#include "monitor_kernel.h" #include #include // #include // #include #define __task_contributes_to_load(task) \ ((READ_ONCE(task->__state) & TASK_UNINTERRUPTIBLE) != 0 && \ (task->flags & PF_FROZEN) == 0 && \ (READ_ONCE(task->__state) & TASK_NOLOAD) == 0) /** * @brief watch_arg to kernel_watch_arg * * @param ptr: kernel space address * @param warg: watch_arg * @param k_watch_arg: kernel_watch_arg * @return unsigned char */ static unsigned char w_arg2k_w_arg(void *kptr, watch_arg warg, kernel_watch_arg *k_watch_arg) { // k_watch_arg init k_watch_arg->task_id = warg.task_id; strncpy(k_watch_arg->name, warg.name, MAX_NAME_LEN + 1); // name k_watch_arg->name[MAX_NAME_LEN + 1] = '\0'; // just in case k_watch_arg->ptr = warg.ptr; k_watch_arg->kptr = kptr; k_watch_arg->length_byte = warg.length_byte; k_watch_arg->threshold = warg.threshold; k_watch_arg->unsigned_flag = warg.unsigned_flag; k_watch_arg->greater_flag = warg.greater_flag; return 0; } static void k_w_arg2threshold(kernel_watch_arg *k_watch_arg, threshold *threshold) { threshold->task_id = k_watch_arg->task_id; strncpy(threshold->name, k_watch_arg->name, MAX_NAME_LEN + 1); threshold->name[MAX_NAME_LEN + 1] = '\0'; threshold->ptr = k_watch_arg->ptr; threshold->threshold = k_watch_arg->threshold; } static void init_mm_tree(mm_tree *mm_tree) { INIT_RADIX_TREE(&mm_tree->mm_tree, GFP_ATOMIC); spin_lock_init(&mm_tree->mm_tree_lock); } static int init_buffer(unsigned int buf_size) { init_mm_tree(&mm_tree_struct); // init mm_tree init_diag_variant_buffer(&load_monitor_variant_buffer, buf_size); int ret = 0; ret = alloc_diag_variant_buffer(&load_monitor_variant_buffer); return ret; } static void diag_tsk(struct task_struct *p, variable_monitor_task *tsk_info) { unsigned int nr_bt; printk(KERN_INFO "diag_tsk\n"); diag_task_brief(p, &tsk_info->task); // task brief // printk("1\n"); diag_task_user_stack(p, &tsk_info->user_stack); // user stack // printk("2\n"); nr_bt = diag_task_kern_stack(p, &tsk_info->kern_stack); // kernel stack // int i = 0; // printk("pid: %d, kernel stack.stack\n", p->pid); // for (i = 0; i < nr_bt; i++) { // printk("%lx\n", tsk_info->kern_stack.stack[i]); // } // printk("pid: %d, stack_trace_print\n", p->pid); // stack_trace_print(tsk_info->kern_stack.stack, nr_bt, 0); /* 打印栈 */ // printk("3\n"); dump_proc_chains_argv(1, p, &mm_tree_struct, &tsk_info->proc_chains); // proc chains diag_task_raw_stack(p, &tsk_info->raw_stack); // raw stack } static void push_tsk_info(variable_monitor_task *tsk_info,unsigned long *flags) { printk(KERN_INFO "push_tsk_info\n"); diag_variant_buffer_spin_lock(&load_monitor_variant_buffer, *flags); diag_variant_buffer_reserve(&load_monitor_variant_buffer, sizeof(variable_monitor_task)); diag_variant_buffer_write_nolock(&load_monitor_variant_buffer, tsk_info, sizeof(variable_monitor_task)); diag_variant_buffer_seal(&load_monitor_variant_buffer); diag_variant_buffer_spin_unlock(&load_monitor_variant_buffer, *flags); } /// @brief clear all watch and reset kernel_wtimer_list/kernel_wtimer_num /// @param static void clear_all_watch(void) { printk(KERN_INFO "clear all watch variable\n"); // unmap and release the page free_all_page_list(); // cancel timer cancel_all_hrTimer(); // clear timer kernel_wtimer_num = 0; memset(kernel_wtimer_list, 0, sizeof(kernel_wtimer_list)); } static void sample_task_work(struct work_struct *work){ kernel_watch_timer *k_watch_timer = container_of(work, kernel_watch_timer, wk); if (k_watch_timer->threshold_num <= 0) return; struct task_struct *g, *p; // g: task group; p: task unsigned long flags; unsigned long event_id = get_cycles(); static variable_monitor_task tsk_info = {0}; static variable_monitor_record vm_record = {0}; kernel_watch_arg *kwarg; vm_record.id = event_id; vm_record.et_type = 0; //! todo event type vm_record.tv = ktime_get_real(); vm_record.threshold_num = k_watch_timer->threshold_num; int i; for (i = 0; i < vm_record.threshold_num; i++) { kwarg = &k_watch_timer->k_watch_args[k_watch_timer->threshold_buffer[i]]; k_w_arg2threshold(kwarg, &vm_record.threshold_record[i]); } rcu_read_lock(); diag_variant_buffer_spin_lock(&load_monitor_variant_buffer, flags); diag_variant_buffer_reserve(&load_monitor_variant_buffer, sizeof(variable_monitor_record)); diag_variant_buffer_write_nolock(&load_monitor_variant_buffer, &vm_record, sizeof(variable_monitor_record)); diag_variant_buffer_seal(&load_monitor_variant_buffer); diag_variant_buffer_spin_unlock(&load_monitor_variant_buffer, flags); rcu_read_unlock(); do_each_thread(g, p) { if (p->__state == TASK_RUNNING || __task_contributes_to_load(p) || p->__state == TASK_IDLE || 1) { get_task_struct(p); // count +1 tsk_info.et_type = 1; //! todo event type tsk_info.id = event_id; tsk_info.tv = vm_record.tv; diag_tsk(p, &tsk_info); put_task_struct(p); // count -1 push_tsk_info(&tsk_info, &flags); // push to buffer } } while_each_thread(g, p); } /** * @brief all module function init. orig_X | buffer | workqueue * * @return int */ int monitor_init(void) { int ret = 0; ret = init_orig_fun(); // init orig_X if (ret) return ret; ret = init_buffer(50 * 1024 * 1024); // 50M if (ret) return -1; // init workqueue int i; for (i=0; i < MAX_TIMER_NUM; i++) { kernel_watch_timer *kw_timer = &kernel_wtimer_list[i]; INIT_WORK(&kw_timer->wk, sample_task_work); } return 0; } /** * @brief monitor exit: clear all watch and free buffer * */ void monitor_exit(void) { // clear all watch clear_all_watch(); // free buffer destroy_diag_variant_buffer(&load_monitor_variant_buffer); printk(KERN_INFO "clear all buffer\n"); } /** * @brief start watch variable * * @param warg: uapi watch_arg * @return int 0 is success * !todo: adjust printk */ int start_watch_variable(watch_arg warg) { void *kptr; kernel_watch_timer *timer = NULL; kernel_watch_arg k_watch_arg; // user space address to kernel space address kptr = convert_user_space_ptr(warg.task_id, (unsigned long)warg.ptr); if (kptr == NULL) { printk(KERN_ERR "Cannot access user space\n"); return -EACCES; } // check length if (warg.length_byte != 1 && warg.length_byte != 2 && warg.length_byte != 4 && warg.length_byte != 8) { printk(KERN_ERR "Invalid length %d\n", warg.length_byte); return -EINVAL; } // k_watch_arg init w_arg2k_w_arg(kptr, warg, &k_watch_arg); timer = get_timer(warg.time_ns); // get a valuable timer printk(KERN_INFO "ptr transform kptr: %p\n", kptr); printk(KERN_INFO "timer: %p\n", timer); printk(KERN_INFO "timer->sentinel: %d, timer->time_ns: %lld\n", timer->sentinel, timer->time_ns); printk(KERN_INFO "timer->hr_timer: %p\n", &timer->hr_timer); TIMER_CANCEL(timer); // just in case timer_add_watch(timer, k_watch_arg); TIMER_START(timer); printk(KERN_INFO "Start watching var: %s\n", warg.name); return 0; } /** * @brief clear watch with pid * * @param pid */ void clear_watch(pid_t pid) { printk(KERN_INFO "Clear pid: %d's watch variable\n", pid); cancel_all_hrTimer(); // just in case del_all_kwarg_by_pid(pid); // delete all kwarg with pid free_page_list(pid); // free page with pid start_all_hrTimer(); // restart timer } /** * @brief main callback function * * @param timer * @return enum hrtimer_restart */ enum hrtimer_restart check_variable_cb(struct hrtimer *timer) { kernel_watch_timer *k_watch_timer = container_of(timer, kernel_watch_timer, hr_timer); int i = 0, j = 0; kernel_watch_arg *kwarg; // check all watched kernel_watch_arg for (i = 0; i < k_watch_timer->sentinel; i++) { kwarg = &k_watch_timer->k_watch_args[i]; if (read_and_compare(kwarg->kptr, kwarg->length_byte, kwarg->greater_flag, kwarg->unsigned_flag, kwarg->threshold)) { k_watch_timer->threshold_buffer[j] = i; j++; } } if (j > 0) // if any threshold reached { k_watch_timer->threshold_num = j; // restart timer after 5s hrtimer_forward(timer, timer->base->get_time(), ktime_set(5, 0)); //! todo // highpri_wq queue_work(system_highpri_wq, &k_watch_timer->wk); } else { // keep frequency hrtimer_forward(timer, timer->base->get_time(), k_watch_timer->kt); } return HRTIMER_RESTART; // restart timer } // static int diag_test(int nid); // for test // static void test(struct task_struct *p, variable_monitor_task *tsk_info){ // // unsigned int nr_bt; // printk(KERN_INFO "diag_tsk\n"); // diag_task_brief(p, &tsk_info->task); // task brief // // printk("1\n"); // diag_task_user_stack(p, &tsk_info->user_stack); // user stack // diag_task_kern_stack(p, &tsk_info->kern_stack); // kernel stack // dump_proc_chains_argv(1, p, &mm_tree_struct, // &tsk_info->proc_chains); // proc chains // diag_task_raw_stack(p, &tsk_info->raw_stack); // raw stack // printk(KERN_INFO "diag_tsk finish\n"); // } // static void test2(variable_monitor_task *tsk_info, unsigned long flags){ // printk(KERN_INFO "test2\n"); // diag_variant_buffer_spin_lock(&load_monitor_variant_buffer, flags); // diag_variant_buffer_reserve(&load_monitor_variant_buffer,sizeof(variable_monitor_task)); // diag_variant_buffer_write_nolock(&load_monitor_variant_buffer, tsk_info, // sizeof(variable_monitor_task)); // diag_variant_buffer_seal(&load_monitor_variant_buffer); // diag_variant_buffer_spin_unlock(&load_monitor_variant_buffer, flags); // printk(KERN_INFO "test2 finish\n"); // } int diag_test(int nid){ // static struct task_struct *tsk; // static struct task_struct *leader; // static variable_monitor_task tsk_info; // // unsigned int nr_bt; // int ret; // unsigned long flags; // pid_t id = (pid_t)nid; // rcu_read_lock(); // tsk = NULL; // if (orig_find_task_by_vpid) // tsk = orig_find_task_by_vpid(id); // if (!tsk) { // ret = -EINVAL; // rcu_read_unlock(); // return ret; // } // leader = tsk->group_leader; // if (leader == NULL || leader->exit_state == EXIT_ZOMBIE){ // ret = -EINVAL; // rcu_read_unlock(); // return ret; // } // get_task_struct(tsk); // rcu_read_unlock(); // tsk_info.et_type = 1; // test(tsk, &tsk_info); // put_task_struct(tsk); // printk(KERN_INFO "put_task_struct finish\n"); // diag_variant_buffer_spin_lock(&load_monitor_variant_buffer, flags); // printk(KERN_INFO "1\n"); // diag_variant_buffer_reserve(&load_monitor_variant_buffer,sizeof(variable_monitor_task)); // printk(KERN_INFO "2\n"); // diag_variant_buffer_write_nolock(&load_monitor_variant_buffer, &tsk_info, // sizeof(variable_monitor_task)); // printk(KERN_INFO "3\n"); // diag_variant_buffer_seal(&load_monitor_variant_buffer); // printk(KERN_INFO "4\n"); // diag_variant_buffer_spin_unlock(&load_monitor_variant_buffer, flags); // printk(KERN_INFO "5\n"); struct task_struct *g, *p; // g: task group; p: task unsigned long flags; unsigned long event_id = get_cycles(); static variable_monitor_task tsk_info = {0}; static variable_monitor_record vm_record = {0}; // vm_record.id = event_id; // vm_record.et_type = 0; //! todo event type vm_record.tv = ktime_get_real(); // vm_record.threshold_num = j; // printk("-------------------------------------\n"); // printk("-------------watch monitor-----------\n"); // printk("Threshold reached:\n"); // for (i = 0; i < j; i++) { // kwarg = &k_watch_timer->k_watch_args[buffer[i]]; // k_w_arg2threshold(kwarg, &vm_record.threshold_record[i]); // } // rcu_read_lock(); // diag_variant_buffer_spin_lock(&load_monitor_variant_buffer, flags); // diag_variant_buffer_reserve(&load_monitor_variant_buffer, // sizeof(variable_monitor_record)); // diag_variant_buffer_write_nolock(&load_monitor_variant_buffer, &vm_record, // sizeof(variable_monitor_record)); // diag_variant_buffer_seal(&load_monitor_variant_buffer); // diag_variant_buffer_spin_unlock(&load_monitor_variant_buffer, flags); rcu_read_unlock(); do_each_thread(g, p) { if (p->__state == TASK_RUNNING || __task_contributes_to_load(p) || p->__state == TASK_IDLE || 1) { get_task_struct(p); tsk_info.et_type = 1; //! todo event type tsk_info.id = event_id; tsk_info.tv = vm_record.tv; diag_tsk(p, &tsk_info); put_task_struct(p); push_tsk_info(&tsk_info, &flags); } } while_each_thread(g, p); printk("-------------------------------------\n"); return 0; }