern Hemisphere.
///
/// Panics on the out-of-bound `secs`.
///
/// # Example
///
/// ~~~~
/// use chrono::{FixedOffset, TimeZone};
/// let hour = 3600;
/// let datetime = FixedOffset::west(5 * hour).ymd(2016, 11, 08)
/// .and_hms(0, 0, 0);
/// assert_eq!(&datetime.to_rfc3339(), "2016-11-08T00:00:00-05:00")
/// ~~~~
pub fn west(secs: i32) -> FixedOffset {
FixedOffset::west_opt(secs).expect("FixedOffset::west out of bounds")
}
/// Makes a new `FixedOffset` for the Western Hemisphere with given timezone difference.
/// The negative `secs` means the Eastern Hemisphere.
///
/// Returns `None` on the out-of-bound `secs`.
pub fn west_opt(secs: i32) -> Option<FixedOffset> {
if -86_400 < secs && secs < 86_400 {
Some(FixedOffset { local_minus_utc: -secs })
} else {
None
}
}
/// Returns the number of seconds to add to convert from UTC to the local time.
#[inline]
pub fn local_minus_utc(&self) -> i32 {
self.local_minus_utc
}
/// Returns the number of seconds to add to convert from the local time to UTC.
#[inline]
pub fn utc_minus_local(&self) -> i32 {
-self.local_minus_utc
}
}
impl TimeZone for FixedOffset {
type Offset = FixedOffset;
fn from_offset(offset: &FixedOffset) -> FixedOffset {
*offset
}
fn offset_from_local_date(&self, _local: &NaiveDate) -> LocalResult<FixedOffset> {
LocalResult::Single(*self)
}
fn offset_from_local_datetime(&self, _local: &NaiveDateTime) -> LocalResult<FixedOffset> {
LocalResult::Single(*self)
}
fn offset_from_utc_date(&self, _utc: &NaiveDate) -> FixedOffset {
*self
}
fn offset_from_utc_datetime(&self, _utc: &NaiveDateTime) -> FixedOffset {
*self
}
}
impl Offset for FixedOffset {
fn fix(&self) -> FixedOffset {
*self
}
}
impl fmt::Debug for FixedOffset {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let offset = self.local_minus_utc;
let (sign, offset) = if offset < 0 { ('-', -offset) } else { ('+', offset) };
let (mins, sec) = div_mod_floor(offset, 60);
let (hour, min) = div_mod_floor(mins, 60);
if sec == 0 {
write!(f, "{}{:02}:{:02}", sign, hour, min)
} else {
write!(f, "{}{:02}:{:02}:{:02}", sign, hour, min, sec)
}
}
}
impl fmt::Display for FixedOffset {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(self, f)
}
}
// addition or subtraction of FixedOffset to/from Timelike values is the same as
// adding or subtracting the offset's local_minus_utc value
// but keep keeps the leap second information.
// this should be implemented more efficiently, but for the time being, this is generic right now.
fn add_with_leapsecond<T>(lhs: &T, rhs: i32) -> T
where
T: Timelike + Add<OldDuration, Output = T>,
{
// extract and temporarily remove the fractional part and later recover it
let nanos = lhs.nanosecond();
let lhs = lhs.with_nanosecond(0).unwrap();
(lhs + OldDuration::seconds(i64::from(rhs))).with_nanosecond(nanos).unwrap()
}
impl Add<FixedOffset> for NaiveTime {
type Output = NaiveTime;
#[inline]
fn add(self, rhs: FixedOffset) -> NaiveTime {
add_with_leapsecond(&self, rhs.local_minus_utc)
}
}
impl Sub<FixedOffset> for NaiveTime {
type Output = NaiveTime;
#[inline]
fn sub(self, rhs: FixedOffset) -> NaiveTime {
add_with_leapsecond(&self, -rhs.local_minus_utc)
}
}
impl Add<FixedOffset> for NaiveDateTime {
type Output = NaiveDateTime;
#[inline]
fn add(self, rhs: FixedOffset) -> NaiveDateTime {
add_with_leapsecond(&self, rhs.local_minus_utc)
}
}
impl Sub<FixedOffset> for NaiveDateTime {
type Output = NaiveDateTime;
#[inline]
fn sub(self, rhs: FixedOffset) -> NaiveDateTime {
add_with_leapsecond(&self, -rhs.local_minus_utc)
}
}
impl<Tz: TimeZone> Add<FixedOffset> for DateTime<Tz> {
type Output = DateTime<Tz>;
#[inline]
fn add(self, rhs: FixedOffset) -> DateTime<Tz> {
add_with_leapsecond(&self, rhs.local_minus_utc)
}
}
impl<Tz: TimeZone> Sub<FixedOffset> for DateTime<Tz> {
type Output = DateTime<Tz>;
#[inline]
fn sub(self, rhs: FixedOffset) -> DateTime<Tz> {
add_with_leapsecond(&self, -rhs.local_minus_utc)
}
}
#[cfg(test)]
mod tests {
use super::FixedOffset;
use offset::TimeZone;
#[test]
fn test_date_extreme_offset() {
// starting from 0.3 we don't have an offset exceeding one day.
// this makes everything easier!
assert_eq!(
format!("{:?}", FixedOffset::east(86399).ymd(2012, 2, 29)),
"2012-02-29+23:59:59".to_string()
);
assert_eq!(
format!("{:?}", FixedOffset::east(86399).ymd(2012, 2, 29).and_hms(5, 6, 7)),
"2012-02-29T05:06:07+23:59:59".to_string()
);
assert_eq!(
format!("{:?}", FixedOffset::west(86399).ymd(2012, 3, 4)),
"2012-03-04-23:59:59".to_string()
);
assert_eq!(
format!("{:?}", FixedOffset::west(86399).ymd(2012, 3, 4).and_hms(5, 6, 7)),
"2012-03-04T05:06:07-23:59:59".to_string()
);
}
}

View File

@@ -0,0 +1,227 @@
// This is a part of Chrono.
// See README.md and LICENSE.txt for details.
//! The local (system) time zone.
#[cfg(not(all(target_arch = "wasm32", not(target_os = "wasi"), feature = "wasmbind")))]
use sys::{self, Timespec};
use super::fixed::FixedOffset;
use super::{LocalResult, TimeZone};
#[cfg(not(all(target_arch = "wasm32", not(target_os = "wasi"), feature = "wasmbind")))]
use naive::NaiveTime;
use naive::{NaiveDate, NaiveDateTime};
use {Date, DateTime};
#[cfg(not(all(target_arch = "wasm32", not(target_os = "wasi"), feature = "wasmbind")))]
use {Datelike, Timelike};
/// Converts a `time::Tm` struct into the timezone-aware `DateTime`.
/// This assumes that `time` is working correctly, i.e. any error is fatal.
#[cfg(not(all(target_arch = "wasm32", not(target_os = "wasi"), feature = "wasmbind")))]
fn tm_to_datetime(mut tm: sys::Tm) -> DateTime<Local> {
if tm.tm_sec >= 60 {
tm.tm_nsec += (tm.tm_sec - 59) * 1_000_000_000;
tm.tm_sec = 59;
}
#[cfg(not(windows))]
fn tm_to_naive_date(tm: &sys::Tm) -> NaiveDate {
// from_yo is more efficient than from_ymd (since it's the internal representation).
NaiveDate::from_yo(tm.tm_year + 1900, tm.tm_yday as u32 + 1)
}
#[cfg(windows)]
fn tm_to_naive_date(tm: &sys::Tm) -> NaiveDate {
// ...but tm_yday is broken in Windows (issue #85)
NaiveDate::from_ymd(tm.tm_year + 1900, tm.tm_mon as u32 + 1, tm.tm_mday as u32)
}
let date = tm_to_naive_date(&tm);
let time = NaiveTime::from_hms_nano(
tm.tm_hour as u32,
tm.tm_min as u32,
tm.tm_sec as u32,
tm.tm_nsec as u32,
);
let offset = FixedOffset::east(tm.tm_utcoff);
DateTime::from_utc(date.and_time(time) - offset, offset)
}
/// Converts a local `NaiveDateTime` to the `time::Timespec`.
#[cfg(not(all(target_arch = "wasm32", not(target_os = "wasi"), feature = "wasmbind")))]
fn datetime_to_timespec(d: &NaiveDateTime, local: bool) -> sys::Timespec {
// well, this exploits an undocumented `Tm::to_timespec` behavior
// to get the exact function we want (either `timegm` or `mktime`).
// the number 1 is arbitrary but should be non-zero to trigger `mktime`.
let tm_utcoff = if local { 1 } else { 0 };
let tm = sys::Tm {
tm_sec: d.second() as i32,
tm_min: d.minute() as i32,
tm_hour: d.hour() as i32,
tm_mday: d.day() as i32,
tm_mon: d.month0() as i32, // yes, C is that strange...
tm_year: d.year() - 1900, // this doesn't underflow, we know that d is `NaiveDateTime`.
tm_wday: 0, // to_local ignores this
tm_yday: 0, // and this
tm_isdst: -1,
tm_utcoff: tm_utcoff,
// do not set this, OS APIs are heavily inconsistent in terms of leap second handling
tm_nsec: 0,
};
tm.to_timespec()
}
/// The local timescale. This is implemented via the standard `time` crate.
///
/// Using the [`TimeZone`](./trait.TimeZone.html) methods
/// on the Local struct is the preferred way to construct `DateTime<Local>`
/// instances.
///
/// # Example
///
/// ~~~~
/// use chrono::{Local, DateTime, TimeZone};
///
/// let dt: DateTime<Local> = Local::now();
/// let dt: DateTime<Local> = Local.timestamp(0, 0);
/// ~~~~
#[derive(Copy, Clone, Debug)]
pub struct Local;
impl Local {
/// Returns a `Date` which corresponds to the current date.
pub fn today() -> Date<Local> {
Local::now().date()
}
/// Returns a `DateTime` which corresponds to the current date.
#[cfg(not(all(target_arch = "wasm32", not(target_os = "wasi"), feature = "wasmbind")))]
pub fn now() -> DateTime<Local> {
tm_to_datetime(Timespec::now().local())
}
/// Returns a `DateTime` which corresponds to the current date.
#[cfg(all(target_arch = "wasm32", not(target_os = "wasi"), feature = "wasmbind"))]
pub fn now() -> DateTime<Local> {
use super::Utc;
let now: DateTime<Utc> = super::Utc::now();
// Workaround missing timezone logic in `time` crate
let offset = FixedOffset::west((js_sys::Date::new_0().get_timezone_offset() as i32) * 60);
DateTime::from_utc(now.naive_utc(), offset)
}
}
impl TimeZone for Local {
type Offset = FixedOffset;
fn from_offset(_offset: &FixedOffset) -> Local {
Local
}
// they are easier to define in terms of the finished date and time unlike other offsets
fn offset_from_local_date(&self, local: &NaiveDate) -> LocalResult<FixedOffset> {
self.from_local_date(local).map(|date| *date.offset())
}
fn offset_from_local_datetime(&self, local: &NaiveDateTime) -> LocalResult<FixedOffset> {
self.from_local_datetime(local).map(|datetime| *datetime.offset())
}
fn offset_from_utc_date(&self, utc: &NaiveDate) -> FixedOffset {
*self.from_utc_date(utc).offset()
}
fn offset_from_utc_datetime(&self, utc: &NaiveDateTime) -> FixedOffset {
*self.from_utc_datetime(utc).offset()
}
// override them for avoiding redundant works
fn from_local_date(&self, local: &NaiveDate) -> LocalResult<Date<Local>> {
// this sounds very strange, but required for keeping `TimeZone::ymd` sane.
// in the other words, we use the offset at the local midnight
// but keep the actual date unaltered (much like `FixedOffset`).
let midnight = self.from_local_datetime(&local.and_hms(0, 0, 0));
midnight.map(|datetime| Date::from_utc(*local, *datetime.offset()))
}
#[cfg(all(target_arch = "wasm32", not(target_os = "wasi"), feature = "wasmbind"))]
fn from_local_datetime(&self, local: &NaiveDateTime) -> LocalResult<DateTime<Local>> {
let mut local = local.clone();
// Get the offset from the js runtime
let offset = FixedOffset::west((js_sys::Date::new_0().get_timezone_offset() as i32) * 60);
local -= ::Duration::seconds(offset.local_minus_utc() as i64);
LocalResult::Single(DateTime::from_utc(local, offset))
}
#[cfg(not(all(target_arch = "wasm32", not(target_os = "wasi"), feature = "wasmbind")))]
fn from_local_datetime(&self, local: &NaiveDateTime) -> LocalResult<DateTime<Local>> {
let timespec = datetime_to_timespec(local, true);
// datetime_to_timespec completely ignores leap seconds, so we need to adjust for them
let mut tm = timespec.local();
assert_eq!(tm.tm_nsec, 0);
tm.tm_nsec = local.nanosecond() as i32;
LocalResult::Single(tm_to_datetime(tm))
}
fn from_utc_date(&self, utc: &NaiveDate) -> Date<Local> {
let midnight = self.from_utc_datetime(&utc.and_hms(0, 0, 0));
Date::from_utc(*utc, *midnight.offset())
}
#[cfg(all(target_arch = "wasm32", not(target_os = "wasi"), feature = "wasmbind"))]
fn from_utc_datetime(&self, utc: &NaiveDateTime) -> DateTime<Local> {
// Get the offset from the js runtime
let offset = FixedOffset::west((js_sys::Date::new_0().get_timezone_offset() as i32) * 60);
DateTime::from_utc(*utc, offset)
}
#[cfg(not(all(target_arch = "wasm32", not(target_os = "wasi"), feature = "wasmbind")))]
fn from_utc_datetime(&self, utc: &NaiveDateTime) -> DateTime<Local> {
let timespec = datetime_to_timespec(utc, false);
// datetime_to_timespec completely ignores leap seconds, so we need to adjust for them
let mut tm = timespec.local();
assert_eq!(tm.tm_nsec, 0);
tm.tm_nsec = utc.nanosecond() as i32;
tm_to_datetime(tm)
}
}
#[cfg(test)]
mod tests {
use super::Local;
use offset::TimeZone;
use Datelike;
#[test]
fn test_local_date_sanity_check() {
// issue #27
assert_eq!(Local.ymd(2999, 12, 28).day(), 28);
}
#[test]
fn test_leap_second() {
// issue #123
let today = Local::today();
let dt = today.and_hms_milli(1, 2, 59, 1000);
let timestr = dt.time().to_string();
// the OS API may or may not support the leap second,
// but there are only two sensible options.
assert!(timestr == "01:02:60" || timestr == "01:03:00", "unexpected timestr {:?}", timestr);
let dt = today.and_hms_milli(1, 2, 3, 1234);
let timestr = dt.time().to_string();
assert!(
timestr == "01:02:03.234" || timestr == "01:02:04.234",
"unexpected timestr {:?}",
timestr
);
}
}

531
zeroidc/vendor/chrono/src/offset/mod.rs vendored Normal file
View File

@@ -0,0 +1,531 @@
// This is a part of Chrono.
// See README.md and LICENSE.txt for details.
//! The time zone, which calculates offsets from the local time to UTC.
//!
//! There are four operations provided by the `TimeZone` trait:
//!
//! 1. Converting the local `NaiveDateTime` to `DateTime<Tz>`
//! 2. Converting the UTC `NaiveDateTime` to `DateTime<Tz>`
//! 3. Converting `DateTime<Tz>` to the local `NaiveDateTime`
//! 4. Constructing `DateTime<Tz>` objects from various offsets
//!
//! 1 is used for constructors. 2 is used for the `with_timezone` method of date and time types.
//! 3 is used for other methods, e.g. `year()` or `format()`, and provided by an associated type
//! which implements `Offset` (which then passed to `TimeZone` for actual implementations).
//! Technically speaking `TimeZone` has a total knowledge about given timescale,
//! but `Offset` is used as a cache to avoid the repeated conversion
//! and provides implementations for 1 and 3.
//! An `TimeZone` instance can be reconstructed from the corresponding `Offset` instance.
use core::fmt;
use format::{parse, ParseResult, Parsed, StrftimeItems};
use naive::{NaiveDate, NaiveDateTime, NaiveTime};
use Weekday;
use {Date, DateTime};
/// The conversion result from the local time to the timezone-aware datetime types.
#[derive(Clone, PartialEq, Debug, Copy, Eq, Hash)]
pub enum LocalResult<T> {
/// Given local time representation is invalid.
/// This can occur when, for example, the positive timezone transition.
None,
/// Given local time representation has a single unique result.
Single(T),
/// Given local time representation has multiple results and thus ambiguous.
/// This can occur when, for example, the negative timezone transition.
Ambiguous(T /*min*/, T /*max*/),
}
impl<T> LocalResult<T> {
/// Returns `Some` only when the conversion result is unique, or `None` otherwise.
pub fn single(self) -> Option<T> {
match self {
LocalResult::Single(t) => Some(t),
_ => None,
}
}
/// Returns `Some` for the earliest possible conversion result, or `None` if none.
pub fn earliest(self) -> Option<T> {
match self {
LocalResult::Single(t) | LocalResult::Ambiguous(t, _) => Some(t),
_ => None,
}
}
/// Returns `Some` for the latest possible conversion result, or `None` if none.
pub fn latest(self) -> Option<T> {
match self {
LocalResult::Single(t) | LocalResult::Ambiguous(_, t) => Some(t),
_ => None,
}
}
/// Maps a `LocalResult<T>` into `LocalResult<U>` with given function.
pub fn map<U, F: FnMut(T) -> U>(self, mut f: F) -> LocalResult<U> {
match self {
LocalResult::None => LocalResult::None,
LocalResult::Single(v) => LocalResult::Single(f(v)),
LocalResult::Ambiguous(min, max) => LocalResult::Ambiguous(f(min), f(max)),
}
}
}
impl<Tz: TimeZone> LocalResult<Date<Tz>> {
/// Makes a new `DateTime` from the current date and given `NaiveTime`.
/// The offset in the current date is preserved.
///
/// Propagates any error. Ambiguous result would be discarded.
#[inline]
pub fn and_time(self, time: NaiveTime) -> LocalResult<DateTime<Tz>> {
match self {
LocalResult::Single(d) => {
d.and_time(time).map_or(LocalResult::None, LocalResult::Single)
}
_ => LocalResult::None,
}
}
/// Makes a new `DateTime` from the current date, hour, minute and second.
/// The offset in the current date is preserved.
///
/// Propagates any error. Ambiguous result would be discarded.
#[inline]
pub fn and_hms_opt(self, hour: u32, min: u32, sec: u32) -> LocalResult<DateTime<Tz>> {
match self {
LocalResult::Single(d) => {
d.and_hms_opt(hour, min, sec).map_or(LocalResult::None, LocalResult::Single)
}
_ => LocalResult::None,
}
}
/// Makes a new `DateTime` from the current date, hour, minute, second and millisecond.
/// The millisecond part can exceed 1,000 in order to represent the leap second.
/// The offset in the current date is preserved.
///
/// Propagates any error. Ambiguous result would be discarded.
#[inline]
pub fn and_hms_milli_opt(
self,
hour: u32,
min: u32,
sec: u32,
milli: u32,
) -> LocalResult<DateTime<Tz>> {
match self {
LocalResult::Single(d) => d
.and_hms_milli_opt(hour, min, sec, milli)
.map_or(LocalResult::None, LocalResult::Single),
_ => LocalResult::None,
}
}
/// Makes a new `DateTime` from the current date, hour, minute, second and microsecond.
/// The microsecond part can exceed 1,000,000 in order to represent the leap second.
/// The offset in the current date is preserved.
///
/// Propagates any error. Ambiguous result would be discarded.
#[inline]
pub fn and_hms_micro_opt(
self,
hour: u32,
min: u32,
sec: u32,
micro: u32,
) -> LocalResult<DateTime<Tz>> {
match self {
LocalResult::Single(d) => d
.and_hms_micro_opt(hour, min, sec, micro)
.map_or(LocalResult::None, LocalResult::Single),
_ => LocalResult::None,
}
}
/// Makes a new `DateTime` from the current date, hour, minute, second and nanosecond.
/// The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
/// The offset in the current date is preserved.
///
/// Propagates any error. Ambiguous result would be discarded.
#[inline]
pub fn and_hms_nano_opt(
self,
hour: u32,
min: u32,
sec: u32,
nano: u32,
) -> LocalResult<DateTime<Tz>> {
match self {
LocalResult::Single(d) => d
.and_hms_nano_opt(hour, min, sec, nano)
.map_or(LocalResult::None, LocalResult::Single),
_ => LocalResult::None,
}
}
}
impl<T: fmt::Debug> LocalResult<T> {
/// Returns the single unique conversion result, or panics accordingly.
pub fn unwrap(self) -> T {
match self {
LocalResult::None => panic!("No such local time"),
LocalResult::Single(t) => t,
LocalResult::Ambiguous(t1, t2) => {
panic!("Ambiguous local time, ranging from {:?} to {:?}", t1, t2)
}
}
}
}
/// The offset from the local time to UTC.
pub trait Offset: Sized + Clone + fmt::Debug {
/// Returns the fixed offset from UTC to the local time stored.
fn fix(&self) -> FixedOffset;
}
/// The time zone.
///
/// The methods here are the primarily constructors for [`Date`](../struct.Date.html) and
/// [`DateTime`](../struct.DateTime.html) types.
pub trait TimeZone: Sized + Clone {
/// An associated offset type.
/// This type is used to store the actual offset in date and time types.
/// The original `TimeZone` value can be recovered via `TimeZone::from_offset`.
type Offset: Offset;
/// Makes a new `Date` from year, month, day and the current time zone.
/// This assumes the proleptic Gregorian calendar, with the year 0 being 1 BCE.
///
/// The time zone normally does not affect the date (unless it is between UTC-24 and UTC+24),
/// but it will propagate to the `DateTime` values constructed via this date.
///
/// Panics on the out-of-range date, invalid month and/or day.
///
/// # Example
///
/// ~~~~
/// use chrono::{Utc, TimeZone};
///
/// assert_eq!(Utc.ymd(2015, 5, 15).to_string(), "2015-05-15UTC");
/// ~~~~
fn ymd(&self, year: i32, month: u32, day: u32) -> Date<Self> {
self.ymd_opt(year, month, day).unwrap()
}
/// Makes a new `Date` from year, month, day and the current time zone.
/// This assumes the proleptic Gregorian calendar, with the year 0 being 1 BCE.
///
/// The time zone normally does not affect the date (unless it is between UTC-24 and UTC+24),
/// but it will propagate to the `DateTime` values constructed via this date.
///
/// Returns `None` on the out-of-range date, invalid month and/or day.
///
/// # Example
///
/// ~~~~
/// use chrono::{Utc, LocalResult, TimeZone};
///
/// assert_eq!(Utc.ymd_opt(2015, 5, 15).unwrap().to_string(), "2015-05-15UTC");
/// assert_eq!(Utc.ymd_opt(2000, 0, 0), LocalResult::None);
/// ~~~~
fn ymd_opt(&self, year: i32, month: u32, day: u32) -> LocalResult<Date<Self>> {
match NaiveDate::from_ymd_opt(year, month, day) {
Some(d) => self.from_local_date(&d),
None => LocalResult::None,
}
}
/// Makes a new `Date` from year, day of year (DOY or "ordinal") and the current time zone.
/// This assumes the proleptic Gregorian calendar, with the year 0 being 1 BCE.
///
/// The time zone normally does not affect the date (unless it is between UTC-24 and UTC+24),
/// but it will propagate to the `DateTime` values constructed via this date.
///
/// Panics on the out-of-range date and/or invalid DOY.
///
/// # Example
///
/// ~~~~
/// use chrono::{Utc, TimeZone};
///
/// assert_eq!(Utc.yo(2015, 135).to_string(), "2015-05-15UTC");
/// ~~~~
fn yo(&self, year: i32, ordinal: u32) -> Date<Self> {
self.yo_opt(year, ordinal).unwrap()
}
/// Makes a new `Date` from year, day of year (DOY or "ordinal") and the current time zone.
/// This assumes the proleptic Gregorian calendar, with the year 0 being 1 BCE.
///
/// The time zone normally does not affect the date (unless it is between UTC-24 and UTC+24),
/// but it will propagate to the `DateTime` values constructed via this date.
///
/// Returns `None` on the out-of-range date and/or invalid DOY.
fn yo_opt(&self, year: i32, ordinal: u32) -> LocalResult<Date<Self>> {
match NaiveDate::from_yo_opt(year, ordinal) {
Some(d) => self.from_local_date(&d),
None => LocalResult::None,
}
}
/// Makes a new `Date` from ISO week date (year and week number), day of the week (DOW) and
/// the current time zone.
/// This assumes the proleptic Gregorian calendar, with the year 0 being 1 BCE.
/// The resulting `Date` may have a different year from the input year.
///
/// The time zone normally does not affect the date (unless it is between UTC-24 and UTC+24),
/// but it will propagate to the `DateTime` values constructed via this date.
///
/// Panics on the out-of-range date and/or invalid week number.
///
/// # Example
///
/// ~~~~
/// use chrono::{Utc, Weekday, TimeZone};
///
/// assert_eq!(Utc.isoywd(2015, 20, Weekday::Fri).to_string(), "2015-05-15UTC");
/// ~~~~
fn isoywd(&self, year: i32, week: u32, weekday: Weekday) -> Date<Self> {
self.isoywd_opt(year, week, weekday).unwrap()
}
/// Makes a new `Date` from ISO week date (year and week number), day of the week (DOW) and
/// the current time zone.
/// This assumes the proleptic Gregorian calendar, with the year 0 being 1 BCE.
/// The resulting `Date` may have a different year from the input year.
///
/// The time zone normally does not affect the date (unless it is between UTC-24 and UTC+24),
/// but it will propagate to the `DateTime` values constructed via this date.
///
/// Returns `None` on the out-of-range date and/or invalid week number.
fn isoywd_opt(&self, year: i32, week: u32, weekday: Weekday) -> LocalResult<Date<Self>> {
match NaiveDate::from_isoywd_opt(year, week, weekday) {
Some(d) => self.from_local_date(&d),
None => LocalResult::None,
}
}
/// Makes a new `DateTime` from the number of non-leap seconds
/// since January 1, 1970 0:00:00 UTC (aka "UNIX timestamp")
/// and the number of nanoseconds since the last whole non-leap second.
///
/// Panics on the out-of-range number of seconds and/or invalid nanosecond,
/// for a non-panicking version see [`timestamp_opt`](#method.timestamp_opt).
///
/// # Example
///
/// ~~~~
/// use chrono::{Utc, TimeZone};
///
/// assert_eq!(Utc.timestamp(1431648000, 0).to_string(), "2015-05-15 00:00:00 UTC");
/// ~~~~
fn timestamp(&self, secs: i64, nsecs: u32) -> DateTime<Self> {
self.timestamp_opt(secs, nsecs).unwrap()
}
/// Makes a new `DateTime` from the number of non-leap seconds
/// since January 1, 1970 0:00:00 UTC (aka "UNIX timestamp")
/// and the number of nanoseconds since the last whole non-leap second.
///
/// Returns `LocalResult::None` on out-of-range number of seconds and/or
/// invalid nanosecond, otherwise always returns `LocalResult::Single`.
fn timestamp_opt(&self, secs: i64, nsecs: u32) -> LocalResult<DateTime<Self>> {
match NaiveDateTime::from_timestamp_opt(secs, nsecs) {
Some(dt) => LocalResult::Single(self.from_utc_datetime(&dt)),
None => LocalResult::None,
}
}
/// Makes a new `DateTime` from the number of non-leap milliseconds
/// since January 1, 1970 0:00:00 UTC (aka "UNIX timestamp").
///
/// Panics on out-of-range number of milliseconds for a non-panicking
/// version see [`timestamp_millis_opt`](#method.timestamp_millis_opt).
///
/// # Example
///
/// ~~~~
/// use chrono::{Utc, TimeZone};
///
/// assert_eq!(Utc.timestamp_millis(1431648000).timestamp(), 1431648);
/// ~~~~
fn timestamp_millis(&self, millis: i64) -> DateTime<Self> {
self.timestamp_millis_opt(millis).unwrap()
}
/// Makes a new `DateTime` from the number of non-leap milliseconds
/// since January 1, 1970 0:00:00 UTC (aka "UNIX timestamp").
///
///
/// Returns `LocalResult::None` on out-of-range number of milliseconds
/// and/or invalid nanosecond, otherwise always returns
/// `LocalResult::Single`.
///
/// # Example
///
/// ~~~~
/// use chrono::{Utc, TimeZone, LocalResult};
/// match Utc.timestamp_millis_opt(1431648000) {
/// LocalResult::Single(dt) => assert_eq!(dt.timestamp(), 1431648),
/// _ => panic!("Incorrect timestamp_millis"),
/// };
/// ~~~~
fn timestamp_millis_opt(&self, millis: i64) -> LocalResult<DateTime<Self>> {
let (mut secs, mut millis) = (millis / 1000, millis % 1000);
if millis < 0 {
secs -= 1;
millis += 1000;
}
self.timestamp_opt(secs, millis as u32 * 1_000_000)
}
/// Makes a new `DateTime` from the number of non-leap nanoseconds
/// since January 1, 1970 0:00:00 UTC (aka "UNIX timestamp").
///
/// Unlike [`timestamp_millis`](#method.timestamp_millis), this never
/// panics.
///
/// # Example
///
/// ~~~~
/// use chrono::{Utc, TimeZone};
///
/// assert_eq!(Utc.timestamp_nanos(1431648000000000).timestamp(), 1431648);
/// ~~~~
fn timestamp_nanos(&self, nanos: i64) -> DateTime<Self> {
let (mut secs, mut nanos) = (nanos / 1_000_000_000, nanos % 1_000_000_000);
if nanos < 0 {
secs -= 1;
nanos += 1_000_000_000;
}
self.timestamp_opt(secs, nanos as u32).unwrap()
}
/// Parses a string with the specified format string and
/// returns a `DateTime` with the current offset.
/// See the [`format::strftime` module](../format/strftime/index.html)
/// on the supported escape sequences.
///
/// If the format does not include offsets, the current offset is assumed;
/// otherwise the input should have a matching UTC offset.
///
/// See also `DateTime::parse_from_str` which gives a local `DateTime`
/// with parsed `FixedOffset`.
fn datetime_from_str(&self, s: &str, fmt: &str) -> ParseResult<DateTime<Self>> {
let mut parsed = Parsed::new();
parse(&mut parsed, s, StrftimeItems::new(fmt))?;
parsed.to_datetime_with_timezone(self)
}
/// Reconstructs the time zone from the offset.
fn from_offset(offset: &Self::Offset) -> Self;
/// Creates the offset(s) for given local `NaiveDate` if possible.
fn offset_from_local_date(&self, local: &NaiveDate) -> LocalResult<Self::Offset>;
/// Creates the offset(s) for given local `NaiveDateTime` if possible.
fn offset_from_local_datetime(&self, local: &NaiveDateTime) -> LocalResult<Self::Offset>;
/// Converts the local `NaiveDate` to the timezone-aware `Date` if possible.
fn from_local_date(&self, local: &NaiveDate) -> LocalResult<Date<Self>> {
self.offset_from_local_date(local).map(|offset| {
// since FixedOffset is within +/- 1 day, the date is never affected
Date::from_utc(*local, offset)
})
}
/// Converts the local `NaiveDateTime` to the timezone-aware `DateTime` if possible.
fn from_local_datetime(&self, local: &NaiveDateTime) -> LocalResult<DateTime<Self>> {
self.offset_from_local_datetime(local)
.map(|offset| DateTime::from_utc(*local - offset.fix(), offset))
}
/// Creates the offset for given UTC `NaiveDate`. This cannot fail.
fn offset_from_utc_date(&self, utc: &NaiveDate) -> Self::Offset;
/// Creates the offset for given UTC `NaiveDateTime`. This cannot fail.
fn offset_from_utc_datetime(&self, utc: &NaiveDateTime) -> Self::Offset;
/// Converts the UTC `NaiveDate` to the local time.
/// The UTC is continuous and thus this cannot fail (but can give the duplicate local time).
fn from_utc_date(&self, utc: &NaiveDate) -> Date<Self> {
Date::from_utc(*utc, self.offset_from_utc_date(utc))
}
/// Converts the UTC `NaiveDateTime` to the local time.
/// The UTC is continuous and thus this cannot fail (but can give the duplicate local time).
fn from_utc_datetime(&self, utc: &NaiveDateTime) -> DateTime<Self> {
DateTime::from_utc(*utc, self.offset_from_utc_datetime(utc))
}
}
mod fixed;
#[cfg(feature = "clock")]
mod local;
mod utc;
pub use self::fixed::FixedOffset;
#[cfg(feature = "clock")]
pub use self::local::Local;
pub use self::utc::Utc;
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_negative_millis() {
let dt = Utc.timestamp_millis(-1000);
assert_eq!(dt.to_string(), "1969-12-31 23:59:59 UTC");
let dt = Utc.timestamp_millis(-7000);
assert_eq!(dt.to_string(), "1969-12-31 23:59:53 UTC");
let dt = Utc.timestamp_millis(-7001);
assert_eq!(dt.to_string(), "1969-12-31 23:59:52.999 UTC");
let dt = Utc.timestamp_millis(-7003);
assert_eq!(dt.to_string(), "1969-12-31 23:59:52.997 UTC");
let dt = Utc.timestamp_millis(-999);
assert_eq!(dt.to_string(), "1969-12-31 23:59:59.001 UTC");
let dt = Utc.timestamp_millis(-1);
assert_eq!(dt.to_string(), "1969-12-31 23:59:59.999 UTC");
let dt = Utc.timestamp_millis(-60000);
assert_eq!(dt.to_string(), "1969-12-31 23:59:00 UTC");
let dt = Utc.timestamp_millis(-3600000);
assert_eq!(dt.to_string(), "1969-12-31 23:00:00 UTC");
for (millis, expected) in &[
(-7000, "1969-12-31 23:59:53 UTC"),
(-7001, "1969-12-31 23:59:52.999 UTC"),
(-7003, "1969-12-31 23:59:52.997 UTC"),
] {
match Utc.timestamp_millis_opt(*millis) {
LocalResult::Single(dt) => {
assert_eq!(dt.to_string(), *expected);
}
e => panic!("Got {:?} instead of an okay answer", e),
}
}
}
#[test]
fn test_negative_nanos() {
let dt = Utc.timestamp_nanos(-1_000_000_000);
assert_eq!(dt.to_string(), "1969-12-31 23:59:59 UTC");
let dt = Utc.timestamp_nanos(-999_999_999);
assert_eq!(dt.to_string(), "1969-12-31 23:59:59.000000001 UTC");
let dt = Utc.timestamp_nanos(-1);
assert_eq!(dt.to_string(), "1969-12-31 23:59:59.999999999 UTC");
let dt = Utc.timestamp_nanos(-60_000_000_000);
assert_eq!(dt.to_string(), "1969-12-31 23:59:00 UTC");
let dt = Utc.timestamp_nanos(-3_600_000_000_000);
assert_eq!(dt.to_string(), "1969-12-31 23:00:00 UTC");
}
#[test]
fn test_nanos_never_panics() {
Utc.timestamp_nanos(i64::max_value());
Utc.timestamp_nanos(i64::default());
Utc.timestamp_nanos(i64::min_value());
}
}

100
zeroidc/vendor/chrono/src/offset/utc.rs vendored Normal file
View File

@@ -0,0 +1,100 @@
// This is a part of Chrono.
// See README.md and LICENSE.txt for details.
//! The UTC (Coordinated Universal Time) time zone.
use core::fmt;
use super::{FixedOffset, LocalResult, Offset, TimeZone};
use naive::{NaiveDate, NaiveDateTime};
#[cfg(all(
feature = "clock",
not(all(target_arch = "wasm32", not(target_os = "wasi"), feature = "wasmbind"))
))]
use std::time::{SystemTime, UNIX_EPOCH};
#[cfg(feature = "clock")]
use {Date, DateTime};
/// The UTC time zone. This is the most efficient time zone when you don't need the local time.
/// It is also used as an offset (which is also a dummy type).
///
/// Using the [`TimeZone`](./trait.TimeZone.html) methods
/// on the UTC struct is the preferred way to construct `DateTime<Utc>`
/// instances.
///
/// # Example
///
/// ~~~~
/// use chrono::{DateTime, TimeZone, NaiveDateTime, Utc};
///
/// let dt = DateTime::<Utc>::from_utc(NaiveDateTime::from_timestamp(61, 0), Utc);
///
/// assert_eq!(Utc.timestamp(61, 0), dt);
/// assert_eq!(Utc.ymd(1970, 1, 1).and_hms(0, 1, 1), dt);
/// ~~~~
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct Utc;
#[cfg(feature = "clock")]
impl Utc {
/// Returns a `Date` which corresponds to the current date.
pub fn today() -> Date<Utc> {
Utc::now().date()
}
/// Returns a `DateTime` which corresponds to the current date.
#[cfg(not(all(target_arch = "wasm32", not(target_os = "wasi"), feature = "wasmbind")))]
pub fn now() -> DateTime<Utc> {
let now =
SystemTime::now().duration_since(UNIX_EPOCH).expect("system time before Unix epoch");
let naive = NaiveDateTime::from_timestamp(now.as_secs() as i64, now.subsec_nanos() as u32);
DateTime::from_utc(naive, Utc)
}
/// Returns a `DateTime` which corresponds to the current date.
#[cfg(all(target_arch = "wasm32", not(target_os = "wasi"), feature = "wasmbind"))]
pub fn now() -> DateTime<Utc> {
let now = js_sys::Date::new_0();
DateTime::<Utc>::from(now)
}
}
impl TimeZone for Utc {
type Offset = Utc;
fn from_offset(_state: &Utc) -> Utc {
Utc
}
fn offset_from_local_date(&self, _local: &NaiveDate) -> LocalResult<Utc> {
LocalResult::Single(Utc)
}
fn offset_from_local_datetime(&self, _local: &NaiveDateTime) -> LocalResult<Utc> {
LocalResult::Single(Utc)
}
fn offset_from_utc_date(&self, _utc: &NaiveDate) -> Utc {
Utc
}
fn offset_from_utc_datetime(&self, _utc: &NaiveDateTime) -> Utc {
Utc
}
}
impl Offset for Utc {
fn fix(&self) -> FixedOffset {
FixedOffset::east(0)
}
}
impl fmt::Debug for Utc {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Z")
}
}
impl fmt::Display for Utc {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "UTC")
}
}

684
zeroidc/vendor/chrono/src/oldtime.rs vendored Normal file
View File

@@ -0,0 +1,684 @@
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Temporal quantification
use core::ops::{Add, Div, Mul, Neg, Sub};
use core::time::Duration as StdDuration;
use core::{fmt, i64};
#[cfg(any(feature = "std", test))]
use std::error::Error;
/// The number of nanoseconds in a microsecond.
const NANOS_PER_MICRO: i32 = 1000;
/// The number of nanoseconds in a millisecond.
const NANOS_PER_MILLI: i32 = 1000_000;
/// The number of nanoseconds in seconds.
const NANOS_PER_SEC: i32 = 1_000_000_000;
/// The number of microseconds per second.
const MICROS_PER_SEC: i64 = 1000_000;
/// The number of milliseconds per second.
const MILLIS_PER_SEC: i64 = 1000;
/// The number of seconds in a minute.
const SECS_PER_MINUTE: i64 = 60;
/// The number of seconds in an hour.
const SECS_PER_HOUR: i64 = 3600;
/// The number of (non-leap) seconds in days.
const SECS_PER_DAY: i64 = 86400;
/// The number of (non-leap) seconds in a week.
const SECS_PER_WEEK: i64 = 604800;
macro_rules! try_opt {
($e:expr) => {
match $e {
Some(v) => v,
None => return None,
}
};
}
/// ISO 8601 time duration with nanosecond precision.
/// This also allows for the negative duration; see individual methods for details.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub struct Duration {
secs: i64,
nanos: i32, // Always 0 <= nanos < NANOS_PER_SEC
}
/// The minimum possible `Duration`: `i64::MIN` milliseconds.
pub const MIN: Duration = Duration {
secs: i64::MIN / MILLIS_PER_SEC - 1,
nanos: NANOS_PER_SEC + (i64::MIN % MILLIS_PER_SEC) as i32 * NANOS_PER_MILLI,
};
/// The maximum possible `Duration`: `i64::MAX` milliseconds.
pub const MAX: Duration = Duration {
secs: i64::MAX / MILLIS_PER_SEC,
nanos: (i64::MAX % MILLIS_PER_SEC) as i32 * NANOS_PER_MILLI,
};
impl Duration {
/// Makes a new `Duration` with given number of weeks.
/// Equivalent to `Duration::seconds(weeks * 7 * 24 * 60 * 60)` with overflow checks.
/// Panics when the duration is out of bounds.
#[inline]
pub fn weeks(weeks: i64) -> Duration {
let secs = weeks.checked_mul(SECS_PER_WEEK).expect("Duration::weeks out of bounds");
Duration::seconds(secs)
}
/// Makes a new `Duration` with given number of days.
/// Equivalent to `Duration::seconds(days * 24 * 60 * 60)` with overflow checks.
/// Panics when the duration is out of bounds.
#[inline]
pub fn days(days: i64) -> Duration {
let secs = days.checked_mul(SECS_PER_DAY).expect("Duration::days out of bounds");
Duration::seconds(secs)
}
/// Makes a new `Duration` with given number of hours.
/// Equivalent to `Duration::seconds(hours * 60 * 60)` with overflow checks.
/// Panics when the duration is out of bounds.
#[inline]
pub fn hours(hours: i64) -> Duration {
let secs = hours.checked_mul(SECS_PER_HOUR).expect("Duration::hours ouf of bounds");
Duration::seconds(secs)
}
/// Makes a new `Duration` with given number of minutes.
/// Equivalent to `Duration::seconds(minutes * 60)` with overflow checks.
/// Panics when the duration is out of bounds.
#[inline]
pub fn minutes(minutes: i64) -> Duration {
let secs = minutes.checked_mul(SECS_PER_MINUTE).expect("Duration::minutes out of bounds");
Duration::seconds(secs)
}
/// Makes a new `Duration` with given number of seconds.
/// Panics when the duration is more than `i64::MAX` seconds
/// or less than `i64::MIN` seconds.
#[inline]
pub fn seconds(seconds: i64) -> Duration {
let d = Duration { secs: seconds, nanos: 0 };
if d < MIN || d > MAX {
panic!("Duration::seconds out of bounds");
}
d
}
/// Makes a new `Duration` with given number of milliseconds.
#[inline]
pub fn milliseconds(milliseconds: i64) -> Duration {
let (secs, millis) = div_mod_floor_64(milliseconds, MILLIS_PER_SEC);
let nanos = millis as i32 * NANOS_PER_MILLI;
Duration { secs: secs, nanos: nanos }
}
/// Makes a new `Duration` with given number of microseconds.
#[inline]
pub fn microseconds(microseconds: i64) -> Duration {
let (secs, micros) = div_mod_floor_64(microseconds, MICROS_PER_SEC);
let nanos = micros as i32 * NANOS_PER_MICRO;
Duration { secs: secs, nanos: nanos }
}
/// Makes a new `Duration` with given number of nanoseconds.
#[inline]
pub fn nanoseconds(nanos: i64) -> Duration {
let (secs, nanos) = div_mod_floor_64(nanos, NANOS_PER_SEC as i64);
Duration { secs: secs, nanos: nanos as i32 }
}
/// Returns the total number of whole weeks in the duration.
#[inline]
pub fn num_weeks(&self) -> i64 {
self.num_days() / 7
}
/// Returns the total number of whole days in the duration.
pub fn num_days(&self) -> i64 {
self.num_seconds() / SECS_PER_DAY
}
/// Returns the total number of whole hours in the duration.
#[inline]
pub fn num_hours(&self) -> i64 {
self.num_seconds() / SECS_PER_HOUR
}
/// Returns the total number of whole minutes in the duration.
#[inline]
pub fn num_minutes(&self) -> i64 {
self.num_seconds() / SECS_PER_MINUTE
}
/// Returns the total number of whole seconds in the duration.
pub fn num_seconds(&self) -> i64 {
// If secs is negative, nanos should be subtracted from the duration.
if self.secs < 0 && self.nanos > 0 {
self.secs + 1
} else {
self.secs
}
}
/// Returns the number of nanoseconds such that
/// `nanos_mod_sec() + num_seconds() * NANOS_PER_SEC` is the total number of
/// nanoseconds in the duration.
fn nanos_mod_sec(&self) -> i32 {
if self.secs < 0 && self.nanos > 0 {
self.nanos - NANOS_PER_SEC
} else {
self.nanos
}
}
/// Returns the total number of whole milliseconds in the duration,
pub fn num_milliseconds(&self) -> i64 {
// A proper Duration will not overflow, because MIN and MAX are defined
// such that the range is exactly i64 milliseconds.
let secs_part = self.num_seconds() * MILLIS_PER_SEC;
let nanos_part = self.nanos_mod_sec() / NANOS_PER_MILLI;
secs_part + nanos_part as i64
}
/// Returns the total number of whole microseconds in the duration,
/// or `None` on overflow (exceeding 2^63 microseconds in either direction).
pub fn num_microseconds(&self) -> Option<i64> {
let secs_part = try_opt!(self.num_seconds().checked_mul(MICROS_PER_SEC));
let nanos_part = self.nanos_mod_sec() / NANOS_PER_MICRO;
secs_part.checked_add(nanos_part as i64)
}
/// Returns the total number of whole nanoseconds in the duration,
/// or `None` on overflow (exceeding 2^63 nanoseconds in either direction).
pub fn num_nanoseconds(&self) -> Option<i64> {
let secs_part = try_opt!(self.num_seconds().checked_mul(NANOS_PER_SEC as i64));
let nanos_part = self.nanos_mod_sec();
secs_part.checked_add(nanos_part as i64)
}
/// Add two durations, returning `None` if overflow occurred.
pub fn checked_add(&self, rhs: &Duration) -> Option<Duration> {
let mut secs = try_opt!(self.secs.checked_add(rhs.secs));
let mut nanos = self.nanos + rhs.nanos;
if nanos >= NANOS_PER_SEC {
nanos -= NANOS_PER_SEC;
secs = try_opt!(secs.checked_add(1));
}
let d = Duration { secs: secs, nanos: nanos };
// Even if d is within the bounds of i64 seconds,
// it might still overflow i64 milliseconds.
if d < MIN || d > MAX {
None
} else {
Some(d)
}
}
/// Subtract two durations, returning `None` if overflow occurred.
pub fn checked_sub(&self, rhs: &Duration) -> Option<Duration> {
let mut secs = try_opt!(self.secs.checked_sub(rhs.secs));
let mut nanos = self.nanos - rhs.nanos;
if nanos < 0 {
nanos += NANOS_PER_SEC;
secs = try_opt!(secs.checked_sub(1));
}
let d = Duration { secs: secs, nanos: nanos };
// Even if d is within the bounds of i64 seconds,
// it might still overflow i64 milliseconds.
if d < MIN || d > MAX {
None
} else {
Some(d)
}
}
/// Returns the duration as an absolute (non-negative) value.
#[inline]
pub fn abs(&self) -> Duration {
Duration { secs: self.secs.abs(), nanos: self.nanos }
}
/// The minimum possible `Duration`: `i64::MIN` milliseconds.
#[inline]
pub fn min_value() -> Duration {
MIN
}
/// The maximum possible `Duration`: `i64::MAX` milliseconds.
#[inline]
pub fn max_value() -> Duration {
MAX
}
/// A duration where the stored seconds and nanoseconds are equal to zero.
#[inline]
pub fn zero() -> Duration {
Duration { secs: 0, nanos: 0 }
}
/// Returns `true` if the duration equals `Duration::zero()`.
#[inline]
pub fn is_zero(&self) -> bool {
self.secs == 0 && self.nanos == 0
}
/// Creates a `time::Duration` object from `std::time::Duration`
///
/// This function errors when original duration is larger than the maximum
/// value supported for this type.
pub fn from_std(duration: StdDuration) -> Result<Duration, OutOfRangeError> {
// We need to check secs as u64 before coercing to i64
if duration.as_secs() > MAX.secs as u64 {
return Err(OutOfRangeError(()));
}
let d = Duration { secs: duration.as_secs() as i64, nanos: duration.subsec_nanos() as i32 };
if d > MAX {
return Err(OutOfRangeError(()));
}
Ok(d)
}
/// Creates a `std::time::Duration` object from `time::Duration`
///
/// This function errors when duration is less than zero. As standard
/// library implementation is limited to non-negative values.
pub fn to_std(&self) -> Result<StdDuration, OutOfRangeError> {
if self.secs < 0 {
return Err(OutOfRangeError(()));
}
Ok(StdDuration::new(self.secs as u64, self.nanos as u32))
}
}
impl Neg for Duration {
type Output = Duration;
#[inline]
fn neg(self) -> Duration {
if self.nanos == 0 {
Duration { secs: -self.secs, nanos: 0 }
} else {
Duration { secs: -self.secs - 1, nanos: NANOS_PER_SEC - self.nanos }
}
}
}
impl Add for Duration {
type Output = Duration;
fn add(self, rhs: Duration) -> Duration {
let mut secs = self.secs + rhs.secs;
let mut nanos = self.nanos + rhs.nanos;
if nanos >= NANOS_PER_SEC {
nanos -= NANOS_PER_SEC;
secs += 1;
}
Duration { secs: secs, nanos: nanos }
}
}
impl Sub for Duration {
type Output = Duration;
fn sub(self, rhs: Duration) -> Duration {
let mut secs = self.secs - rhs.secs;
let mut nanos = self.nanos - rhs.nanos;
if nanos < 0 {
nanos += NANOS_PER_SEC;
secs -= 1;
}
Duration { secs: secs, nanos: nanos }
}
}
impl Mul<i32> for Duration {
type Output = Duration;
fn mul(self, rhs: i32) -> Duration {
// Multiply nanoseconds as i64, because it cannot overflow that way.
let total_nanos = self.nanos as i64 * rhs as i64;
let (extra_secs, nanos) = div_mod_floor_64(total_nanos, NANOS_PER_SEC as i64);
let secs = self.secs * rhs as i64 + extra_secs;
Duration { secs: secs, nanos: nanos as i32 }
}
}
impl Div<i32> for Duration {
type Output = Duration;
fn div(self, rhs: i32) -> Duration {
let mut secs = self.secs / rhs as i64;
let carry = self.secs - secs * rhs as i64;
let extra_nanos = carry * NANOS_PER_SEC as i64 / rhs as i64;
let mut nanos = self.nanos / rhs + extra_nanos as i32;
if nanos >= NANOS_PER_SEC {
nanos -= NANOS_PER_SEC;
secs += 1;
}
if nanos < 0 {
nanos += NANOS_PER_SEC;
secs -= 1;
}
Duration { secs: secs, nanos: nanos }
}
}
impl fmt::Display for Duration {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// technically speaking, negative duration is not valid ISO 8601,
// but we need to print it anyway.
let (abs, sign) = if self.secs < 0 { (-*self, "-") } else { (*self, "") };
let days = abs.secs / SECS_PER_DAY;
let secs = abs.secs - days * SECS_PER_DAY;
let hasdate = days != 0;
let hastime = (secs != 0 || abs.nanos != 0) || !hasdate;
write!(f, "{}P", sign)?;
if hasdate {
write!(f, "{}D", days)?;
}
if hastime {
if abs.nanos == 0 {
write!(f, "T{}S", secs)?;
} else if abs.nanos % NANOS_PER_MILLI == 0 {
write!(f, "T{}.{:03}S", secs, abs.nanos / NANOS_PER_MILLI)?;
} else if abs.nanos % NANOS_PER_MICRO == 0 {
write!(f, "T{}.{:06}S", secs, abs.nanos / NANOS_PER_MICRO)?;
} else {
write!(f, "T{}.{:09}S", secs, abs.nanos)?;
}
}
Ok(())
}
}
/// Represents error when converting `Duration` to/from a standard library
/// implementation
///
/// The `std::time::Duration` supports a range from zero to `u64::MAX`
/// *seconds*, while this module supports signed range of up to
/// `i64::MAX` of *milliseconds*.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct OutOfRangeError(());
impl fmt::Display for OutOfRangeError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Source duration value is out of range for the target type")
}
}
#[cfg(any(feature = "std", test))]
impl Error for OutOfRangeError {
#[allow(deprecated)]
fn description(&self) -> &str {
"out of range error"
}
}
// Copied from libnum
#[inline]
fn div_mod_floor_64(this: i64, other: i64) -> (i64, i64) {
(div_floor_64(this, other), mod_floor_64(this, other))
}
#[inline]
fn div_floor_64(this: i64, other: i64) -> i64 {
match div_rem_64(this, other) {
(d, r) if (r > 0 && other < 0) || (r < 0 && other > 0) => d - 1,
(d, _) => d,
}
}
#[inline]
fn mod_floor_64(this: i64, other: i64) -> i64 {
match this % other {
r if (r > 0 && other < 0) || (r < 0 && other > 0) => r + other,
r => r,
}
}
#[inline]
fn div_rem_64(this: i64, other: i64) -> (i64, i64) {
(this / other, this % other)
}
#[cfg(test)]
mod tests {
use super::{Duration, OutOfRangeError, MAX, MIN};
use std::time::Duration as StdDuration;
use std::{i32, i64};
#[test]
fn test_duration() {
assert!(Duration::seconds(1) != Duration::zero());
assert_eq!(Duration::seconds(1) + Duration::seconds(2), Duration::seconds(3));
assert_eq!(
Duration::seconds(86399) + Duration::seconds(4),
Duration::days(1) + Duration::seconds(3)
);
assert_eq!(Duration::days(10) - Duration::seconds(1000), Duration::seconds(863000));
assert_eq!(Duration::days(10) - Duration::seconds(1000000), Duration::seconds(-136000));
assert_eq!(
Duration::days(2) + Duration::seconds(86399) + Duration::nanoseconds(1234567890),
Duration::days(3) + Duration::nanoseconds(234567890)
);
assert_eq!(-Duration::days(3), Duration::days(-3));
assert_eq!(
-(Duration::days(3) + Duration::seconds(70)),
Duration::days(-4) + Duration::seconds(86400 - 70)
);
}
#[test]
fn test_duration_num_days() {
assert_eq!(Duration::zero().num_days(), 0);
assert_eq!(Duration::days(1).num_days(), 1);
assert_eq!(Duration::days(-1).num_days(), -1);
assert_eq!(Duration::seconds(86399).num_days(), 0);
assert_eq!(Duration::seconds(86401).num_days(), 1);
assert_eq!(Duration::seconds(-86399).num_days(), 0);
assert_eq!(Duration::seconds(-86401).num_days(), -1);
assert_eq!(Duration::days(i32::MAX as i64).num_days(), i32::MAX as i64);
assert_eq!(Duration::days(i32::MIN as i64).num_days(), i32::MIN as i64);
}
#[test]
fn test_duration_num_seconds() {
assert_eq!(Duration::zero().num_seconds(), 0);
assert_eq!(Duration::seconds(1).num_seconds(), 1);
assert_eq!(Duration::seconds(-1).num_seconds(), -1);
assert_eq!(Duration::milliseconds(999).num_seconds(), 0);
assert_eq!(Duration::milliseconds(1001).num_seconds(), 1);
assert_eq!(Duration::milliseconds(-999).num_seconds(), 0);
assert_eq!(Duration::milliseconds(-1001).num_seconds(), -1);
}
#[test]
fn test_duration_num_milliseconds() {
assert_eq!(Duration::zero().num_milliseconds(), 0);
assert_eq!(Duration::milliseconds(1).num_milliseconds(), 1);
assert_eq!(Duration::milliseconds(-1).num_milliseconds(), -1);
assert_eq!(Duration::microseconds(999).num_milliseconds(), 0);
assert_eq!(Duration::microseconds(1001).num_milliseconds(), 1);
assert_eq!(Duration::microseconds(-999).num_milliseconds(), 0);
assert_eq!(Duration::microseconds(-1001).num_milliseconds(), -1);
assert_eq!(Duration::milliseconds(i64::MAX).num_milliseconds(), i64::MAX);
assert_eq!(Duration::milliseconds(i64::MIN).num_milliseconds(), i64::MIN);
assert_eq!(MAX.num_milliseconds(), i64::MAX);
assert_eq!(MIN.num_milliseconds(), i64::MIN);
}
#[test]
fn test_duration_num_microseconds() {
assert_eq!(Duration::zero().num_microseconds(), Some(0));
assert_eq!(Duration::microseconds(1).num_microseconds(), Some(1));
assert_eq!(Duration::microseconds(-1).num_microseconds(), Some(-1));
assert_eq!(Duration::nanoseconds(999).num_microseconds(), Some(0));
assert_eq!(Duration::nanoseconds(1001).num_microseconds(), Some(1));
assert_eq!(Duration::nanoseconds(-999).num_microseconds(), Some(0));
assert_eq!(Duration::nanoseconds(-1001).num_microseconds(), Some(-1));
assert_eq!(Duration::microseconds(i64::MAX).num_microseconds(), Some(i64::MAX));
assert_eq!(Duration::microseconds(i64::MIN).num_microseconds(), Some(i64::MIN));
assert_eq!(MAX.num_microseconds(), None);
assert_eq!(MIN.num_microseconds(), None);
// overflow checks
const MICROS_PER_DAY: i64 = 86400_000_000;
assert_eq!(
Duration::days(i64::MAX / MICROS_PER_DAY).num_microseconds(),
Some(i64::MAX / MICROS_PER_DAY * MICROS_PER_DAY)
);
assert_eq!(
Duration::days(i64::MIN / MICROS_PER_DAY).num_microseconds(),
Some(i64::MIN / MICROS_PER_DAY * MICROS_PER_DAY)
);
assert_eq!(Duration::days(i64::MAX / MICROS_PER_DAY + 1).num_microseconds(), None);
assert_eq!(Duration::days(i64::MIN / MICROS_PER_DAY - 1).num_microseconds(), None);
}
#[test]
fn test_duration_num_nanoseconds() {
assert_eq!(Duration::zero().num_nanoseconds(), Some(0));
assert_eq!(Duration::nanoseconds(1).num_nanoseconds(), Some(1));
assert_eq!(Duration::nanoseconds(-1).num_nanoseconds(), Some(-1));
assert_eq!(Duration::nanoseconds(i64::MAX).num_nanoseconds(), Some(i64::MAX));
assert_eq!(Duration::nanoseconds(i64::MIN).num_nanoseconds(), Some(i64::MIN));
assert_eq!(MAX.num_nanoseconds(), None);
assert_eq!(MIN.num_nanoseconds(), None);
// overflow checks
const NANOS_PER_DAY: i64 = 86400_000_000_000;
assert_eq!(
Duration::days(i64::MAX / NANOS_PER_DAY).num_nanoseconds(),
Some(i64::MAX / NANOS_PER_DAY * NANOS_PER_DAY)
);
assert_eq!(
Duration::days(i64::MIN / NANOS_PER_DAY).num_nanoseconds(),
Some(i64::MIN / NANOS_PER_DAY * NANOS_PER_DAY)
);
assert_eq!(Duration::days(i64::MAX / NANOS_PER_DAY + 1).num_nanoseconds(), None);
assert_eq!(Duration::days(i64::MIN / NANOS_PER_DAY - 1).num_nanoseconds(), None);
}
#[test]
fn test_duration_checked_ops() {
assert_eq!(
Duration::milliseconds(i64::MAX - 1).checked_add(&Duration::microseconds(999)),
Some(Duration::milliseconds(i64::MAX - 2) + Duration::microseconds(1999))
);
assert!(Duration::milliseconds(i64::MAX)
.checked_add(&Duration::microseconds(1000))
.is_none());
assert_eq!(
Duration::milliseconds(i64::MIN).checked_sub(&Duration::milliseconds(0)),
Some(Duration::milliseconds(i64::MIN))
);
assert!(Duration::milliseconds(i64::MIN).checked_sub(&Duration::milliseconds(1)).is_none());
}
#[test]
fn test_duration_mul() {
assert_eq!(Duration::zero() * i32::MAX, Duration::zero());
assert_eq!(Duration::zero() * i32::MIN, Duration::zero());
assert_eq!(Duration::nanoseconds(1) * 0, Duration::zero());
assert_eq!(Duration::nanoseconds(1) * 1, Duration::nanoseconds(1));
assert_eq!(Duration::nanoseconds(1) * 1_000_000_000, Duration::seconds(1));
assert_eq!(Duration::nanoseconds(1) * -1_000_000_000, -Duration::seconds(1));
assert_eq!(-Duration::nanoseconds(1) * 1_000_000_000, -Duration::seconds(1));
assert_eq!(
Duration::nanoseconds(30) * 333_333_333,
Duration::seconds(10) - Duration::nanoseconds(10)
);
assert_eq!(
(Duration::nanoseconds(1) + Duration::seconds(1) + Duration::days(1)) * 3,
Duration::nanoseconds(3) + Duration::seconds(3) + Duration::days(3)
);
assert_eq!(Duration::milliseconds(1500) * -2, Duration::seconds(-3));
assert_eq!(Duration::milliseconds(-1500) * 2, Duration::seconds(-3));
}
#[test]
fn test_duration_div() {
assert_eq!(Duration::zero() / i32::MAX, Duration::zero());
assert_eq!(Duration::zero() / i32::MIN, Duration::zero());
assert_eq!(Duration::nanoseconds(123_456_789) / 1, Duration::nanoseconds(123_456_789));
assert_eq!(Duration::nanoseconds(123_456_789) / -1, -Duration::nanoseconds(123_456_789));
assert_eq!(-Duration::nanoseconds(123_456_789) / -1, Duration::nanoseconds(123_456_789));
assert_eq!(-Duration::nanoseconds(123_456_789) / 1, -Duration::nanoseconds(123_456_789));
assert_eq!(Duration::seconds(1) / 3, Duration::nanoseconds(333_333_333));
assert_eq!(Duration::seconds(4) / 3, Duration::nanoseconds(1_333_333_333));
assert_eq!(Duration::seconds(-1) / 2, Duration::milliseconds(-500));
assert_eq!(Duration::seconds(1) / -2, Duration::milliseconds(-500));
assert_eq!(Duration::seconds(-1) / -2, Duration::milliseconds(500));
assert_eq!(Duration::seconds(-4) / 3, Duration::nanoseconds(-1_333_333_333));
assert_eq!(Duration::seconds(-4) / -3, Duration::nanoseconds(1_333_333_333));
}
#[test]
fn test_duration_fmt() {
assert_eq!(Duration::zero().to_string(), "PT0S");
assert_eq!(Duration::days(42).to_string(), "P42D");
assert_eq!(Duration::days(-42).to_string(), "-P42D");
assert_eq!(Duration::seconds(42).to_string(), "PT42S");
assert_eq!(Duration::milliseconds(42).to_string(), "PT0.042S");
assert_eq!(Duration::microseconds(42).to_string(), "PT0.000042S");
assert_eq!(Duration::nanoseconds(42).to_string(), "PT0.000000042S");
assert_eq!((Duration::days(7) + Duration::milliseconds(6543)).to_string(), "P7DT6.543S");
assert_eq!(Duration::seconds(-86401).to_string(), "-P1DT1S");
assert_eq!(Duration::nanoseconds(-1).to_string(), "-PT0.000000001S");
// the format specifier should have no effect on `Duration`
assert_eq!(
format!("{:30}", Duration::days(1) + Duration::milliseconds(2345)),
"P1DT2.345S"
);
}
#[test]
fn test_to_std() {
assert_eq!(Duration::seconds(1).to_std(), Ok(StdDuration::new(1, 0)));
assert_eq!(Duration::seconds(86401).to_std(), Ok(StdDuration::new(86401, 0)));
assert_eq!(Duration::milliseconds(123).to_std(), Ok(StdDuration::new(0, 123000000)));
assert_eq!(Duration::milliseconds(123765).to_std(), Ok(StdDuration::new(123, 765000000)));
assert_eq!(Duration::nanoseconds(777).to_std(), Ok(StdDuration::new(0, 777)));
assert_eq!(MAX.to_std(), Ok(StdDuration::new(9223372036854775, 807000000)));
assert_eq!(Duration::seconds(-1).to_std(), Err(OutOfRangeError(())));
assert_eq!(Duration::milliseconds(-1).to_std(), Err(OutOfRangeError(())));
}
#[test]
fn test_from_std() {
assert_eq!(Ok(Duration::seconds(1)), Duration::from_std(StdDuration::new(1, 0)));
assert_eq!(Ok(Duration::seconds(86401)), Duration::from_std(StdDuration::new(86401, 0)));
assert_eq!(
Ok(Duration::milliseconds(123)),
Duration::from_std(StdDuration::new(0, 123000000))
);
assert_eq!(
Ok(Duration::milliseconds(123765)),
Duration::from_std(StdDuration::new(123, 765000000))
);
assert_eq!(Ok(Duration::nanoseconds(777)), Duration::from_std(StdDuration::new(0, 777)));
assert_eq!(Ok(MAX), Duration::from_std(StdDuration::new(9223372036854775, 807000000)));
assert_eq!(
Duration::from_std(StdDuration::new(9223372036854776, 0)),
Err(OutOfRangeError(()))
);
assert_eq!(
Duration::from_std(StdDuration::new(9223372036854775, 807000001)),
Err(OutOfRangeError(()))
);
}
}

456
zeroidc/vendor/chrono/src/round.rs vendored Normal file
View File

@@ -0,0 +1,456 @@
// This is a part of Chrono.
// See README.md and LICENSE.txt for details.
use core::cmp::Ordering;
use core::fmt;
use core::marker::Sized;
use core::ops::{Add, Sub};
use datetime::DateTime;
use oldtime::Duration;
#[cfg(any(feature = "std", test))]
use std;
use TimeZone;
use Timelike;
/// Extension trait for subsecond rounding or truncation to a maximum number
/// of digits. Rounding can be used to decrease the error variance when
/// serializing/persisting to lower precision. Truncation is the default
/// behavior in Chrono display formatting. Either can be used to guarantee
/// equality (e.g. for testing) when round-tripping through a lower precision
/// format.
pub trait SubsecRound {
/// Return a copy rounded to the specified number of subsecond digits. With
/// 9 or more digits, self is returned unmodified. Halfway values are
/// rounded up (away from zero).
///
/// # Example
/// ``` rust
/// # use chrono::{DateTime, SubsecRound, Timelike, TimeZone, Utc};
/// let dt = Utc.ymd(2018, 1, 11).and_hms_milli(12, 0, 0, 154);
/// assert_eq!(dt.round_subsecs(2).nanosecond(), 150_000_000);
/// assert_eq!(dt.round_subsecs(1).nanosecond(), 200_000_000);
/// ```
fn round_subsecs(self, digits: u16) -> Self;
/// Return a copy truncated to the specified number of subsecond
/// digits. With 9 or more digits, self is returned unmodified.
///
/// # Example
/// ``` rust
/// # use chrono::{DateTime, SubsecRound, Timelike, TimeZone, Utc};
/// let dt = Utc.ymd(2018, 1, 11).and_hms_milli(12, 0, 0, 154);
/// assert_eq!(dt.trunc_subsecs(2).nanosecond(), 150_000_000);
/// assert_eq!(dt.trunc_subsecs(1).nanosecond(), 100_000_000);
/// ```
fn trunc_subsecs(self, digits: u16) -> Self;
}
impl<T> SubsecRound for T
where
T: Timelike + Add<Duration, Output = T> + Sub<Duration, Output = T>,
{
fn round_subsecs(self, digits: u16) -> T {
let span = span_for_digits(digits);
let delta_down = self.nanosecond() % span;
if delta_down > 0 {
let delta_up = span - delta_down;
if delta_up <= delta_down {
self + Duration::nanoseconds(delta_up.into())
} else {
self - Duration::nanoseconds(delta_down.into())
}
} else {
self // unchanged
}
}
fn trunc_subsecs(self, digits: u16) -> T {
let span = span_for_digits(digits);
let delta_down = self.nanosecond() % span;
if delta_down > 0 {
self - Duration::nanoseconds(delta_down.into())
} else {
self // unchanged
}
}
}
// Return the maximum span in nanoseconds for the target number of digits.
fn span_for_digits(digits: u16) -> u32 {
// fast lookup form of: 10^(9-min(9,digits))
match digits {
0 => 1_000_000_000,
1 => 100_000_000,
2 => 10_000_000,
3 => 1_000_000,
4 => 100_000,
5 => 10_000,
6 => 1_000,
7 => 100,
8 => 10,
_ => 1,
}
}
/// Extension trait for rounding or truncating a DateTime by a Duration.
///
/// # Limitations
/// Both rounding and truncating are done via [`Duration::num_nanoseconds`] and
/// [`DateTime::timestamp_nanos`]. This means that they will fail if either the
/// `Duration` or the `DateTime` are too big to represented as nanoseconds. They
/// will also fail if the `Duration` is bigger than the timestamp.
pub trait DurationRound: Sized {
/// Error that can occur in rounding or truncating
#[cfg(any(feature = "std", test))]
type Err: std::error::Error;
/// Error that can occur in rounding or truncating
#[cfg(not(any(feature = "std", test)))]
type Err: fmt::Debug + fmt::Display;
/// Return a copy rounded by Duration.
///
/// # Example
/// ``` rust
/// # use chrono::{DateTime, DurationRound, Duration, TimeZone, Utc};
/// let dt = Utc.ymd(2018, 1, 11).and_hms_milli(12, 0, 0, 154);
/// assert_eq!(
/// dt.duration_round(Duration::milliseconds(10)).unwrap().to_string(),
/// "2018-01-11 12:00:00.150 UTC"
/// );
/// assert_eq!(
/// dt.duration_round(Duration::days(1)).unwrap().to_string(),
/// "2018-01-12 00:00:00 UTC"
/// );
/// ```
fn duration_round(self, duration: Duration) -> Result<Self, Self::Err>;
/// Return a copy truncated by Duration.
///
/// # Example
/// ``` rust
/// # use chrono::{DateTime, DurationRound, Duration, TimeZone, Utc};
/// let dt = Utc.ymd(2018, 1, 11).and_hms_milli(12, 0, 0, 154);
/// assert_eq!(
/// dt.duration_trunc(Duration::milliseconds(10)).unwrap().to_string(),
/// "2018-01-11 12:00:00.150 UTC"
/// );
/// assert_eq!(
/// dt.duration_trunc(Duration::days(1)).unwrap().to_string(),
/// "2018-01-11 00:00:00 UTC"
/// );
/// ```
fn duration_trunc(self, duration: Duration) -> Result<Self, Self::Err>;
}
/// The maximum number of seconds a DateTime can be to be represented as nanoseconds
const MAX_SECONDS_TIMESTAMP_FOR_NANOS: i64 = 9_223_372_036;
impl<Tz: TimeZone> DurationRound for DateTime<Tz> {
type Err = RoundingError;
fn duration_round(self, duration: Duration) -> Result<Self, Self::Err> {
if let Some(span) = duration.num_nanoseconds() {
if self.timestamp().abs() > MAX_SECONDS_TIMESTAMP_FOR_NANOS {
return Err(RoundingError::TimestampExceedsLimit);
}
let stamp = self.timestamp_nanos();
if span > stamp.abs() {
return Err(RoundingError::DurationExceedsTimestamp);
}
let delta_down = stamp % span;
if delta_down == 0 {
Ok(self)
} else {
let (delta_up, delta_down) = if delta_down < 0 {
(delta_down.abs(), span - delta_down.abs())
} else {
(span - delta_down, delta_down)
};
if delta_up <= delta_down {
Ok(self + Duration::nanoseconds(delta_up))
} else {
Ok(self - Duration::nanoseconds(delta_down))
}
}
} else {
Err(RoundingError::DurationExceedsLimit)
}
}
fn duration_trunc(self, duration: Duration) -> Result<Self, Self::Err> {
if let Some(span) = duration.num_nanoseconds() {
if self.timestamp().abs() > MAX_SECONDS_TIMESTAMP_FOR_NANOS {
return Err(RoundingError::TimestampExceedsLimit);
}
let stamp = self.timestamp_nanos();
if span > stamp.abs() {
return Err(RoundingError::DurationExceedsTimestamp);
}
let delta_down = stamp % span;
match delta_down.cmp(&0) {
Ordering::Equal => Ok(self),
Ordering::Greater => Ok(self - Duration::nanoseconds(delta_down)),
Ordering::Less => Ok(self - Duration::nanoseconds(span - delta_down.abs())),
}
} else {
Err(RoundingError::DurationExceedsLimit)
}
}
}
/// An error from rounding by `Duration`
///
/// See: [`DurationRound`]
#[derive(Debug, Clone, PartialEq, Eq, Copy)]
pub enum RoundingError {
/// Error when the Duration exceeds the Duration from or until the Unix epoch.
///
/// ``` rust
/// # use chrono::{DateTime, DurationRound, Duration, RoundingError, TimeZone, Utc};
/// let dt = Utc.ymd(1970, 12, 12).and_hms(0, 0, 0);
///
/// assert_eq!(
/// dt.duration_round(Duration::days(365)),
/// Err(RoundingError::DurationExceedsTimestamp),
/// );
/// ```
DurationExceedsTimestamp,
/// Error when `Duration.num_nanoseconds` exceeds the limit.
///
/// ``` rust
/// # use chrono::{DateTime, DurationRound, Duration, RoundingError, TimeZone, Utc};
/// let dt = Utc.ymd(2260, 12, 31).and_hms_nano(23, 59, 59, 1_75_500_000);
///
/// assert_eq!(
/// dt.duration_round(Duration::days(300 * 365)),
/// Err(RoundingError::DurationExceedsLimit)
/// );
/// ```
DurationExceedsLimit,
/// Error when `DateTime.timestamp_nanos` exceeds the limit.
///
/// ``` rust
/// # use chrono::{DateTime, DurationRound, Duration, RoundingError, TimeZone, Utc};
/// let dt = Utc.ymd(2300, 12, 12).and_hms(0, 0, 0);
///
/// assert_eq!(dt.duration_round(Duration::days(1)), Err(RoundingError::TimestampExceedsLimit),);
/// ```
TimestampExceedsLimit,
}
impl fmt::Display for RoundingError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
RoundingError::DurationExceedsTimestamp => {
write!(f, "duration in nanoseconds exceeds timestamp")
}
RoundingError::DurationExceedsLimit => {
write!(f, "duration exceeds num_nanoseconds limit")
}
RoundingError::TimestampExceedsLimit => {
write!(f, "timestamp exceeds num_nanoseconds limit")
}
}
}
}
#[cfg(any(feature = "std", test))]
impl std::error::Error for RoundingError {
#[allow(deprecated)]
fn description(&self) -> &str {
"error from rounding or truncating with DurationRound"
}
}
#[cfg(test)]
mod tests {
use super::{Duration, DurationRound, SubsecRound};
use offset::{FixedOffset, TimeZone, Utc};
use Timelike;
#[test]
fn test_round_subsecs() {
let pst = FixedOffset::east(8 * 60 * 60);
let dt = pst.ymd(2018, 1, 11).and_hms_nano(10, 5, 13, 084_660_684);
assert_eq!(dt.round_subsecs(10), dt);
assert_eq!(dt.round_subsecs(9), dt);
assert_eq!(dt.round_subsecs(8).nanosecond(), 084_660_680);
assert_eq!(dt.round_subsecs(7).nanosecond(), 084_660_700);
assert_eq!(dt.round_subsecs(6).nanosecond(), 084_661_000);
assert_eq!(dt.round_subsecs(5).nanosecond(), 084_660_000);
assert_eq!(dt.round_subsecs(4).nanosecond(), 084_700_000);
assert_eq!(dt.round_subsecs(3).nanosecond(), 085_000_000);
assert_eq!(dt.round_subsecs(2).nanosecond(), 080_000_000);
assert_eq!(dt.round_subsecs(1).nanosecond(), 100_000_000);
assert_eq!(dt.round_subsecs(0).nanosecond(), 0);
assert_eq!(dt.round_subsecs(0).second(), 13);
let dt = Utc.ymd(2018, 1, 11).and_hms_nano(10, 5, 27, 750_500_000);
assert_eq!(dt.round_subsecs(9), dt);
assert_eq!(dt.round_subsecs(4), dt);
assert_eq!(dt.round_subsecs(3).nanosecond(), 751_000_000);
assert_eq!(dt.round_subsecs(2).nanosecond(), 750_000_000);
assert_eq!(dt.round_subsecs(1).nanosecond(), 800_000_000);
assert_eq!(dt.round_subsecs(0).nanosecond(), 0);
assert_eq!(dt.round_subsecs(0).second(), 28);
}
#[test]
fn test_round_leap_nanos() {
let dt = Utc.ymd(2016, 12, 31).and_hms_nano(23, 59, 59, 1_750_500_000);
assert_eq!(dt.round_subsecs(9), dt);
assert_eq!(dt.round_subsecs(4), dt);
assert_eq!(dt.round_subsecs(2).nanosecond(), 1_750_000_000);
assert_eq!(dt.round_subsecs(1).nanosecond(), 1_800_000_000);
assert_eq!(dt.round_subsecs(1).second(), 59);
assert_eq!(dt.round_subsecs(0).nanosecond(), 0);
assert_eq!(dt.round_subsecs(0).second(), 0);
}
#[test]
fn test_trunc_subsecs() {
let pst = FixedOffset::east(8 * 60 * 60);
let dt = pst.ymd(2018, 1, 11).and_hms_nano(10, 5, 13, 084_660_684);
assert_eq!(dt.trunc_subsecs(10), dt);
assert_eq!(dt.trunc_subsecs(9), dt);
assert_eq!(dt.trunc_subsecs(8).nanosecond(), 084_660_680);
assert_eq!(dt.trunc_subsecs(7).nanosecond(), 084_660_600);
assert_eq!(dt.trunc_subsecs(6).nanosecond(), 084_660_000);
assert_eq!(dt.trunc_subsecs(5).nanosecond(), 084_660_000);
assert_eq!(dt.trunc_subsecs(4).nanosecond(), 084_600_000);
assert_eq!(dt.trunc_subsecs(3).nanosecond(), 084_000_000);
assert_eq!(dt.trunc_subsecs(2).nanosecond(), 080_000_000);
assert_eq!(dt.trunc_subsecs(1).nanosecond(), 0);
assert_eq!(dt.trunc_subsecs(0).nanosecond(), 0);
assert_eq!(dt.trunc_subsecs(0).second(), 13);
let dt = pst.ymd(2018, 1, 11).and_hms_nano(10, 5, 27, 750_500_000);
assert_eq!(dt.trunc_subsecs(9), dt);
assert_eq!(dt.trunc_subsecs(4), dt);
assert_eq!(dt.trunc_subsecs(3).nanosecond(), 750_000_000);
assert_eq!(dt.trunc_subsecs(2).nanosecond(), 750_000_000);
assert_eq!(dt.trunc_subsecs(1).nanosecond(), 700_000_000);
assert_eq!(dt.trunc_subsecs(0).nanosecond(), 0);
assert_eq!(dt.trunc_subsecs(0).second(), 27);
}
#[test]
fn test_trunc_leap_nanos() {
let dt = Utc.ymd(2016, 12, 31).and_hms_nano(23, 59, 59, 1_750_500_000);
assert_eq!(dt.trunc_subsecs(9), dt);
assert_eq!(dt.trunc_subsecs(4), dt);
assert_eq!(dt.trunc_subsecs(2).nanosecond(), 1_750_000_000);
assert_eq!(dt.trunc_subsecs(1).nanosecond(), 1_700_000_000);
assert_eq!(dt.trunc_subsecs(1).second(), 59);
assert_eq!(dt.trunc_subsecs(0).nanosecond(), 1_000_000_000);
assert_eq!(dt.trunc_subsecs(0).second(), 59);
}
#[test]
fn test_duration_round() {
let dt = Utc.ymd(2016, 12, 31).and_hms_nano(23, 59, 59, 175_500_000);
assert_eq!(
dt.duration_round(Duration::milliseconds(10)).unwrap().to_string(),
"2016-12-31 23:59:59.180 UTC"
);
// round up
let dt = Utc.ymd(2012, 12, 12).and_hms_milli(18, 22, 30, 0);
assert_eq!(
dt.duration_round(Duration::minutes(5)).unwrap().to_string(),
"2012-12-12 18:25:00 UTC"
);
// round down
let dt = Utc.ymd(2012, 12, 12).and_hms_milli(18, 22, 29, 999);
assert_eq!(
dt.duration_round(Duration::minutes(5)).unwrap().to_string(),
"2012-12-12 18:20:00 UTC"
);
assert_eq!(
dt.duration_round(Duration::minutes(10)).unwrap().to_string(),
"2012-12-12 18:20:00 UTC"
);
assert_eq!(
dt.duration_round(Duration::minutes(30)).unwrap().to_string(),
"2012-12-12 18:30:00 UTC"
);
assert_eq!(
dt.duration_round(Duration::hours(1)).unwrap().to_string(),
"2012-12-12 18:00:00 UTC"
);
assert_eq!(
dt.duration_round(Duration::days(1)).unwrap().to_string(),
"2012-12-13 00:00:00 UTC"
);
}
#[test]
fn test_duration_round_pre_epoch() {
let dt = Utc.ymd(1969, 12, 12).and_hms(12, 12, 12);
assert_eq!(
dt.duration_round(Duration::minutes(10)).unwrap().to_string(),
"1969-12-12 12:10:00 UTC"
);
}
#[test]
fn test_duration_trunc() {
let dt = Utc.ymd(2016, 12, 31).and_hms_nano(23, 59, 59, 1_75_500_000);
assert_eq!(
dt.duration_trunc(Duration::milliseconds(10)).unwrap().to_string(),
"2016-12-31 23:59:59.170 UTC"
);
// would round up
let dt = Utc.ymd(2012, 12, 12).and_hms_milli(18, 22, 30, 0);
assert_eq!(
dt.duration_trunc(Duration::minutes(5)).unwrap().to_string(),
"2012-12-12 18:20:00 UTC"
);
// would round down
let dt = Utc.ymd(2012, 12, 12).and_hms_milli(18, 22, 29, 999);
assert_eq!(
dt.duration_trunc(Duration::minutes(5)).unwrap().to_string(),
"2012-12-12 18:20:00 UTC"
);
assert_eq!(
dt.duration_trunc(Duration::minutes(10)).unwrap().to_string(),
"2012-12-12 18:20:00 UTC"
);
assert_eq!(
dt.duration_trunc(Duration::minutes(30)).unwrap().to_string(),
"2012-12-12 18:00:00 UTC"
);
assert_eq!(
dt.duration_trunc(Duration::hours(1)).unwrap().to_string(),
"2012-12-12 18:00:00 UTC"
);
assert_eq!(
dt.duration_trunc(Duration::days(1)).unwrap().to_string(),
"2012-12-12 00:00:00 UTC"
);
}
#[test]
fn test_duration_trunc_pre_epoch() {
let dt = Utc.ymd(1969, 12, 12).and_hms(12, 12, 12);
assert_eq!(
dt.duration_trunc(Duration::minutes(10)).unwrap().to_string(),
"1969-12-12 12:10:00 UTC"
);
}
}

126
zeroidc/vendor/chrono/src/sys.rs vendored Normal file
View File

@@ -0,0 +1,126 @@
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Platform wrappers for converting UTC times to and from the local time zone.
//!
//! This code was rescued from v0.1 of the time crate, which is no longer
//! maintained. It has been substantially stripped down to the bare minimum
//! required by chrono.
use std::time::{SystemTime, UNIX_EPOCH};
#[cfg(any(target_arch = "wasm32", target_env = "sgx"))]
#[path = "sys/stub.rs"]
mod inner;
#[cfg(unix)]
#[path = "sys/unix.rs"]
mod inner;
#[cfg(windows)]
#[path = "sys/windows.rs"]
mod inner;
/// A record specifying a time value in seconds and nanoseconds, where
/// nanoseconds represent the offset from the given second.
///
/// For example a timespec of 1.2 seconds after the beginning of the epoch would
/// be represented as {sec: 1, nsec: 200000000}.
pub struct Timespec {
pub sec: i64,
pub nsec: i32,
}
impl Timespec {
/// Constructs a timespec representing the current time in UTC.
pub fn now() -> Timespec {
let st =
SystemTime::now().duration_since(UNIX_EPOCH).expect("system time before Unix epoch");
Timespec { sec: st.as_secs() as i64, nsec: st.subsec_nanos() as i32 }
}
/// Converts this timespec into the system's local time.
pub fn local(self) -> Tm {
let mut tm = Tm {
tm_sec: 0,
tm_min: 0,
tm_hour: 0,
tm_mday: 0,
tm_mon: 0,
tm_year: 0,
tm_wday: 0,
tm_yday: 0,
tm_isdst: 0,
tm_utcoff: 0,
tm_nsec: 0,
};
inner::time_to_local_tm(self.sec, &mut tm);
tm.tm_nsec = self.nsec;
tm
}
}
/// Holds a calendar date and time broken down into its components (year, month,
/// day, and so on), also called a broken-down time value.
// FIXME: use c_int instead of i32?
#[cfg(feature = "clock")]
#[repr(C)]
pub struct Tm {
/// Seconds after the minute - [0, 60]
pub tm_sec: i32,
/// Minutes after the hour - [0, 59]
pub tm_min: i32,
/// Hours after midnight - [0, 23]
pub tm_hour: i32,
/// Day of the month - [1, 31]
pub tm_mday: i32,
/// Months since January - [0, 11]
pub tm_mon: i32,
/// Years since 1900
pub tm_year: i32,
/// Days since Sunday - [0, 6]. 0 = Sunday, 1 = Monday, ..., 6 = Saturday.
pub tm_wday: i32,
/// Days since January 1 - [0, 365]
pub tm_yday: i32,
/// Daylight Saving Time flag.
///
/// This value is positive if Daylight Saving Time is in effect, zero if
/// Daylight Saving Time is not in effect, and negative if this information
/// is not available.
pub tm_isdst: i32,
/// Identifies the time zone that was used to compute this broken-down time
/// value, including any adjustment for Daylight Saving Time. This is the
/// number of seconds east of UTC. For example, for U.S. Pacific Daylight
/// Time, the value is `-7*60*60 = -25200`.
pub tm_utcoff: i32,
/// Nanoseconds after the second - [0, 10<sup>9</sup> - 1]
pub tm_nsec: i32,
}
impl Tm {
/// Convert time to the seconds from January 1, 1970
pub fn to_timespec(&self) -> Timespec {
let sec = match self.tm_utcoff {
0 => inner::utc_tm_to_time(self),
_ => inner::local_tm_to_time(self),
};
Timespec { sec: sec, nsec: self.tm_nsec }
}
}

80
zeroidc/vendor/chrono/src/sys/stub.rs vendored Normal file
View File

@@ -0,0 +1,80 @@
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::Tm;
fn time_to_tm(ts: i64, tm: &mut Tm) {
let leapyear = |year| -> bool { year % 4 == 0 && (year % 100 != 0 || year % 400 == 0) };
static YTAB: [[i64; 12]; 2] = [
[31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31],
[31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31],
];
let mut year = 1970;
let dayclock = ts % 86400;
let mut dayno = ts / 86400;
tm.tm_sec = (dayclock % 60) as i32;
tm.tm_min = ((dayclock % 3600) / 60) as i32;
tm.tm_hour = (dayclock / 3600) as i32;
tm.tm_wday = ((dayno + 4) % 7) as i32;
loop {
let yearsize = if leapyear(year) { 366 } else { 365 };
if dayno >= yearsize {
dayno -= yearsize;
year += 1;
} else {
break;
}
}
tm.tm_year = (year - 1900) as i32;
tm.tm_yday = dayno as i32;
let mut mon = 0;
while dayno >= YTAB[if leapyear(year) { 1 } else { 0 }][mon] {
dayno -= YTAB[if leapyear(year) { 1 } else { 0 }][mon];
mon += 1;
}
tm.tm_mon = mon as i32;
tm.tm_mday = dayno as i32 + 1;
tm.tm_isdst = 0;
}
fn tm_to_time(tm: &Tm) -> i64 {
let mut y = tm.tm_year as i64 + 1900;
let mut m = tm.tm_mon as i64 + 1;
if m <= 2 {
y -= 1;
m += 12;
}
let d = tm.tm_mday as i64;
let h = tm.tm_hour as i64;
let mi = tm.tm_min as i64;
let s = tm.tm_sec as i64;
(365 * y + y / 4 - y / 100 + y / 400 + 3 * (m + 1) / 5 + 30 * m + d - 719561) * 86400
+ 3600 * h
+ 60 * mi
+ s
}
pub fn time_to_local_tm(sec: i64, tm: &mut Tm) {
// FIXME: Add timezone logic
time_to_tm(sec, tm);
}
pub fn utc_tm_to_time(tm: &Tm) -> i64 {
tm_to_time(tm)
}
pub fn local_tm_to_time(tm: &Tm) -> i64 {
// FIXME: Add timezone logic
tm_to_time(tm)
}

126
zeroidc/vendor/chrono/src/sys/unix.rs vendored Normal file
View File

@@ -0,0 +1,126 @@
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::Tm;
use libc::{self, time_t};
use std::io;
use std::mem;
#[cfg(any(target_os = "solaris", target_os = "illumos"))]
extern "C" {
static timezone: time_t;
static altzone: time_t;
}
#[cfg(any(target_os = "solaris", target_os = "illumos"))]
fn tzset() {
extern "C" {
fn tzset();
}
unsafe { tzset() }
}
fn rust_tm_to_tm(rust_tm: &Tm, tm: &mut libc::tm) {
tm.tm_sec = rust_tm.tm_sec;
tm.tm_min = rust_tm.tm_min;
tm.tm_hour = rust_tm.tm_hour;
tm.tm_mday = rust_tm.tm_mday;
tm.tm_mon = rust_tm.tm_mon;
tm.tm_year = rust_tm.tm_year;
tm.tm_wday = rust_tm.tm_wday;
tm.tm_yday = rust_tm.tm_yday;
tm.tm_isdst = rust_tm.tm_isdst;
}
fn tm_to_rust_tm(tm: &libc::tm, utcoff: i32, rust_tm: &mut Tm) {
rust_tm.tm_sec = tm.tm_sec;
rust_tm.tm_min = tm.tm_min;
rust_tm.tm_hour = tm.tm_hour;
rust_tm.tm_mday = tm.tm_mday;
rust_tm.tm_mon = tm.tm_mon;
rust_tm.tm_year = tm.tm_year;
rust_tm.tm_wday = tm.tm_wday;
rust_tm.tm_yday = tm.tm_yday;
rust_tm.tm_isdst = tm.tm_isdst;
rust_tm.tm_utcoff = utcoff;
}
#[cfg(any(target_os = "nacl", target_os = "solaris", target_os = "illumos"))]
unsafe fn timegm(tm: *mut libc::tm) -> time_t {
use std::env::{remove_var, set_var, var_os};
extern "C" {
fn tzset();
}
let ret;
let current_tz = var_os("TZ");
set_var("TZ", "UTC");
tzset();
ret = libc::mktime(tm);
if let Some(tz) = current_tz {
set_var("TZ", tz);
} else {
remove_var("TZ");
}
tzset();
ret
}
pub fn time_to_local_tm(sec: i64, tm: &mut Tm) {
unsafe {
let sec = sec as time_t;
let mut out = mem::zeroed();
if libc::localtime_r(&sec, &mut out).is_null() {
panic!("localtime_r failed: {}", io::Error::last_os_error());
}
#[cfg(any(target_os = "solaris", target_os = "illumos"))]
let gmtoff = {
tzset();
// < 0 means we don't know; assume we're not in DST.
if out.tm_isdst == 0 {
// timezone is seconds west of UTC, tm_gmtoff is seconds east
-timezone
} else if out.tm_isdst > 0 {
-altzone
} else {
-timezone
}
};
#[cfg(not(any(target_os = "solaris", target_os = "illumos")))]
let gmtoff = out.tm_gmtoff;
tm_to_rust_tm(&out, gmtoff as i32, tm);
}
}
pub fn utc_tm_to_time(rust_tm: &Tm) -> i64 {
#[cfg(not(any(
all(target_os = "android", target_pointer_width = "32"),
target_os = "nacl",
target_os = "solaris",
target_os = "illumos"
)))]
use libc::timegm;
#[cfg(all(target_os = "android", target_pointer_width = "32"))]
use libc::timegm64 as timegm;
let mut tm = unsafe { mem::zeroed() };
rust_tm_to_tm(rust_tm, &mut tm);
unsafe { timegm(&mut tm) as i64 }
}
pub fn local_tm_to_time(rust_tm: &Tm) -> i64 {
let mut tm = unsafe { mem::zeroed() };
rust_tm_to_tm(rust_tm, &mut tm);
unsafe { libc::mktime(&mut tm) as i64 }
}

131
zeroidc/vendor/chrono/src/sys/windows.rs vendored Normal file
View File

@@ -0,0 +1,131 @@
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::Tm;
use std::io;
use std::mem;
use winapi::shared::minwindef::*;
use winapi::um::minwinbase::SYSTEMTIME;
use winapi::um::timezoneapi::*;
const HECTONANOSECS_IN_SEC: i64 = 10_000_000;
const HECTONANOSEC_TO_UNIX_EPOCH: i64 = 11_644_473_600 * HECTONANOSECS_IN_SEC;
fn time_to_file_time(sec: i64) -> FILETIME {
let t = ((sec * HECTONANOSECS_IN_SEC) + HECTONANOSEC_TO_UNIX_EPOCH) as u64;
FILETIME { dwLowDateTime: t as DWORD, dwHighDateTime: (t >> 32) as DWORD }
}
fn file_time_as_u64(ft: &FILETIME) -> u64 {
((ft.dwHighDateTime as u64) << 32) | (ft.dwLowDateTime as u64)
}
fn file_time_to_unix_seconds(ft: &FILETIME) -> i64 {
let t = file_time_as_u64(ft) as i64;
((t - HECTONANOSEC_TO_UNIX_EPOCH) / HECTONANOSECS_IN_SEC) as i64
}
fn system_time_to_file_time(sys: &SYSTEMTIME) -> FILETIME {
unsafe {
let mut ft = mem::zeroed();
SystemTimeToFileTime(sys, &mut ft);
ft
}
}
fn tm_to_system_time(tm: &Tm) -> SYSTEMTIME {
let mut sys: SYSTEMTIME = unsafe { mem::zeroed() };
sys.wSecond = tm.tm_sec as WORD;
sys.wMinute = tm.tm_min as WORD;
sys.wHour = tm.tm_hour as WORD;
sys.wDay = tm.tm_mday as WORD;
sys.wDayOfWeek = tm.tm_wday as WORD;
sys.wMonth = (tm.tm_mon + 1) as WORD;
sys.wYear = (tm.tm_year + 1900) as WORD;
sys
}
fn system_time_to_tm(sys: &SYSTEMTIME, tm: &mut Tm) {
tm.tm_sec = sys.wSecond as i32;
tm.tm_min = sys.wMinute as i32;
tm.tm_hour = sys.wHour as i32;
tm.tm_mday = sys.wDay as i32;
tm.tm_wday = sys.wDayOfWeek as i32;
tm.tm_mon = (sys.wMonth - 1) as i32;
tm.tm_year = (sys.wYear - 1900) as i32;
tm.tm_yday = yday(tm.tm_year, tm.tm_mon + 1, tm.tm_mday);
fn yday(year: i32, month: i32, day: i32) -> i32 {
let leap = if month > 2 {
if year % 4 == 0 {
1
} else {
2
}
} else {
0
};
let july = if month > 7 { 1 } else { 0 };
(month - 1) * 30 + month / 2 + (day - 1) - leap + july
}
}
macro_rules! call {
($name:ident($($arg:expr),*)) => {
if $name($($arg),*) == 0 {
panic!(concat!(stringify!($name), " failed with: {}"),
io::Error::last_os_error());
}
}
}
pub fn time_to_local_tm(sec: i64, tm: &mut Tm) {
let ft = time_to_file_time(sec);
unsafe {
let mut utc = mem::zeroed();
let mut local = mem::zeroed();
call!(FileTimeToSystemTime(&ft, &mut utc));
call!(SystemTimeToTzSpecificLocalTime(0 as *const _, &mut utc, &mut local));
system_time_to_tm(&local, tm);
let local = system_time_to_file_time(&local);
let local_sec = file_time_to_unix_seconds(&local);
let mut tz = mem::zeroed();
GetTimeZoneInformation(&mut tz);
// SystemTimeToTzSpecificLocalTime already applied the biases so
// check if it non standard
tm.tm_utcoff = (local_sec - sec) as i32;
tm.tm_isdst = if tm.tm_utcoff == -60 * (tz.Bias + tz.StandardBias) { 0 } else { 1 };
}
}
pub fn utc_tm_to_time(tm: &Tm) -> i64 {
unsafe {
let mut ft = mem::zeroed();
let sys_time = tm_to_system_time(tm);
call!(SystemTimeToFileTime(&sys_time, &mut ft));
file_time_to_unix_seconds(&ft)
}
}
pub fn local_tm_to_time(tm: &Tm) -> i64 {
unsafe {
let mut ft = mem::zeroed();
let mut utc = mem::zeroed();
let mut sys_time = tm_to_system_time(tm);
call!(TzSpecificLocalTimeToSystemTime(0 as *mut _, &mut sys_time, &mut utc));
call!(SystemTimeToFileTime(&utc, &mut ft));
file_time_to_unix_seconds(&ft)
}
}