This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
zhangyang-libzt/src/NodeService.cpp

1361 lines
48 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
/**
* @file
*
* ZeroTier Node Service (a distant relative of OneService)
*/
#include <thread>
#include <iostream>
#include "../version.h"
#include "Debug.hpp"
#include "Events.hpp"
#include "NodeService.hpp"
#include "ZeroTierSockets.h"
#include "VirtualTap.hpp"
#include "Constants.hpp"
#include "Node.hpp"
#include "Utils.hpp"
#include "MAC.hpp"
#include "Phy.hpp"
#include "Thread.hpp"
#include "OSUtils.hpp"
#include "PortMapper.hpp"
#include "Binder.hpp"
#include "ManagedRoute.hpp"
#include "InetAddress.hpp"
#include "BlockingQueue.hpp"
#if defined(__WINDOWS__)
//WSADATA wsaData;
#include <WinSock2.h>
#include <Windows.h>
#include <ShlObj.h>
#include <netioapi.h>
#include <iphlpapi.h>
#define stat _stat
#endif
#ifdef SDK_JNI
#include <jni.h>
#endif
// Custom errno-like reporting variable
int zts_errno;
namespace ZeroTier {
uint8_t allowNetworkCaching;
uint8_t allowPeerCaching;
uint8_t allowLocalConf;
typedef VirtualTap EthernetTap;
static std::string _trimString(const std::string &s)
{
unsigned long end = (unsigned long)s.length();
while (end) {
char c = s[end - 1];
if ((c == ' ')||(c == '\r')||(c == '\n')||(!c)||(c == '\t'))
--end;
else break;
}
unsigned long start = 0;
while (start < end) {
char c = s[start];
if ((c == ' ')||(c == '\r')||(c == '\n')||(!c)||(c == '\t'))
++start;
else break;
}
return s.substr(start,end - start);
}
class NodeServiceImpl;
static int SnodeVirtualNetworkConfigFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t nwid,void **nuptr,enum ZT_VirtualNetworkConfigOperation op,const ZT_VirtualNetworkConfig *nwconf);
static void SnodeEventCallback(ZT_Node *node,void *uptr,void *tptr,enum ZT_Event event,const void *metaData);
static void SnodeStatePutFunction(ZT_Node *node,void *uptr,void *tptr,enum ZT_StateObjectType type,const uint64_t id[2],const void *data,int len);
static int SnodeStateGetFunction(ZT_Node *node,void *uptr,void *tptr,enum ZT_StateObjectType type,const uint64_t id[2],void *data,unsigned int maxlen);
static int SnodeWirePacketSendFunction(ZT_Node *node,void *uptr,void *tptr,int64_t localSocket,const struct sockaddr_storage *addr,const void *data,unsigned int len,unsigned int ttl);
static void SnodeVirtualNetworkFrameFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t nwid,void **nuptr,uint64_t sourceMac,uint64_t destMac,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len);
static int SnodePathCheckFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t ztaddr,int64_t localSocket,const struct sockaddr_storage *remoteAddr);
static int SnodePathLookupFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t ztaddr,int family,struct sockaddr_storage *result);
static void StapFrameHandler(void *uptr,void *tptr,uint64_t nwid,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len);
struct NodeServiceIncomingPacket
{
uint64_t now;
int64_t sock;
struct sockaddr_storage from;
unsigned int size;
uint8_t data[ZT_MAX_MTU];
};
class NodeServiceImpl : public NodeService
{
public:
// begin member variables --------------------------------------------------
const std::string _homePath;
const std::string _networksPath;
const std::string _moonsPath;
Phy<NodeServiceImpl *> _phy;
Node *_node;
bool _updateAutoApply;
unsigned int _multipathMode = 0;
unsigned int _primaryPort;
unsigned int _secondaryPort = 0;
unsigned int _tertiaryPort;
volatile unsigned int _udpPortPickerCounter;
//
std::map<uint64_t, int> peerCache;
//
unsigned long _incomingPacketConcurrency;
std::vector<NodeServiceIncomingPacket *> _incomingPacketMemoryPool;
BlockingQueue<NodeServiceIncomingPacket *> _incomingPacketQueue;
std::vector<std::thread> _incomingPacketThreads;
Mutex _incomingPacketMemoryPoolLock,_incomingPacketThreadsLock;
// Local configuration and memo-ized information from it
Hashtable< uint64_t,std::vector<InetAddress> > _v4Hints;
Hashtable< uint64_t,std::vector<InetAddress> > _v6Hints;
Hashtable< uint64_t,std::vector<InetAddress> > _v4Blacklists;
Hashtable< uint64_t,std::vector<InetAddress> > _v6Blacklists;
std::vector< InetAddress > _globalV4Blacklist;
std::vector< InetAddress > _globalV6Blacklist;
std::vector< InetAddress > _allowManagementFrom;
std::vector< std::string > _interfacePrefixBlacklist;
Mutex _localConfig_m;
std::vector<InetAddress> explicitBind;
/*
* To attempt to handle NAT/gateway craziness we use three local UDP ports:
*
* [0] is the normal/default port, usually 9993
* [1] is a port derived from our ZeroTier address
* [2] is a port computed from the normal/default for use with uPnP/NAT-PMP mappings
*
* [2] exists because on some gateways trying to do regular NAT-t interferes
* destructively with uPnP port mapping behavior in very weird buggy ways.
* It's only used if uPnP/NAT-PMP is enabled in this build.
*/
unsigned int _ports[3];
Binder _binder;
// Time we last received a packet from a global address
uint64_t _lastDirectReceiveFromGlobal;
// Last potential sleep/wake event
uint64_t _lastRestart;
// Deadline for the next background task service function
volatile int64_t _nextBackgroundTaskDeadline;
// Configured networks
struct NetworkState
{
NetworkState() :
tap((EthernetTap *)0)
{
// Real defaults are in network 'up' code in network event handler
settings.allowManaged = true;
settings.allowGlobal = false;
settings.allowDefault = false;
}
EthernetTap *tap;
ZT_VirtualNetworkConfig config; // memcpy() of raw config from core
std::vector<InetAddress> managedIps;
std::list< SharedPtr<ManagedRoute> > managedRoutes;
NetworkSettings settings;
};
std::map<uint64_t,NetworkState> _nets;
Mutex _nets_m;
// Termination status information
ReasonForTermination _termReason;
std::string _fatalErrorMessage;
Mutex _termReason_m;
// uPnP/NAT-PMP port mapper if enabled
bool _portMappingEnabled; // local.conf settings
#ifdef ZT_USE_MINIUPNPC
PortMapper *_portMapper;
#endif
// Set to false to force service to stop
volatile bool _run;
Mutex _run_m;
// end member variables ----------------------------------------------------
NodeServiceImpl(const char *hp,unsigned int port) :
_homePath((hp) ? hp : ".")
,_phy(this,false,true)
,_node((Node *)0)
,_updateAutoApply(false)
,_primaryPort(port)
,_udpPortPickerCounter(0)
,_lastDirectReceiveFromGlobal(0)
,_lastRestart(0)
,_nextBackgroundTaskDeadline(0)
,_termReason(ONE_STILL_RUNNING)
,_portMappingEnabled(true)
#ifdef ZT_USE_MINIUPNPC
,_portMapper((PortMapper *)0)
#endif
,_run(true)
{
_ports[0] = 0;
_ports[1] = 0;
_ports[2] = 0;
}
virtual ~NodeServiceImpl()
{
_incomingPacketQueue.stop();
_incomingPacketThreadsLock.lock();
for(auto t=_incomingPacketThreads.begin();t!=_incomingPacketThreads.end();++t)
t->join();
_incomingPacketThreadsLock.unlock();
_binder.closeAll(_phy);
_incomingPacketMemoryPoolLock.lock();
while (!_incomingPacketMemoryPool.empty()) {
delete _incomingPacketMemoryPool.back();
_incomingPacketMemoryPool.pop_back();
}
_incomingPacketMemoryPoolLock.unlock();
#ifdef ZT_USE_MINIUPNPC
delete _portMapper;
#endif
}
virtual ReasonForTermination run()
{
try {
{
struct ZT_Node_Callbacks cb;
cb.version = 0;
cb.stateGetFunction = SnodeStateGetFunction;
cb.statePutFunction = SnodeStatePutFunction;
cb.wirePacketSendFunction = SnodeWirePacketSendFunction;
cb.virtualNetworkFrameFunction = SnodeVirtualNetworkFrameFunction;
cb.virtualNetworkConfigFunction = SnodeVirtualNetworkConfigFunction;
cb.eventCallback = SnodeEventCallback;
cb.pathCheckFunction = SnodePathCheckFunction;
cb.pathLookupFunction = SnodePathLookupFunction;
_node = new Node(this,(void *)0,&cb,OSUtils::now());
}
// Make sure we can use the primary port, and hunt for one if configured to do so
const int portTrials = (_primaryPort == 0) ? 256 : 1; // if port is 0, pick random
for(int k=0;k<portTrials;++k) {
if (_primaryPort == 0) {
unsigned int randp = 0;
Utils::getSecureRandom(&randp,sizeof(randp));
_primaryPort = 20000 + (randp % 45500);
}
if (_trialBind(_primaryPort)) {
_ports[0] = _primaryPort;
} else {
_primaryPort = 0;
}
}
if (_ports[0] == 0) {
Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR;
_fatalErrorMessage = "cannot bind to local control interface port";
return _termReason;
}
// Attempt to bind to a secondary port chosen from our ZeroTier address.
// This exists because there are buggy NATs out there that fail if more
// than one device behind the same NAT tries to use the same internal
// private address port number. Buggy NATs are a running theme.
_ports[1] = (_secondaryPort == 0) ? 20000 + ((unsigned int)_node->address() % 45500) : _secondaryPort;
for(int i=0;;++i) {
if (i > 1000) {
_ports[1] = 0;
break;
} else if (++_ports[1] >= 65536) {
_ports[1] = 20000;
}
if (_trialBind(_ports[1]))
break;
}
#ifdef ZT_USE_MINIUPNPC
if (_portMappingEnabled) {
// If we're running uPnP/NAT-PMP, bind a *third* port for that. We can't
// use the other two ports for that because some NATs do really funky
// stuff with ports that are explicitly mapped that breaks things.
if (_ports[1]) {
_ports[2] = (_tertiaryPort == 0) ? _ports[1] : _tertiaryPort;
for(int i=0;;++i) {
if (i > 1000) {
_ports[2] = 0;
break;
} else if (++_ports[2] >= 65536) {
_ports[2] = 20000;
}
if (_trialBind(_ports[2]))
break;
}
if (_ports[2]) {
char uniqueName[64];
OSUtils::ztsnprintf(uniqueName,sizeof(uniqueName),"ZeroTier/%.10llx@%u",_node->address(),_ports[2]);
_portMapper = new PortMapper(_ports[2],uniqueName);
}
}
}
#endif
// Join existing networks in networks.d
if (allowNetworkCaching) {
std::vector<std::string> networksDotD(OSUtils::listDirectory((_homePath + ZT_PATH_SEPARATOR_S "networks.d").c_str()));
for(std::vector<std::string>::iterator f(networksDotD.begin());f!=networksDotD.end();++f) {
std::size_t dot = f->find_last_of('.');
if ((dot == 16)&&(f->substr(16) == ".conf"))
_node->join(Utils::hexStrToU64(f->substr(0,dot).c_str()),(void *)0,(void *)0);
}
}
// Main I/O loop
_nextBackgroundTaskDeadline = 0;
int64_t clockShouldBe = OSUtils::now();
_lastRestart = clockShouldBe;
int64_t lastTapMulticastGroupCheck = 0;
int64_t lastBindRefresh = 0;
int64_t lastMultipathModeUpdate = 0;
int64_t lastCleanedPeersDb = 0;
int64_t lastLocalInterfaceAddressCheck = (clockShouldBe - ZT_LOCAL_INTERFACE_CHECK_INTERVAL) + 15000; // do this in 15s to give portmapper time to configure and other things time to settle
for(;;) {
_run_m.lock();
if (!_run) {
_run_m.unlock();
_termReason_m.lock();
_termReason = ONE_NORMAL_TERMINATION;
_termReason_m.unlock();
break;
} else {
_run_m.unlock();
}
const int64_t now = OSUtils::now();
// Attempt to detect sleep/wake events by detecting delay overruns
bool restarted = false;
if ((now > clockShouldBe)&&((now - clockShouldBe) > 10000)) {
_lastRestart = now;
restarted = true;
}
// Refresh bindings in case device's interfaces have changed, and also sync routes to update any shadow routes (e.g. shadow default)
if (((now - lastBindRefresh) >= (_multipathMode ? ZT_BINDER_REFRESH_PERIOD / 8 : ZT_BINDER_REFRESH_PERIOD))||(restarted)) {
lastBindRefresh = now;
unsigned int p[3];
unsigned int pc = 0;
for(int i=0;i<3;++i) {
if (_ports[i])
p[pc++] = _ports[i];
}
_binder.refresh(_phy,p,pc,explicitBind,*this);
}
// Update multipath mode (if needed)
if (((now - lastMultipathModeUpdate) >= ZT_BINDER_REFRESH_PERIOD / 8)||(restarted)) {
lastMultipathModeUpdate = now;
_node->setMultipathMode(_multipathMode);
}
//
generateEventMsgs();
// Run background task processor in core if it's time to do so
int64_t dl = _nextBackgroundTaskDeadline;
if (dl <= now) {
_node->processBackgroundTasks((void *)0,now,&_nextBackgroundTaskDeadline);
dl = _nextBackgroundTaskDeadline;
}
// Sync multicast group memberships
if ((now - lastTapMulticastGroupCheck) >= ZT_TAP_CHECK_MULTICAST_INTERVAL) {
lastTapMulticastGroupCheck = now;
std::vector< std::pair< uint64_t,std::pair< std::vector<MulticastGroup>,std::vector<MulticastGroup> > > > mgChanges;
{
Mutex::Lock _l(_nets_m);
mgChanges.reserve(_nets.size() + 1);
for(std::map<uint64_t,NetworkState>::const_iterator n(_nets.begin());n!=_nets.end();++n) {
if (n->second.tap) {
mgChanges.push_back(std::pair< uint64_t,std::pair< std::vector<MulticastGroup>,std::vector<MulticastGroup> > >(n->first,std::pair< std::vector<MulticastGroup>,std::vector<MulticastGroup> >()));
n->second.tap->scanMulticastGroups(mgChanges.back().second.first,mgChanges.back().second.second);
}
}
}
for(std::vector< std::pair< uint64_t,std::pair< std::vector<MulticastGroup>,std::vector<MulticastGroup> > > >::iterator c(mgChanges.begin());c!=mgChanges.end();++c) {
for(std::vector<MulticastGroup>::iterator m(c->second.first.begin());m!=c->second.first.end();++m)
_node->multicastSubscribe((void *)0,c->first,m->mac().toInt(),m->adi());
for(std::vector<MulticastGroup>::iterator m(c->second.second.begin());m!=c->second.second.end();++m)
_node->multicastUnsubscribe(c->first,m->mac().toInt(),m->adi());
}
}
// Sync information about physical network interfaces
if ((now - lastLocalInterfaceAddressCheck) >= (_multipathMode ? ZT_LOCAL_INTERFACE_CHECK_INTERVAL / 8 : ZT_LOCAL_INTERFACE_CHECK_INTERVAL)) {
lastLocalInterfaceAddressCheck = now;
_node->clearLocalInterfaceAddresses();
#ifdef ZT_USE_MINIUPNPC
if (_portMapper) {
std::vector<InetAddress> mappedAddresses(_portMapper->get());
for(std::vector<InetAddress>::const_iterator ext(mappedAddresses.begin());ext!=mappedAddresses.end();++ext)
_node->addLocalInterfaceAddress(reinterpret_cast<const struct sockaddr_storage *>(&(*ext)));
}
#endif
std::vector<InetAddress> boundAddrs(_binder.allBoundLocalInterfaceAddresses());
for(std::vector<InetAddress>::const_iterator i(boundAddrs.begin());i!=boundAddrs.end();++i)
_node->addLocalInterfaceAddress(reinterpret_cast<const struct sockaddr_storage *>(&(*i)));
}
// Clean peers.d periodically
if ((now - lastCleanedPeersDb) >= 3600000) {
lastCleanedPeersDb = now;
OSUtils::cleanDirectory((_homePath + ZT_PATH_SEPARATOR_S "peers.d").c_str(),now - 2592000000LL); // delete older than 30 days
}
const unsigned long delay = (dl > now) ? (unsigned long)(dl - now) : 100;
clockShouldBe = now + (uint64_t)delay;
_phy.poll(delay);
}
} catch (std::exception &e) {
Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR;
_fatalErrorMessage = std::string("unexpected exception in main thread: ")+e.what();
} catch ( ... ) {
Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR;
_fatalErrorMessage = "unexpected exception in main thread: unknown exception";
}
{
Mutex::Lock _l(_nets_m);
for(std::map<uint64_t,NetworkState>::iterator n(_nets.begin());n!=_nets.end();++n)
delete n->second.tap;
_nets.clear();
}
delete _node;
_node = (Node *)0;
return _termReason;
}
virtual ReasonForTermination reasonForTermination() const
{
Mutex::Lock _l(_termReason_m);
return _termReason;
}
virtual std::string fatalErrorMessage() const
{
Mutex::Lock _l(_termReason_m);
return _fatalErrorMessage;
}
virtual std::string portDeviceName(uint64_t nwid) const
{
Mutex::Lock _l(_nets_m);
std::map<uint64_t,NetworkState>::const_iterator n(_nets.find(nwid));
if ((n != _nets.end())&&(n->second.tap))
return n->second.tap->deviceName();
else return std::string();
}
virtual std::string givenHomePath()
{
return _homePath;
}
void getRoutes(uint64_t nwid, void *routeArray, unsigned int *numRoutes)
{
Mutex::Lock _l(_nets_m);
NetworkState &n = _nets[nwid];
*numRoutes = *numRoutes < n.config.routeCount ? *numRoutes : n.config.routeCount;
for(unsigned int i=0; i<*numRoutes; i++) {
ZT_VirtualNetworkRoute *vnr = (ZT_VirtualNetworkRoute*)routeArray;
memcpy(&vnr[i], &(n.config.routes[i]), sizeof(ZT_VirtualNetworkRoute));
}
}
virtual Node *getNode()
{
return _node;
}
virtual void terminate()
{
_run_m.lock();
_run = false;
_run_m.unlock();
_phy.whack();
}
virtual bool getNetworkSettings(const uint64_t nwid,NetworkSettings &settings) const
{
Mutex::Lock _l(_nets_m);
std::map<uint64_t,NetworkState>::const_iterator n(_nets.find(nwid));
if (n == _nets.end())
return false;
settings = n->second.settings;
return true;
}
// =========================================================================
// Internal implementation methods for control plane, route setup, etc.
// =========================================================================
// Checks if a managed IP or route target is allowed
bool checkIfManagedIsAllowed(const NetworkState &n,const InetAddress &target)
{
if (!n.settings.allowManaged)
return false;
if (n.settings.allowManagedWhitelist.size() > 0) {
bool allowed = false;
for (InetAddress addr : n.settings.allowManagedWhitelist) {
if (addr.containsAddress(target) && addr.netmaskBits() <= target.netmaskBits()) {
allowed = true;
break;
}
}
if (!allowed) return false;
}
if (target.isDefaultRoute())
return n.settings.allowDefault;
switch(target.ipScope()) {
case InetAddress::IP_SCOPE_NONE:
case InetAddress::IP_SCOPE_MULTICAST:
case InetAddress::IP_SCOPE_LOOPBACK:
case InetAddress::IP_SCOPE_LINK_LOCAL:
return false;
case InetAddress::IP_SCOPE_GLOBAL:
return n.settings.allowGlobal;
default:
return true;
}
}
// Apply or update managed IPs for a configured network (be sure n.tap exists)
void syncManagedStuff(NetworkState &n)
{
char ipbuf[64];
// assumes _nets_m is locked
std::vector<InetAddress> newManagedIps;
newManagedIps.reserve(n.config.assignedAddressCount);
for(unsigned int i=0;i<n.config.assignedAddressCount;++i) {
const InetAddress *ii = reinterpret_cast<const InetAddress *>(&(n.config.assignedAddresses[i]));
if (checkIfManagedIsAllowed(n,*ii))
newManagedIps.push_back(*ii);
}
std::sort(newManagedIps.begin(),newManagedIps.end());
newManagedIps.erase(std::unique(newManagedIps.begin(),newManagedIps.end()),newManagedIps.end());
for(std::vector<InetAddress>::iterator ip(n.managedIps.begin());ip!=n.managedIps.end();++ip) {
if (std::find(newManagedIps.begin(),newManagedIps.end(),*ip) == newManagedIps.end()) {
if (!n.tap->removeIp(*ip)) {
fprintf(stderr,"ERROR: unable to remove ip address %s" ZT_EOL_S, ip->toString(ipbuf));
} else {
struct zts_addr_details *ad = new zts_addr_details();
ad->nwid = n.tap->_nwid;
if ((*ip).isV4()) {
struct sockaddr_in *in4 = (struct sockaddr_in*)&(ad->addr);
memcpy(&(in4->sin_addr.s_addr), (*ip).rawIpData(), 4);
_enqueueEvent(ZTS_EVENT_ADDR_REMOVED_IP4, (void*)ad);
}
if ((*ip).isV6()) {
struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&(ad->addr);
memcpy(&(in6->sin6_addr.s6_addr), (*ip).rawIpData(), 16);
_enqueueEvent(ZTS_EVENT_ADDR_REMOVED_IP6, (void*)ad);
}
}
}
}
for(std::vector<InetAddress>::iterator ip(newManagedIps.begin());ip!=newManagedIps.end();++ip) {
if (std::find(n.managedIps.begin(),n.managedIps.end(),*ip) == n.managedIps.end()) {
if (!n.tap->addIp(*ip)) {
fprintf(stderr,"ERROR: unable to add ip address %s" ZT_EOL_S, ip->toString(ipbuf));
} else {
struct zts_addr_details *ad = new zts_addr_details();
ad->nwid = n.tap->_nwid;
if ((*ip).isV4()) {
struct sockaddr_in *in4 = (struct sockaddr_in*)&(ad->addr);
memcpy(&(in4->sin_addr.s_addr), (*ip).rawIpData(), 4);
_enqueueEvent(ZTS_EVENT_ADDR_ADDED_IP4, (void*)ad);
}
if ((*ip).isV6()) {
struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&(ad->addr);
memcpy(&(in6->sin6_addr.s6_addr), (*ip).rawIpData(), 16);
_enqueueEvent(ZTS_EVENT_ADDR_ADDED_IP6, (void*)ad);
}
}
}
}
n.managedIps.swap(newManagedIps);
}
// =========================================================================
// Handlers for Node and Phy<> callbacks
// =========================================================================
inline void phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *localAddr,const struct sockaddr *from,void *data,unsigned long len)
{
if ((len >= 16)&&(reinterpret_cast<const InetAddress *>(from)->ipScope() == InetAddress::IP_SCOPE_GLOBAL))
_lastDirectReceiveFromGlobal = OSUtils::now();
const ZT_ResultCode rc = _node->processWirePacket(
(void *)0,
OSUtils::now(),
reinterpret_cast<int64_t>(sock),
reinterpret_cast<const struct sockaddr_storage *>(from), // Phy<> uses sockaddr_storage, so it'll always be that big
data,
len,
&_nextBackgroundTaskDeadline);
if (ZT_ResultCode_isFatal(rc)) {
char tmp[256];
OSUtils::ztsnprintf(tmp,sizeof(tmp),"fatal error code from processWirePacket: %d",(int)rc);
Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR;
_fatalErrorMessage = tmp;
this->terminate();
}
}
inline void phyOnTcpConnect(PhySocket *sock,void **uptr,bool success) {}
inline void phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from) {}
void phyOnTcpClose(PhySocket *sock,void **uptr) {}
void phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len) {}
inline void phyOnTcpWritable(PhySocket *sock,void **uptr) {}
inline void phyOnFileDescriptorActivity(PhySocket *sock,void **uptr,bool readable,bool writable) {}
inline void phyOnUnixAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN) {}
inline void phyOnUnixClose(PhySocket *sock,void **uptr) {}
inline void phyOnUnixData(PhySocket *sock,void **uptr,void *data,unsigned long len) {}
inline void phyOnUnixWritable(PhySocket *sock,void **uptr) {}
inline int nodeVirtualNetworkConfigFunction(uint64_t nwid,void **nuptr,enum ZT_VirtualNetworkConfigOperation op,const ZT_VirtualNetworkConfig *nwc)
{
Mutex::Lock _l(_nets_m);
NetworkState &n = _nets[nwid];
switch(op) {
case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP:
if (!n.tap) {
char friendlyName[128];
OSUtils::ztsnprintf(friendlyName,sizeof(friendlyName),"ZeroTier One [%.16llx]",nwid);
n.tap = new EthernetTap(
_homePath.c_str(),
MAC(nwc->mac),
nwc->mtu,
(unsigned int)ZT_IF_METRIC,
nwid,
friendlyName,
StapFrameHandler,
(void *)this);
*nuptr = (void *)&n;
}
// After setting up tap, fall through to CONFIG_UPDATE since we also want to do this...
case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_CONFIG_UPDATE:
memcpy(&(n.config),nwc,sizeof(ZT_VirtualNetworkConfig));
if (n.tap) { // sanity check
syncManagedStuff(n);
n.tap->setMtu(nwc->mtu);
} else {
_nets.erase(nwid);
return -999; // tap init failed
}
if (op == ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_CONFIG_UPDATE) { // Prevent junk from ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP
_enqueueEvent(ZTS_EVENT_NETWORK_UPDATE, (void*)prepare_network_details_msg(n));
}
break;
case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DOWN:
case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY:
if (n.tap) { // sanity check
*nuptr = (void *)0;
delete n.tap;
_nets.erase(nwid);
if (allowNetworkCaching) {
if (op == ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY) {
char nlcpath[256];
OSUtils::ztsnprintf(nlcpath,sizeof(nlcpath),"%s" ZT_PATH_SEPARATOR_S "networks.d" ZT_PATH_SEPARATOR_S "%.16llx.local.conf",_homePath.c_str(),nwid);
OSUtils::rm(nlcpath);
}
}
} else {
_nets.erase(nwid);
}
break;
}
return 0;
}
inline void nodeEventCallback(enum ZT_Event event,const void *metaData)
{
// Feed node events into lock-free queue for later dequeuing by the callback thread
switch(event) {
case ZT_EVENT_UP: {
_enqueueEvent(ZTS_EVENT_NODE_UP, NULL);
} break;
case ZT_EVENT_ONLINE: {
struct zts_node_details *nd = new zts_node_details;
nd->address = _node->address();
nd->versionMajor = ZEROTIER_ONE_VERSION_MAJOR;
nd->versionMinor = ZEROTIER_ONE_VERSION_MINOR;
nd->versionRev = ZEROTIER_ONE_VERSION_REVISION;
nd->primaryPort = _primaryPort;
nd->secondaryPort = _secondaryPort;
nd->tertiaryPort = _tertiaryPort;
_enqueueEvent(ZTS_EVENT_NODE_ONLINE, (void*)nd);
} break;
case ZT_EVENT_OFFLINE: {
struct zts_node_details *nd = new zts_node_details;
nd->address = _node->address();
_enqueueEvent(ZTS_EVENT_NODE_OFFLINE, (void*)nd);
} break;
case ZT_EVENT_DOWN: {
struct zts_node_details *nd = new zts_node_details;
nd->address = _node->address();
_enqueueEvent(ZTS_EVENT_NODE_DOWN, (void*)nd);
} break;
case ZT_EVENT_FATAL_ERROR_IDENTITY_COLLISION: {
Mutex::Lock _l(_termReason_m);
_termReason = ONE_IDENTITY_COLLISION;
_fatalErrorMessage = "identity/address collision";
this->terminate();
} break;
case ZT_EVENT_TRACE: {
if (metaData) {
::fprintf(stderr,"%s" ZT_EOL_S,(const char *)metaData);
::fflush(stderr);
}
} break;
default:
break;
}
}
void native_ss_to_zts_ss(struct zts_sockaddr_storage *ss_out, const struct sockaddr_storage *ss_in)
{
if (ss_in->ss_family == AF_INET) {
struct sockaddr_in *s_in4 = (struct sockaddr_in *)ss_in;
struct zts_sockaddr_in *d_in4 = (struct zts_sockaddr_in *)ss_out;
#ifndef __WINDOWS__
d_in4->sin_len = 0; // s_in4->sin_len;
#endif
d_in4->sin_family = ZTS_AF_INET;
d_in4->sin_port = s_in4->sin_port;
memcpy(&(d_in4->sin_addr), &(s_in4->sin_addr), sizeof(s_in4->sin_addr));
}
if (ss_in->ss_family == AF_INET6) {
struct sockaddr_in6 *s_in6 = (struct sockaddr_in6 *)ss_in;
struct zts_sockaddr_in6 *d_in6 = (struct zts_sockaddr_in6 *)ss_out;
#ifndef __WINDOWS__
d_in6->sin6_len = 0; // s_in6->sin6_len;
#endif
d_in6->sin6_family = ZTS_AF_INET6;
d_in6->sin6_port = s_in6->sin6_port;
d_in6->sin6_flowinfo = s_in6->sin6_flowinfo;
memcpy(&(d_in6->sin6_addr), &(s_in6->sin6_addr), sizeof(s_in6->sin6_addr));
d_in6->sin6_scope_id = s_in6->sin6_scope_id;
}
}
struct zts_network_details *prepare_network_details_msg(const NetworkState &n)
{
struct zts_network_details *nd = new zts_network_details();
nd->nwid = n.config.nwid;
nd->mac = n.config.mac;
memcpy(nd->name, n.config.name, sizeof(n.config.name));
nd->status = (ZTS_VirtualNetworkStatus)n.config.status;
nd->type = (ZTS_VirtualNetworkType)n.config.type;
nd->mtu = n.config.mtu;
nd->dhcp = n.config.dhcp;
nd->bridge = n.config.bridge;
nd->broadcastEnabled = n.config.broadcastEnabled;
nd->portError = n.config.portError;
nd->netconfRevision = n.config.netconfRevision;
// Copy and convert address structures
nd->assignedAddressCount = n.config.assignedAddressCount;
for (int i=0; i<n.config.assignedAddressCount; i++) {
native_ss_to_zts_ss(&(nd->assignedAddresses[i]), &(n.config.assignedAddresses[i]));
}
nd->routeCount = n.config.routeCount;
for (int i=0; i<n.config.routeCount; i++) {
native_ss_to_zts_ss(&(nd->routes[i].target), &(n.config.routes[i].target));
native_ss_to_zts_ss(&(nd->routes[i].via), &(n.config.routes[i].via));
nd->routes[i].flags = n.config.routes[i].flags;
nd->routes[i].metric = n.config.routes[i].metric;
}
nd->multicastSubscriptionCount = n.config.multicastSubscriptionCount;
memcpy(nd->multicastSubscriptions, &(n.config.multicastSubscriptions), sizeof(n.config.multicastSubscriptions));
return nd;
}
inline void generateEventMsgs()
{
// Force the ordering of callback messages, these messages are
// only useful if the node and stack are both up and running
if (!_node->online() || !_lwip_is_up()) {
return;
}
// Generate messages to be dequeued by the callback message thread
Mutex::Lock _l(_nets_m);
for(std::map<uint64_t,NetworkState>::iterator n(_nets.begin());n!=_nets.end();++n) {
int mostRecentStatus = n->second.config.status;
VirtualTap *tap = n->second.tap;
uint64_t nwid = n->first;
if (n->second.tap->_networkStatus == mostRecentStatus) {
continue; // No state change
}
switch (mostRecentStatus) {
case ZT_NETWORK_STATUS_NOT_FOUND:
_enqueueEvent(ZTS_EVENT_NETWORK_NOT_FOUND, (void*)prepare_network_details_msg(n->second));
break;
case ZT_NETWORK_STATUS_CLIENT_TOO_OLD:
_enqueueEvent(ZTS_EVENT_NETWORK_CLIENT_TOO_OLD, (void*)prepare_network_details_msg(n->second));
break;
case ZT_NETWORK_STATUS_REQUESTING_CONFIGURATION:
_enqueueEvent(ZTS_EVENT_NETWORK_REQ_CONFIG, (void*)prepare_network_details_msg(n->second));
break;
case ZT_NETWORK_STATUS_OK:
if (tap->hasIpv4Addr() && _lwip_is_netif_up(tap->netif4)) {
_enqueueEvent(ZTS_EVENT_NETWORK_READY_IP4, (void*)prepare_network_details_msg(n->second));
}
if (tap->hasIpv6Addr() && _lwip_is_netif_up(tap->netif6)) {
_enqueueEvent(ZTS_EVENT_NETWORK_READY_IP6, (void*)prepare_network_details_msg(n->second));
}
// In addition to the READY messages, send one OK message
_enqueueEvent(ZTS_EVENT_NETWORK_OK, (void*)prepare_network_details_msg(n->second));
break;
case ZT_NETWORK_STATUS_ACCESS_DENIED:
_enqueueEvent(ZTS_EVENT_NETWORK_ACCESS_DENIED, (void*)prepare_network_details_msg(n->second));
break;
default:
break;
}
n->second.tap->_networkStatus = mostRecentStatus;
}
bool bShouldCopyPeerInfo = false;
int eventCode = 0;
ZT_PeerList *pl = _node->peers();
struct zts_peer_details *pd;
if (pl) {
for(unsigned long i=0;i<pl->peerCount;++i) {
if (!peerCache.count(pl->peers[i].address)) {
// New peer, add status
if (pl->peers[i].pathCount > 0) {
bShouldCopyPeerInfo=true;
eventCode = ZTS_EVENT_PEER_DIRECT;
}
if (pl->peers[i].pathCount == 0) {
bShouldCopyPeerInfo=true;
eventCode = ZTS_EVENT_PEER_RELAY, (void*)pd;
}
}
// Previously known peer, update status
else {
if (peerCache[pl->peers[i].address] < pl->peers[i].pathCount) {
bShouldCopyPeerInfo=true;
eventCode = ZTS_EVENT_PEER_PATH_DISCOVERED, (void*)pd;
}
if (peerCache[pl->peers[i].address] > pl->peers[i].pathCount) {
bShouldCopyPeerInfo=true;
eventCode = ZTS_EVENT_PEER_PATH_DEAD, (void*)pd;
}
if (peerCache[pl->peers[i].address] == 0 && pl->peers[i].pathCount > 0) {
bShouldCopyPeerInfo=true;
eventCode = ZTS_EVENT_PEER_DIRECT, (void*)pd;
}
if (peerCache[pl->peers[i].address] > 0 && pl->peers[i].pathCount == 0) {
bShouldCopyPeerInfo=true;
eventCode = ZTS_EVENT_PEER_RELAY, (void*)pd;
}
}
if (bShouldCopyPeerInfo) {
pd = new zts_peer_details();
memcpy(pd, &(pl->peers[i]), sizeof(struct zts_peer_details));
for (unsigned int j=0; j<pl->peers[i].pathCount; j++) {
native_ss_to_zts_ss(&(pd->paths[j].address), &(pl->peers[i].paths[j].address));
}
_enqueueEvent(eventCode, (void*)pd);
bShouldCopyPeerInfo = false;
}
// Update our cache with most recently observed path count
peerCache[pl->peers[i].address] = pl->peers[i].pathCount;
}
}
_node->freeQueryResult((void *)pl);
}
inline void join(uint64_t nwid)
{
_node->join(nwid, NULL, NULL);
}
inline void leave(uint64_t nwid)
{
_node->leave(nwid, NULL, NULL);
}
inline void nodeStatePutFunction(enum ZT_StateObjectType type,const uint64_t id[2],const void *data,int len)
{
char p[1024];
FILE *f;
bool secure = false;
char dirname[1024];
dirname[0] = 0;
switch(type) {
case ZT_STATE_OBJECT_IDENTITY_PUBLIC:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "identity.public",_homePath.c_str());
break;
case ZT_STATE_OBJECT_IDENTITY_SECRET:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "identity.secret",_homePath.c_str());
secure = true;
break;
case ZT_STATE_OBJECT_PLANET:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "planet",_homePath.c_str());
break;
case ZT_STATE_OBJECT_NETWORK_CONFIG:
if (allowNetworkCaching) {
OSUtils::ztsnprintf(dirname,sizeof(dirname),"%s" ZT_PATH_SEPARATOR_S "networks.d",_homePath.c_str());
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "%.16llx.conf",dirname,(unsigned long long)id[0]);
secure = true;
} else {
return;
}
break;
case ZT_STATE_OBJECT_PEER:
if (allowPeerCaching) {
OSUtils::ztsnprintf(dirname,sizeof(dirname),"%s" ZT_PATH_SEPARATOR_S "peers.d",_homePath.c_str());
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "%.10llx.peer",dirname,(unsigned long long)id[0]);
} else {
return; // Do nothing
}
break;
default:
return;
}
if (len >= 0) {
// Check to see if we've already written this first. This reduces
// redundant writes and I/O overhead on most platforms and has
// little effect on others.
f = fopen(p,"rb");
if (f) {
char buf[65535];
long l = (long)fread(buf,1,sizeof(buf),f);
fclose(f);
if ((l == (long)len)&&(memcmp(data,buf,l) == 0))
return;
}
f = fopen(p,"wb");
if ((!f)&&(dirname[0])) { // create subdirectory if it does not exist
OSUtils::mkdir(dirname);
f = fopen(p,"wb");
}
if (f) {
if (fwrite(data,len,1,f) != 1)
fprintf(stderr,"WARNING: unable to write to file: %s (I/O error)" ZT_EOL_S,p);
fclose(f);
if (secure)
OSUtils::lockDownFile(p,false);
} else {
fprintf(stderr,"WARNING: unable to write to file: %s (unable to open)" ZT_EOL_S,p);
}
} else {
OSUtils::rm(p);
}
}
inline int nodeStateGetFunction(enum ZT_StateObjectType type,const uint64_t id[2],void *data,unsigned int maxlen)
{
char p[4096];
switch(type) {
case ZT_STATE_OBJECT_IDENTITY_PUBLIC:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "identity.public",_homePath.c_str());
break;
case ZT_STATE_OBJECT_IDENTITY_SECRET:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "identity.secret",_homePath.c_str());
break;
case ZT_STATE_OBJECT_PLANET:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "planet",_homePath.c_str());
break;
case ZT_STATE_OBJECT_NETWORK_CONFIG:
if (allowNetworkCaching) {
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "networks.d" ZT_PATH_SEPARATOR_S "%.16llx.conf",_homePath.c_str(),(unsigned long long)id[0]);
}
else {
return -1;
}
break;
case ZT_STATE_OBJECT_PEER:
if (allowPeerCaching) {
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "peers.d" ZT_PATH_SEPARATOR_S "%.10llx.peer",_homePath.c_str(),(unsigned long long)id[0]);
}
break;
default:
return -1;
}
FILE *f = fopen(p,"rb");
if (f) {
int n = (int)fread(data,1,maxlen,f);
fclose(f);
if (n >= 0)
return n;
}
return -1;
}
inline int nodeWirePacketSendFunction(const int64_t localSocket,const struct sockaddr_storage *addr,const void *data,unsigned int len,unsigned int ttl)
{
// Even when relaying we still send via UDP. This way if UDP starts
// working we can instantly "fail forward" to it and stop using TCP
// proxy fallback, which is slow.
if ((localSocket != -1)&&(localSocket != 0)&&(_binder.isUdpSocketValid((PhySocket *)((uintptr_t)localSocket)))) {
if ((ttl)&&(addr->ss_family == AF_INET)) _phy.setIp4UdpTtl((PhySocket *)((uintptr_t)localSocket),ttl);
const bool r = _phy.udpSend((PhySocket *)((uintptr_t)localSocket),(const struct sockaddr *)addr,data,len);
if ((ttl)&&(addr->ss_family == AF_INET)) _phy.setIp4UdpTtl((PhySocket *)((uintptr_t)localSocket),255);
return ((r) ? 0 : -1);
} else {
return ((_binder.udpSendAll(_phy,addr,data,len,ttl)) ? 0 : -1);
}
}
inline void nodeVirtualNetworkFrameFunction(uint64_t nwid,void **nuptr,uint64_t sourceMac,uint64_t destMac,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
{
NetworkState *n = reinterpret_cast<NetworkState *>(*nuptr);
if ((!n)||(!n->tap))
return;
n->tap->put(MAC(sourceMac),MAC(destMac),etherType,data,len);
}
inline int nodePathCheckFunction(uint64_t ztaddr,const int64_t localSocket,const struct sockaddr_storage *remoteAddr)
{
// Make sure we're not trying to do ZeroTier-over-ZeroTier
{
Mutex::Lock _l(_nets_m);
for(std::map<uint64_t,NetworkState>::const_iterator n(_nets.begin());n!=_nets.end();++n) {
if (n->second.tap) {
std::vector<InetAddress> ips(n->second.tap->ips());
for(std::vector<InetAddress>::const_iterator i(ips.begin());i!=ips.end();++i) {
if (i->containsAddress(*(reinterpret_cast<const InetAddress *>(remoteAddr)))) {
return 0;
}
}
}
}
}
/* Note: I do not think we need to scan for overlap with managed routes
* because of the "route forking" and interface binding that we do. This
* ensures (we hope) that ZeroTier traffic will still take the physical
* path even if its managed routes override this for other traffic. Will
* revisit if we see recursion problems. */
// Check blacklists
const Hashtable< uint64_t,std::vector<InetAddress> > *blh = (const Hashtable< uint64_t,std::vector<InetAddress> > *)0;
const std::vector<InetAddress> *gbl = (const std::vector<InetAddress> *)0;
if (remoteAddr->ss_family == AF_INET) {
blh = &_v4Blacklists;
gbl = &_globalV4Blacklist;
} else if (remoteAddr->ss_family == AF_INET6) {
blh = &_v6Blacklists;
gbl = &_globalV6Blacklist;
}
if (blh) {
Mutex::Lock _l(_localConfig_m);
const std::vector<InetAddress> *l = blh->get(ztaddr);
if (l) {
for(std::vector<InetAddress>::const_iterator a(l->begin());a!=l->end();++a) {
if (a->containsAddress(*reinterpret_cast<const InetAddress *>(remoteAddr)))
return 0;
}
}
}
if (gbl) {
for(std::vector<InetAddress>::const_iterator a(gbl->begin());a!=gbl->end();++a) {
if (a->containsAddress(*reinterpret_cast<const InetAddress *>(remoteAddr)))
return 0;
}
}
return 1;
}
inline int nodePathLookupFunction(uint64_t ztaddr,int family,struct sockaddr_storage *result)
{
const Hashtable< uint64_t,std::vector<InetAddress> > *lh = (const Hashtable< uint64_t,std::vector<InetAddress> > *)0;
if (family < 0)
lh = (_node->prng() & 1) ? &_v4Hints : &_v6Hints;
else if (family == AF_INET)
lh = &_v4Hints;
else if (family == AF_INET6)
lh = &_v6Hints;
else return 0;
const std::vector<InetAddress> *l = lh->get(ztaddr);
if ((l)&&(l->size() > 0)) {
memcpy(result,&((*l)[(unsigned long)_node->prng() % l->size()]),sizeof(struct sockaddr_storage));
return 1;
} else return 0;
}
inline void tapFrameHandler(uint64_t nwid,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
{
_node->processVirtualNetworkFrame((void *)0,OSUtils::now(),nwid,from.toInt(),to.toInt(),etherType,vlanId,data,len,&_nextBackgroundTaskDeadline);
}
bool shouldBindInterface(const char *ifname,const InetAddress &ifaddr)
{
#if defined(__linux__) || defined(linux) || defined(__LINUX__) || defined(__linux)
if ((ifname[0] == 'l')&&(ifname[1] == 'o')) return false; // loopback
if ((ifname[0] == 'z')&&(ifname[1] == 't')) return false; // sanity check: zt#
if ((ifname[0] == 't')&&(ifname[1] == 'u')&&(ifname[2] == 'n')) return false; // tun# is probably an OpenVPN tunnel or similar
if ((ifname[0] == 't')&&(ifname[1] == 'a')&&(ifname[2] == 'p')) return false; // tap# is probably an OpenVPN tunnel or similar
#endif
#ifdef __APPLE__
if ((ifname[0] == 'f')&&(ifname[1] == 'e')&&(ifname[2] == 't')&&(ifname[3] == 'h')) return false; // ... as is feth#
if ((ifname[0] == 'l')&&(ifname[1] == 'o')) return false; // loopback
if ((ifname[0] == 'z')&&(ifname[1] == 't')) return false; // sanity check: zt#
if ((ifname[0] == 't')&&(ifname[1] == 'u')&&(ifname[2] == 'n')) return false; // tun# is probably an OpenVPN tunnel or similar
if ((ifname[0] == 't')&&(ifname[1] == 'a')&&(ifname[2] == 'p')) return false; // tap# is probably an OpenVPN tunnel or similar
if ((ifname[0] == 'u')&&(ifname[1] == 't')&&(ifname[2] == 'u')&&(ifname[3] == 'n')) return false; // ... as is utun#
#endif
{
Mutex::Lock _l(_localConfig_m);
for(std::vector<std::string>::const_iterator p(_interfacePrefixBlacklist.begin());p!=_interfacePrefixBlacklist.end();++p) {
if (!strncmp(p->c_str(),ifname,p->length()))
return false;
}
}
{
// Check global blacklists
const std::vector<InetAddress> *gbl = (const std::vector<InetAddress> *)0;
if (ifaddr.ss_family == AF_INET) {
gbl = &_globalV4Blacklist;
} else if (ifaddr.ss_family == AF_INET6) {
gbl = &_globalV6Blacklist;
}
if (gbl) {
Mutex::Lock _l(_localConfig_m);
for(std::vector<InetAddress>::const_iterator a(gbl->begin());a!=gbl->end();++a) {
if (a->containsAddress(ifaddr))
return false;
}
}
}
{
Mutex::Lock _l(_nets_m);
for(std::map<uint64_t,NetworkState>::const_iterator n(_nets.begin());n!=_nets.end();++n) {
if (n->second.tap) {
std::vector<InetAddress> ips(n->second.tap->ips());
for(std::vector<InetAddress>::const_iterator i(ips.begin());i!=ips.end();++i) {
if (i->ipsEqual(ifaddr))
return false;
}
}
}
}
return true;
}
bool _trialBind(unsigned int port)
{
struct sockaddr_in in4;
struct sockaddr_in6 in6;
PhySocket *tb;
memset(&in4,0,sizeof(in4));
in4.sin_family = AF_INET;
in4.sin_port = Utils::hton((uint16_t)port);
tb = _phy.udpBind(reinterpret_cast<const struct sockaddr *>(&in4),(void *)0,0);
if (tb) {
_phy.close(tb,false);
tb = _phy.tcpListen(reinterpret_cast<const struct sockaddr *>(&in4),(void *)0);
if (tb) {
_phy.close(tb,false);
return true;
}
}
memset(&in6,0,sizeof(in6));
in6.sin6_family = AF_INET6;
in6.sin6_port = Utils::hton((uint16_t)port);
tb = _phy.udpBind(reinterpret_cast<const struct sockaddr *>(&in6),(void *)0,0);
if (tb) {
_phy.close(tb,false);
tb = _phy.tcpListen(reinterpret_cast<const struct sockaddr *>(&in6),(void *)0);
if (tb) {
_phy.close(tb,false);
return true;
}
}
return false;
}
};
static int SnodeVirtualNetworkConfigFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t nwid,void **nuptr,enum ZT_VirtualNetworkConfigOperation op,const ZT_VirtualNetworkConfig *nwconf)
{ return reinterpret_cast<NodeServiceImpl *>(uptr)->nodeVirtualNetworkConfigFunction(nwid,nuptr,op,nwconf); }
static void SnodeEventCallback(ZT_Node *node,void *uptr,void *tptr,enum ZT_Event event,const void *metaData)
{ reinterpret_cast<NodeServiceImpl *>(uptr)->nodeEventCallback(event,metaData); }
static void SnodeStatePutFunction(ZT_Node *node,void *uptr,void *tptr,enum ZT_StateObjectType type,const uint64_t id[2],const void *data,int len)
{ reinterpret_cast<NodeServiceImpl *>(uptr)->nodeStatePutFunction(type,id,data,len); }
static int SnodeStateGetFunction(ZT_Node *node,void *uptr,void *tptr,enum ZT_StateObjectType type,const uint64_t id[2],void *data,unsigned int maxlen)
{ return reinterpret_cast<NodeServiceImpl *>(uptr)->nodeStateGetFunction(type,id,data,maxlen); }
static int SnodeWirePacketSendFunction(ZT_Node *node,void *uptr,void *tptr,int64_t localSocket,const struct sockaddr_storage *addr,const void *data,unsigned int len,unsigned int ttl)
{ return reinterpret_cast<NodeServiceImpl *>(uptr)->nodeWirePacketSendFunction(localSocket,addr,data,len,ttl); }
static void SnodeVirtualNetworkFrameFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t nwid,void **nuptr,uint64_t sourceMac,uint64_t destMac,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
{ reinterpret_cast<NodeServiceImpl *>(uptr)->nodeVirtualNetworkFrameFunction(nwid,nuptr,sourceMac,destMac,etherType,vlanId,data,len); }
static int SnodePathCheckFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t ztaddr,int64_t localSocket,const struct sockaddr_storage *remoteAddr)
{ return reinterpret_cast<NodeServiceImpl *>(uptr)->nodePathCheckFunction(ztaddr,localSocket,remoteAddr); }
static int SnodePathLookupFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t ztaddr,int family,struct sockaddr_storage *result)
{ return reinterpret_cast<NodeServiceImpl *>(uptr)->nodePathLookupFunction(ztaddr,family,result); }
static void StapFrameHandler(void *uptr,void *tptr,uint64_t nwid,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
{ reinterpret_cast<NodeServiceImpl *>(uptr)->tapFrameHandler(nwid,from,to,etherType,vlanId,data,len); }
std::string NodeService::platformDefaultHomePath()
{
return OSUtils::platformDefaultHomePath();
}
NodeService *NodeService::newInstance(const char *hp,unsigned int port) { return new NodeServiceImpl(hp,port); }
NodeService::~NodeService() {}
//////////////////////////////////////////////////////////////////////////////
// Service //
//////////////////////////////////////////////////////////////////////////////
NodeService *service;
// Lock to guard access to ZeroTier core service
Mutex serviceLock;
// Starts a ZeroTier NodeService background thread
#if defined(__WINDOWS__)
DWORD WINAPI _runNodeService(LPVOID arg)
#else
void *_runNodeService(void *arg)
#endif
{
#if defined(__APPLE__)
pthread_setname_np(ZTS_SERVICE_THREAD_NAME);
#endif
struct serviceParameters *params = (struct serviceParameters *)arg;
int err;
try {
std::vector<std::string> hpsp(OSUtils::split(params->path.c_str(), ZT_PATH_SEPARATOR_S,"",""));
std::string ptmp;
if (params->path[0] == ZT_PATH_SEPARATOR) {
ptmp.push_back(ZT_PATH_SEPARATOR);
}
for (std::vector<std::string>::iterator pi(hpsp.begin());pi!=hpsp.end();++pi) {
if (ptmp.length() > 0) {
ptmp.push_back(ZT_PATH_SEPARATOR);
}
ptmp.append(*pi);
if ((*pi != ".")&&(*pi != "..")) {
if (OSUtils::mkdir(ptmp) == false) {
DEBUG_ERROR("home path does not exist, and could not create");
err = true;
perror("error\n");
}
}
}
for(;;) {
serviceLock.lock();
service = NodeService::newInstance(params->path.c_str(),params->port);
service->_userProvidedPort = params->port;
service->_userProvidedPath = params->path;
serviceLock.unlock();
switch(service->run()) {
case NodeService::ONE_STILL_RUNNING:
case NodeService::ONE_NORMAL_TERMINATION:
_enqueueEvent(ZTS_EVENT_NODE_NORMAL_TERMINATION,NULL);
break;
case NodeService::ONE_UNRECOVERABLE_ERROR:
DEBUG_ERROR("fatal error: %s", service->fatalErrorMessage().c_str());
err = true;
_enqueueEvent(ZTS_EVENT_NODE_UNRECOVERABLE_ERROR,NULL);
break;
case NodeService::ONE_IDENTITY_COLLISION: {
err = true;
delete service;
service = (NodeService *)0;
std::string oldid;
OSUtils::readFile((params->path + ZT_PATH_SEPARATOR_S + "identity.secret").c_str(),oldid);
if (oldid.length()) {
OSUtils::writeFile((params->path + ZT_PATH_SEPARATOR_S + "identity.secret.saved_after_collision").c_str(),oldid);
OSUtils::rm((params->path + ZT_PATH_SEPARATOR_S + "identity.secret").c_str());
OSUtils::rm((params->path + ZT_PATH_SEPARATOR_S + "identity.public").c_str());
}
_enqueueEvent(ZTS_EVENT_NODE_IDENTITY_COLLISION,NULL);
} continue; // restart!
}
break; // terminate loop -- normally we don't keep restarting
}
serviceLock.lock();
_clrState(ZTS_STATE_NODE_RUNNING);
delete service;
service = (NodeService *)0;
serviceLock.unlock();
_enqueueEvent(ZTS_EVENT_NODE_DOWN,NULL);
}
catch ( ... ) {
DEBUG_ERROR("unexpected exception starting ZeroTier instance");
}
delete params;
zts_delay_ms(ZTS_CALLBACK_PROCESSING_INTERVAL*2);
#ifndef __WINDOWS__
pthread_exit(0);
#endif
return NULL;
}
} // namespace ZeroTier