/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
* Change Date: 2025-01-01
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#ifndef ZT_HASHTABLE_HPP
#define ZT_HASHTABLE_HPP
#include "Constants.hpp"
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdexcept>
#include <vector>
#include <utility>
#include <algorithm>
namespace ZeroTier {
/**
* A minimal hash table implementation for the ZeroTier core
template<typename K,typename V>
class Hashtable
{
private:
struct _Bucket
_Bucket(const K &k,const V &v) : k(k),v(v) {}
_Bucket(const K &k) : k(k),v() {}
_Bucket(const _Bucket &b) : k(b.k),v(b.v) {}
inline _Bucket &operator=(const _Bucket &b) { k = b.k; v = b.v; return *this; }
K k;
V v;
_Bucket *next; // must be set manually for each _Bucket
};
public:
* A simple forward iterator (different from STL)
* It's safe to erase the last key, but not others. Don't use set() since that
* may rehash and invalidate the iterator. Note the erasing the key will destroy
* the targets of the pointers returned by next().
class Iterator
* @param ht Hash table to iterate over
Iterator(Hashtable &ht) :
_idx(0),
_ht(&ht),
_b(ht._t[0])
}
* @param kptr Pointer to set to point to next key
* @param vptr Pointer to set to point to next value
* @return True if kptr and vptr are set, false if no more entries
inline bool next(K *&kptr,V *&vptr)
for(;;) {
if (_b) {
kptr = &(_b->k);
vptr = &(_b->v);
_b = _b->next;
return true;
++_idx;
if (_idx >= _ht->_bc) {
return false;
_b = _ht->_t[_idx];
unsigned long _idx;
Hashtable *_ht;
_Bucket *_b;
//friend class Hashtable<K,V>::Iterator;
* @param bc Initial capacity in buckets (default: 64, must be nonzero)
Hashtable(unsigned long bc = 64) :
_t(reinterpret_cast<_Bucket **>(::malloc(sizeof(_Bucket *) * bc))),
_bc(bc),
_s(0)
if (!_t) {
throw ZT_EXCEPTION_OUT_OF_MEMORY;
for(unsigned long i=0;i<bc;++i) {
_t[i] = (_Bucket *)0;
Hashtable(const Hashtable<K,V> &ht) :
_t(reinterpret_cast<_Bucket **>(::malloc(sizeof(_Bucket *) * ht._bc))),
_bc(ht._bc),
_s(ht._s)
for(unsigned long i=0;i<_bc;++i) {
const _Bucket *b = ht._t[i];
while (b) {
_Bucket *nb = new _Bucket(*b);
nb->next = _t[i];
_t[i] = nb;
b = b->next;
~Hashtable()
this->clear();
::free(_t);
inline Hashtable &operator=(const Hashtable<K,V> &ht)
if (ht._s) {
for(unsigned long i=0;i<ht._bc;++i) {
this->set(b->k,b->v);
return *this;
* Erase all entries
inline void clear()
if (_s) {
_Bucket *b = _t[i];
_Bucket *const nb = b->next;
delete b;
b = nb;
_s = 0;
* @return Vector of all keys
inline typename std::vector<K> keys() const
typename std::vector<K> k;
k.reserve(_s);
k.push_back(b->k);
return k;
* Append all keys (in unspecified order) to the supplied vector or list
* @param v Vector, list, or other compliant container
* @tparam Type of V (generally inferred)
template<typename C>
inline void appendKeys(C &v) const
v.push_back(b->k);
* @return Vector of all entries (pairs of K,V)
inline typename std::vector< std::pair<K,V> > entries() const
typename std::vector< std::pair<K,V> > k;
k.push_back(std::pair<K,V>(b->k,b->v));
* @param k Key
* @return Pointer to value or NULL if not found
inline V *get(const K &k)
_Bucket *b = _t[_hc(k) % _bc];
if (b->k == k) {
return &(b->v);
return (V *)0;
inline const V *get(const K &k) const { return const_cast<Hashtable *>(this)->get(k); }
* @param v Value to fill with result
* @return True if value was found and set (if false, v is not modified)
inline bool get(const K &k,V &v) const
v = b->v;
* @param k Key to check
* @return True if key is present
inline bool contains(const K &k) const
* @return True if value was present
inline bool erase(const K &k)
const unsigned long bidx = _hc(k) % _bc;
_Bucket *lastb = (_Bucket *)0;
_Bucket *b = _t[bidx];
if (lastb) {
lastb->next = b->next;
} else {
_t[bidx] = b->next;
--_s;
lastb = b;
* @param v Value
* @return Reference to value in table
inline V &set(const K &k,const V &v)
const unsigned long h = _hc(k);
unsigned long bidx = h % _bc;
b->v = v;
return b->v;
if (_s >= _bc) {
_grow();
bidx = h % _bc;
b = new _Bucket(k,v);
b->next = _t[bidx];
_t[bidx] = b;
++_s;
* @return Value, possibly newly created
inline V &operator[](const K &k)
b = new _Bucket(k);
* @return Number of entries
inline unsigned long size() const { return _s; }
* @return True if table is empty
inline bool empty() const { return (_s == 0); }
template<typename O>
static inline unsigned long _hc(const O &obj)
return (unsigned long)obj.hashCode();
static inline unsigned long _hc(const uint64_t i)
return (unsigned long)(i ^ (i >> 32)); // good for network IDs and addresses
static inline unsigned long _hc(const uint32_t i)
return ((unsigned long)i * (unsigned long)0x9e3779b1);
static inline unsigned long _hc(const uint16_t i)
static inline unsigned long _hc(const int i)
return ((unsigned long)i * (unsigned long)0x9e3379b1);
inline void _grow()
const unsigned long nc = _bc * 2;
_Bucket **nt = reinterpret_cast<_Bucket **>(::malloc(sizeof(_Bucket *) * nc));
if (nt) {
for(unsigned long i=0;i<nc;++i) {
nt[i] = (_Bucket *)0;
const unsigned long nidx = _hc(b->k) % nc;
b->next = nt[nidx];
nt[nidx] = b;
_t = nt;
_bc = nc;
_Bucket **_t;
unsigned long _bc;
unsigned long _s;
} // namespace ZeroTier
#endif