This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
zhangyang-variable-monitor/source/module/monitor_kernel_lib.c
2023-11-23 04:45:35 -05:00

398 lines
13 KiB
C

#include "monitor_kernel.h"
#include <linux/sched.h>
#include <linux/stacktrace.h>
// #include <linux/sched/task.h>
// #include <linux/sched/mm.h>
#define __task_contributes_to_load(task) \
((READ_ONCE(task->__state) & TASK_UNINTERRUPTIBLE) != 0 && \
(task->flags & PF_FROZEN) == 0 && \
(READ_ONCE(task->__state) & TASK_NOLOAD) == 0)
/**
* @brief watch_arg to kernel_watch_arg
*
* @param ptr: kernel space address
* @param warg: watch_arg
* @param k_watch_arg: kernel_watch_arg
* @return unsigned char
*/
static unsigned char w_arg2k_w_arg(void *kptr, watch_arg warg,
kernel_watch_arg *k_watch_arg) {
// k_watch_arg init
k_watch_arg->task_id = warg.task_id;
strncpy(k_watch_arg->name, warg.name, MAX_NAME_LEN + 1); // name
k_watch_arg->name[MAX_NAME_LEN + 1] = '\0'; // just in case
k_watch_arg->ptr = warg.ptr;
k_watch_arg->kptr = kptr;
k_watch_arg->length_byte = warg.length_byte;
k_watch_arg->threshold = warg.threshold;
k_watch_arg->unsigned_flag = warg.unsigned_flag;
k_watch_arg->greater_flag = warg.greater_flag;
return 0;
}
static void k_w_arg2threshold(kernel_watch_arg *k_watch_arg,
threshold *threshold) {
threshold->task_id = k_watch_arg->task_id;
strncpy(threshold->name, k_watch_arg->name, MAX_NAME_LEN + 1);
threshold->name[MAX_NAME_LEN + 1] = '\0';
threshold->ptr = k_watch_arg->ptr;
threshold->threshold = k_watch_arg->threshold;
}
static void init_mm_tree(mm_tree *mm_tree) {
INIT_RADIX_TREE(&mm_tree->mm_tree, GFP_ATOMIC);
spin_lock_init(&mm_tree->mm_tree_lock);
}
static int init_buffer(unsigned int buf_size) {
init_mm_tree(&mm_tree_struct); // init mm_tree
init_diag_variant_buffer(&load_monitor_variant_buffer, buf_size);
int ret = 0;
ret = alloc_diag_variant_buffer(&load_monitor_variant_buffer);
return ret;
}
static void diag_tsk(struct task_struct *p, variable_monitor_task *tsk_info) {
unsigned int nr_bt;
printk(KERN_INFO "diag_tsk\n");
diag_task_brief(p, &tsk_info->task); // task brief
// printk("1\n");
diag_task_user_stack(p, &tsk_info->user_stack); // user stack
// printk("2\n");
nr_bt = diag_task_kern_stack(p, &tsk_info->kern_stack); // kernel stack
// int i = 0;
// printk("pid: %d, kernel stack.stack\n", p->pid);
// for (i = 0; i < nr_bt; i++) {
// printk("%lx\n", tsk_info->kern_stack.stack[i]);
// }
// printk("pid: %d, stack_trace_print\n", p->pid);
// stack_trace_print(tsk_info->kern_stack.stack, nr_bt, 0); /* 打印栈 */
// printk("3\n");
dump_proc_chains_argv(1, p, &mm_tree_struct,
&tsk_info->proc_chains); // proc chains
diag_task_raw_stack(p, &tsk_info->raw_stack); // raw stack
}
static void push_tsk_info(variable_monitor_task *tsk_info,unsigned long *flags) {
printk(KERN_INFO "push_tsk_info\n");
diag_variant_buffer_spin_lock(&load_monitor_variant_buffer, *flags);
diag_variant_buffer_reserve(&load_monitor_variant_buffer,
sizeof(variable_monitor_task));
diag_variant_buffer_write_nolock(&load_monitor_variant_buffer, tsk_info,
sizeof(variable_monitor_task));
diag_variant_buffer_seal(&load_monitor_variant_buffer);
diag_variant_buffer_spin_unlock(&load_monitor_variant_buffer, *flags);
}
/// @brief clear all watch and reset kernel_wtimer_list/kernel_wtimer_num
/// @param
static void clear_all_watch(void) {
printk(KERN_INFO "clear all watch variable\n");
// unmap and release the page
free_all_page_list();
// cancel timer
cancel_all_hrTimer();
// clear timer
kernel_wtimer_num = 0;
memset(kernel_wtimer_list, 0, sizeof(kernel_wtimer_list));
}
/**
* @brief all module function init. orig_X | buffer
*
* @return int
*/
int monitor_init(void) {
int ret = 0;
ret = init_orig_fun(); // init orig_X
if (ret)
return ret;
ret = init_buffer(50 * 1024 * 1024); // 50M
if (ret)
return -1;
return 0;
}
/**
* @brief monitor exit: clear all watch and free buffer
*
*/
void monitor_exit(void) {
// clear all watch
clear_all_watch();
// free buffer
destroy_diag_variant_buffer(&load_monitor_variant_buffer);
printk(KERN_INFO "clear all buffer\n");
}
/**
* @brief start watch variable
*
* @param warg: uapi watch_arg
* @return int 0 is success
* !todo: adjust printk
*/
int start_watch_variable(watch_arg warg) {
void *kptr;
kernel_watch_timer *timer = NULL;
kernel_watch_arg k_watch_arg;
// user space address to kernel space address
kptr = convert_user_space_ptr(warg.task_id, (unsigned long)warg.ptr);
if (kptr == NULL) {
printk(KERN_ERR "Cannot access user space\n");
return -EACCES;
}
// check length
if (warg.length_byte != 1 && warg.length_byte != 2 && warg.length_byte != 4 &&
warg.length_byte != 8) {
printk(KERN_ERR "Invalid length %d\n", warg.length_byte);
return -EINVAL;
}
// k_watch_arg init
w_arg2k_w_arg(kptr, warg, &k_watch_arg);
timer = get_timer(warg.time_ns); // get a valuable timer
printk(KERN_INFO "ptr transform kptr: %p\n", kptr);
printk(KERN_INFO "timer: %p\n", timer);
printk(KERN_INFO "timer->sentinel: %d, timer->time_ns: %lld\n",
timer->sentinel, timer->time_ns);
printk(KERN_INFO "timer->hr_timer: %p\n", &timer->hr_timer);
TIMER_CANCEL(timer); // just in case
timer_add_watch(timer, k_watch_arg);
TIMER_START(timer);
printk(KERN_INFO "Start watching var: %s\n", warg.name);
return 0;
}
/**
* @brief clear watch with pid
*
* @param pid
*/
void clear_watch(pid_t pid) {
printk(KERN_INFO "Clear pid: %d's watch variable\n", pid);
cancel_all_hrTimer(); // just in case
del_all_kwarg_by_pid(pid); // delete all kwarg with pid
free_page_list(pid); // free page with pid
start_all_hrTimer(); // restart timer
}
/**
* @brief main callback function
*
* @param timer
* @return enum hrtimer_restart
*/
enum hrtimer_restart check_variable_cb(struct hrtimer *timer) {
kernel_watch_timer *k_watch_timer =
container_of(timer, kernel_watch_timer, hr_timer);
int i = 0, j = 0;
int buffer[TIMER_MAX_WATCH_NUM]; // Buffer to store the messages
kernel_watch_arg *kwarg;
// check all watched kernel_watch_arg
for (i = 0; i < k_watch_timer->sentinel; i++) {
kwarg = &k_watch_timer->k_watch_args[i];
if (read_and_compare(kwarg->kptr, kwarg->length_byte, kwarg->greater_flag,
kwarg->unsigned_flag, kwarg->threshold)) {
buffer[j] = i;
j++;
}
}
if (j > 0) // if any threshold reached
{
struct task_struct *g, *p; // g: task group; p: task
unsigned long flags;
unsigned long event_id = get_cycles();
static variable_monitor_task tsk_info = {0};
static variable_monitor_record vm_record = {0};
vm_record.id = event_id;
vm_record.et_type = 0; //! todo event type
vm_record.tv = ktime_get_real();
vm_record.threshold_num = j;
// printk("-------------------------------------\n");
// printk("-------------watch monitor-----------\n");
// printk("Threshold reached:\n");
for (i = 0; i < j; i++) {
kwarg = &k_watch_timer->k_watch_args[buffer[i]];
k_w_arg2threshold(kwarg, &vm_record.threshold_record[i]);
}
rcu_read_lock();
diag_variant_buffer_spin_lock(&load_monitor_variant_buffer, flags);
diag_variant_buffer_reserve(&load_monitor_variant_buffer,
sizeof(variable_monitor_record));
diag_variant_buffer_write_nolock(&load_monitor_variant_buffer, &vm_record,
sizeof(variable_monitor_record));
diag_variant_buffer_seal(&load_monitor_variant_buffer);
diag_variant_buffer_spin_unlock(&load_monitor_variant_buffer, flags);
rcu_read_unlock();
do_each_thread(g, p) {
if (p->__state == TASK_RUNNING || __task_contributes_to_load(p) ||
p->__state == TASK_IDLE || 1) {
get_task_struct(p);
tsk_info.et_type = 1; //! todo event type
tsk_info.id = event_id;
tsk_info.tv = vm_record.tv;
diag_tsk(p, &tsk_info);
put_task_struct(p);
push_tsk_info(&tsk_info, &flags);
}
}
while_each_thread(g, p);
// print_task_stack();
// restart timer after 5s
hrtimer_forward(timer, timer->base->get_time(), ktime_set(5, 0)); //! todo
printk("-------------------------------------\n");
} else {
// keep frequency
hrtimer_forward(timer, timer->base->get_time(), k_watch_timer->kt);
}
return HRTIMER_RESTART; // restart timer
}
// static int diag_test(int nid); // for test
// static void test(struct task_struct *p, variable_monitor_task *tsk_info){
// // unsigned int nr_bt;
// printk(KERN_INFO "diag_tsk\n");
// diag_task_brief(p, &tsk_info->task); // task brief
// // printk("1\n");
// diag_task_user_stack(p, &tsk_info->user_stack); // user stack
// diag_task_kern_stack(p, &tsk_info->kern_stack); // kernel stack
// dump_proc_chains_argv(1, p, &mm_tree_struct,
// &tsk_info->proc_chains); // proc chains
// diag_task_raw_stack(p, &tsk_info->raw_stack); // raw stack
// printk(KERN_INFO "diag_tsk finish\n");
// }
// static void test2(variable_monitor_task *tsk_info, unsigned long flags){
// printk(KERN_INFO "test2\n");
// diag_variant_buffer_spin_lock(&load_monitor_variant_buffer, flags);
// diag_variant_buffer_reserve(&load_monitor_variant_buffer,sizeof(variable_monitor_task));
// diag_variant_buffer_write_nolock(&load_monitor_variant_buffer, tsk_info,
// sizeof(variable_monitor_task));
// diag_variant_buffer_seal(&load_monitor_variant_buffer);
// diag_variant_buffer_spin_unlock(&load_monitor_variant_buffer, flags);
// printk(KERN_INFO "test2 finish\n");
// }
int diag_test(int nid){
// static struct task_struct *tsk;
// static struct task_struct *leader;
// static variable_monitor_task tsk_info;
// // unsigned int nr_bt;
// int ret;
// unsigned long flags;
// pid_t id = (pid_t)nid;
// rcu_read_lock();
// tsk = NULL;
// if (orig_find_task_by_vpid)
// tsk = orig_find_task_by_vpid(id);
// if (!tsk) {
// ret = -EINVAL;
// rcu_read_unlock();
// return ret;
// }
// leader = tsk->group_leader;
// if (leader == NULL || leader->exit_state == EXIT_ZOMBIE){
// ret = -EINVAL;
// rcu_read_unlock();
// return ret;
// }
// get_task_struct(tsk);
// rcu_read_unlock();
// tsk_info.et_type = 1;
// test(tsk, &tsk_info);
// put_task_struct(tsk);
// printk(KERN_INFO "put_task_struct finish\n");
// diag_variant_buffer_spin_lock(&load_monitor_variant_buffer, flags);
// printk(KERN_INFO "1\n");
// diag_variant_buffer_reserve(&load_monitor_variant_buffer,sizeof(variable_monitor_task));
// printk(KERN_INFO "2\n");
// diag_variant_buffer_write_nolock(&load_monitor_variant_buffer, &tsk_info,
// sizeof(variable_monitor_task));
// printk(KERN_INFO "3\n");
// diag_variant_buffer_seal(&load_monitor_variant_buffer);
// printk(KERN_INFO "4\n");
// diag_variant_buffer_spin_unlock(&load_monitor_variant_buffer, flags);
// printk(KERN_INFO "5\n");
struct task_struct *g, *p; // g: task group; p: task
unsigned long flags;
unsigned long event_id = get_cycles();
static variable_monitor_task tsk_info = {0};
static variable_monitor_record vm_record = {0};
// vm_record.id = event_id;
// vm_record.et_type = 0; //! todo event type
vm_record.tv = ktime_get_real();
// vm_record.threshold_num = j;
// printk("-------------------------------------\n");
// printk("-------------watch monitor-----------\n");
// printk("Threshold reached:\n");
// for (i = 0; i < j; i++) {
// kwarg = &k_watch_timer->k_watch_args[buffer[i]];
// k_w_arg2threshold(kwarg, &vm_record.threshold_record[i]);
// }
// rcu_read_lock();
// diag_variant_buffer_spin_lock(&load_monitor_variant_buffer, flags);
// diag_variant_buffer_reserve(&load_monitor_variant_buffer,
// sizeof(variable_monitor_record));
// diag_variant_buffer_write_nolock(&load_monitor_variant_buffer, &vm_record,
// sizeof(variable_monitor_record));
// diag_variant_buffer_seal(&load_monitor_variant_buffer);
// diag_variant_buffer_spin_unlock(&load_monitor_variant_buffer, flags);
rcu_read_unlock();
do_each_thread(g, p) {
if (p->__state == TASK_RUNNING || __task_contributes_to_load(p) ||
p->__state == TASK_IDLE || 1) {
get_task_struct(p);
tsk_info.et_type = 1; //! todo event type
tsk_info.id = event_id;
tsk_info.tv = vm_record.tv;
diag_tsk(p, &tsk_info);
put_task_struct(p);
push_tsk_info(&tsk_info, &flags);
}
}
while_each_thread(g, p);
printk("-------------------------------------\n");
return 0;
}