This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
zhangyang-libzt/include/ServiceControls.hpp

373 lines
13 KiB
C++

/*
* ZeroTier SDK - Network Virtualization Everywhere
* Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial closed-source software that incorporates or links
* directly against ZeroTier software without disclosing the source code
* of your own application.
*/
/**
* @file
*
* Header for ZeroTier service controls
*/
#ifndef LIBZT_SERVICE_CONTROLS_HPP
#define LIBZT_SERVICE_CONTROLS_HPP
#ifdef _WIN32
#ifdef ADD_EXPORTS
#define ZT_SOCKET_API __declspec(dllexport)
#else
#define ZT_SOCKET_API __declspec(dllimport)
#endif
#define ZTCALL __cdecl
#else
#define ZT_SOCKET_API
#define ZTCALL
#endif
void api_sleep(int interval_ms);
//////////////////////////////////////////////////////////////////////////////
// ZeroTier Service Controls //
//////////////////////////////////////////////////////////////////////////////
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief (optional) Sets the port for the background libzt service. If this function is called
* with a port number between 1-65535 it will attempt to bind to that port. If it is called with
* a port number of 0 it will attempt to randomly search for an available port. If this function
* is never called, the service will try to bind on LIBZT_DEFAULT_PORT which is 9994.
*
* @usage Should be called at the beginning of your application before `zts_startjoin()`
* @param portno Port number
* @return 0 if successful; or -1 if failed
*/
ZT_SOCKET_API int ZTCALL zts_set_service_port(int portno);
/**
* @brief (optional) Returns the port number used by the ZeroTier service
* @usage Can be called if a port number was previously assigned
* @return the port number used by the ZeroTier service
*/
ZT_SOCKET_API int ZTCALL zts_get_service_port();
/**
* @brief Starts the ZeroTier service
*
* @usage Should be called at the beginning of your application. Will blocks until all of the following conditions are met:
* - ZeroTier core service has been initialized
* - Cryptographic identity has been generated or loaded from directory specified by `path`
* - Virtual network is successfully joined
* - IP address is assigned by network controller service
* @param path path directory where cryptographic identities and network configuration files are stored and retrieved
* (`identity.public`, `identity.secret`)
* @param blocking whether or not this call will block until the entire service is up and running
* @return 0 if successful; or 1 if failed
*/
ZT_SOCKET_API int ZTCALL zts_start(const char *path, int blocking);
/**
* @brief Starts the ZeroTier service
*
* @usage Should be called at the beginning of your application. Will blocks until all of the following conditions are met:
* - ZeroTier core service has been initialized
* - Cryptographic identity has been generated or loaded from directory specified by `path`
* - Virtual network is successfully joined
* - IP address is assigned by network controller service
* @param path path directory where cryptographic identities and network configuration files are stored and retrieved
* (`identity.public`, `identity.secret`)
* @param nwid A 16-digit hexidecimal network identifier (e.g. Earth: `8056c2e21c000001`)
* @return 0 if successful; or 1 if failed
*/
ZT_SOCKET_API int ZTCALL zts_startjoin(const char *path, const uint64_t nwid);
/**
* @brief Stops the ZeroTier service, brings down all virtual interfaces in order to stop all traffic processing.
*
* @usage This should be called when the application anticipates not needing any sort of traffic processing for a
* prolonged period of time. The stack driver (with associated timers) will remain active in case future traffic
* processing is required. Note that the application must tolerate a multi-second startup time if zts_start()
* zts_startjoin() is called again. To stop this background thread and free all resources use zts_free() instead.
* @param blocking whether or not this call will block until the entire service is torn down
* @return Returns 0 on success, -1 on failure
*/
ZT_SOCKET_API int ZTCALL zts_stop(int blocking = 1);
/**
* @brief Stops all background services, brings down all interfaces, frees all resources. After calling this function
* an application restart will be required before the library can be used again. This is a blocking call.
*
* @usage This should be called at the end of your program or when you do not anticipate communicating over ZeroTier
* @return Returns 0 on success, -1 on failure
*/
ZT_SOCKET_API int ZTCALL zts_free();
/**
* @brief Return whether the ZeroTier service is currently running
*
* @usage Call this after zts_start()
* @return 1 if running, 0 if not running
*/
ZT_SOCKET_API int ZTCALL zts_core_running();
/**
* @brief Return whether libzt is ready to handle socket API calls. Alternatively you could
* have just called zts_startjoin(path, nwid)
*
* @usage Call this after zts_start()
* @return 1 if running, 0 if not running
*/
ZT_SOCKET_API int ZTCALL zts_ready();
/**
* @brief Return the number of networks currently joined by this node
*
* @usage Call this after zts_start(), zts_startjoin() and/or zts_join()
* @return Number of networks joined by this node
*/
ZT_SOCKET_API zts_err_t ZTCALL zts_get_num_joined_networks();
/**
* @brief Populates a structure with details for a given network
*
* @usage Call this from the application thread any time after the node has joined a network
* @param nwid A 16-digit hexidecimal virtual network ID
* @param nd Pointer to a zts_network_details structure to populate
* @return ZTS_ERR_SERVICE if failed, 0 if otherwise
*/
ZT_SOCKET_API zts_err_t ZTCALL zts_get_network_details(uint64_t nwid, struct zts_network_details *nd);
/**
* @brief Populates an array of structures with details for any given number of networks
*
* @usage Call this from the application thread any time after the node has joined a network
* @param nds Pointer to an array of zts_network_details structures to populate
* @param num Number of zts_network_details structures available to copy data into, will be updated
* to reflect number of structures that were actually populated
* @return ZTS_ERR_SERVICE if failed, 0 if otherwise
*/
ZT_SOCKET_API zts_err_t ZTCALL zts_get_all_network_details(struct zts_network_details *nds, int *num);
/**
* @brief Join a network
*
* @usage Call this from application thread. Only after zts_start() has succeeded
* @param nwid A 16-digit hexidecimal virtual network ID
* @return 0 if successful, -1 for any failure
*/
ZT_SOCKET_API zts_err_t ZTCALL zts_join(const uint64_t nwid, int blocking = 1);
/**
* @brief Leave a network
*
* @usage Call this from application thread. Only after zts_start() has succeeded
* @param nwid A 16-digit hexidecimal virtual network ID
* @return 0 if successful, -1 for any failure
*/
ZT_SOCKET_API zts_err_t ZTCALL zts_leave(const uint64_t nwid, int blocking = 1);
/**
* @brief Leaves all networks
*
* @usage Call this from application thread. Only after zts_start() has succeeded
* @param nwid A 16-digit hexidecimal virtual network ID
* @return 0 if successful, -1 for any failure
*/
ZT_SOCKET_API zts_err_t ZTCALL zts_leave_all(int blocking = 1);
/**
* @brief Orbits a given moon (user-defined root server)
*
* @usage Call this from application thread. Only after zts_start() has succeeded
* @param moonWorldId A 16-digit hexidecimal world ID
* @param moonSeed A 16-digit hexidecimal seed ID
* @return ZTS_ERR_OK if successful, ZTS_ERR_SERVICE, ZTS_ERR_INVALID_ARG, ZTS_ERR_INVALID_OP if otherwise
*/
ZT_SOCKET_API zts_err_t ZTCALL zts_orbit(uint64_t moonWorldId, uint64_t moonSeed);
/**
* @brief De-orbits a given moon (user-defined root server)
*
* @usage Call this from application thread. Only after zts_start() has succeeded
* @param moonWorldId A 16-digit hexidecimal world ID
* @return ZTS_ERR_OK if successful, ZTS_ERR_SERVICE, ZTS_ERR_INVALID_ARG, ZTS_ERR_INVALID_OP if otherwise
*/
ZT_SOCKET_API zts_err_t ZTCALL zts_deorbit(uint64_t moonWorldId);
/**
* @brief Copies the configuration path used by ZeroTier into the provided buffer
*
* @usage Use this to determine where ZeroTier is storing identity files
* @param homePath Path to ZeroTier configuration files
* @param len Length of destination buffer
* @return 0 if no error, -1 if invalid argument was supplied
*/
ZT_SOCKET_API zts_err_t ZTCALL zts_get_path(char *homePath, size_t *len);
/**
* @brief Returns the node ID of this instance
*
* @usage Call this after zts_start() and/or when zts_running() returns true
* @return
*/
ZT_SOCKET_API uint64_t ZTCALL zts_get_node_id();
/**
* @brief Returns whether any address has been assigned to the SockTap for this network
*
* @usage This is used as an indicator of readiness for service for the ZeroTier core and stack
* @param nwid Network ID
* @return
*/
ZT_SOCKET_API int ZTCALL zts_has_address(const uint64_t nwid);
/**
* @brief Returns the number of addresses assigned to this node for the given nwid
*
* @param nwid Network ID
* @return The number of addresses assigned
*/
ZT_SOCKET_API int ZTCALL zts_get_num_assigned_addresses(const uint64_t nwid);
/**
* @brief Returns the assigned address located at the given index
*
* @usage The indices of each assigned address are not guaranteed and should only
* be used for iterative purposes.
* @param nwid Network ID
* @param index location of assigned address
* @return The number of addresses assigned
*/
ZT_SOCKET_API int ZTCALL zts_get_address_at_index(
const uint64_t nwid, const int index, struct sockaddr *addr, socklen_t *addrlen);
/**
* @brief Get IP address for this device on a given network
*
* @usage FIXME: Only returns first address found, good enough for most cases
* @param nwid Network ID
* @param addr Destination structure for address
* @param addrlen size of destination address buffer, will be changed to size of returned address
* @return 0 if an address was successfully found, -1 if failure
*/
ZT_SOCKET_API int ZTCALL zts_get_address(
const uint64_t nwid, struct sockaddr_storage *addr, const int address_family);
/**
* @brief Computes a 6PLANE IPv6 address for the given Network ID and Node ID
*
* @usage Can call any time
* @param addr Destination structure for address
* @param nwid Network ID
* @param nodeId Node ID
* @return
*/
ZT_SOCKET_API void ZTCALL zts_get_6plane_addr(
struct sockaddr_storage *addr, const uint64_t nwid, const uint64_t nodeId);
/**
* @brief Computes a RFC4193 IPv6 address for the given Network ID and Node ID
*
* @usage Can call any time
* @param addr Destination structure for address
* @param nwid Network ID
* @param nodeId Node ID
* @return
*/
ZT_SOCKET_API void ZTCALL zts_get_rfc4193_addr(
struct sockaddr_storage *addr, const uint64_t nwid, const uint64_t nodeId);
/**
* @brief Return the number of peers
*
* @usage Call this after zts_start() has succeeded
* @return
*/
ZT_SOCKET_API zts_err_t zts_get_peer_count();
ZT_SOCKET_API zts_err_t zts_get_peers(struct zts_peer_details *pds, int *num);
/**
* @brief Enables the HTTP backplane management system
*
* @usage Call this after zts_start() has succeeded
* @return ZTS_ERR_OK if successful, ZTS_ERR_SERVICE if otherwise
*/
ZT_SOCKET_API zts_err_t zts_enable_http_backplane_mgmt();
/**
* @brief Disables the HTTP backplane management system
*
* @usage Call this after zts_start() has succeeded
* @return ZTS_ERR_OK if successful, ZTS_ERR_SERVICE, ZTS_ERR_INVALID_OP if otherwise
*/
ZT_SOCKET_API zts_err_t zts_disable_http_backplane_mgmt();
/**
* @brief Starts a ZeroTier service in the background
*
* @usage For internal use only.
* @param
* @return
*/
#if defined(_WIN32)
DWORD WINAPI _zts_start_service(LPVOID thread_id);
#else
void *_zts_start_service(void *thread_id);
#endif
/**
* @brief [Should not be called from user application] This function must be surrounded by
* ZT service locks. It will determine if it is currently safe and allowed to operate on
* the service.
* @usage Can be called at any time
* @return 1 or 0
*/
int _zts_can_perform_service_operation();
/**
* @brief [Should not be called from user application] Returns whether or not the node is
* online.
* @usage Can be called at any time
* @return 1 or 0
*/
int _zts_node_online();
/**
* @brief [Should not be called from user application] Adjusts the delay multiplier for the
* network stack driver thread.
* @usage Can be called at any time
*/
void _hibernate_if_needed();
#ifdef __cplusplus
}
#endif
#endif // _H