/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2015 ZeroTier, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "tap.hpp"
#include "sdkutils.hpp"
#include "sdk.h"
#include "defs.h"
#include "debug.h"
#if defined(SDK_LWIP)
#include "lwip.hpp"
#elif defined(SDK_PICOTCP)
#include "picotcp.hpp"
#include "pico_stack.h"
#include "pico_ipv4.h"
#include "pico_icmp4.h"
#include "pico_dev_tap.h"
#include "pico_protocol.h"
#include "pico_socket.h"
#elif defined(SDK_JIP)
#include "jip.hpp"
#endif
#include "Utils.hpp"
#include "OSUtils.hpp"
#include "Constants.hpp"
#include "Phy.hpp"
// LWIP
#include "lwip/priv/tcp_priv.h"
#include "lwip/nd6.h"
#include "lwip/api.h"
#include "lwip/ip.h"
#include "lwip/ip_addr.h"
#include "lwip/ip4_addr.h"
#include "lwip/tcp.h"
#include "lwip/init.h"
#include "lwip/mem.h"
#include "lwip/pbuf.h"
#include "lwip/netif.h"
#include "lwip/udp.h"
#include "lwip/tcp.h"
//#if !defined(__IOS__) && !defined(__ANDROID__) && !defined(__UNITY_3D__) && !defined(__XCODE__)
// const ip_addr_t ip_addr_any = { IPADDR_ANY };
//#endif
namespace ZeroTier {
/*------------------------------------------------------------------------------
------------------------------- picoTCP callbacks ------------------------------
---------- This section represents the "driver" for the picoTCP stack ----------
------------------------------------------------------------------------------*/
#if defined(SDK_PICOTCP)
static struct pico_device picodev;
// Reference to the tap interface
// This is needed due to the fact that there's a lot going on in the tap interface
// that needs to be updated on each of the network stack's callbacks and not every
// network stack provides a mechanism for storing a reference to the tap.
//
// In future releases this will be replaced with a new structure of static pointers that
// will make it easier to maintain multiple active tap interfaces
static NetconEthernetTap *picotap;
static int pico_eth_send(struct pico_device *dev, void *buf, int len);
static int pico_eth_poll(struct pico_device *dev, int loop_score);
// Initialize network stack's interfaces and assign addresses
void pico_init_interface(NetconEthernetTap *tap, const InetAddress &ip)
{
picoTCP_stack *stack = tap->picostack;
DEBUG_INFO();
if (std::find(picotap->_ips.begin(),picotap->_ips.end(),ip) == picotap->_ips.end()) {
picotap->_ips.push_back(ip);
std::sort(picotap->_ips.begin(),picotap->_ips.end());
#if defined(SDK_IPV4)
if(ip.isV4())
{
struct pico_ip4 ipaddr, netmask;
ipaddr.addr = *((u32_t *)ip.rawIpData());
netmask.addr = *((u32_t *)ip.netmask().rawIpData());
uint8_t mac[PICO_SIZE_ETH];
picotap->_mac.copyTo(mac, PICO_SIZE_ETH);
DEBUG_ATTN("mac = %s", picotap->_mac.toString().c_str());
picodev.send = pico_eth_send; // tx
picodev.poll = pico_eth_poll; // rx
picodev.mtu = picotap->_mtu;
if( 0 != stack->__pico_device_init(&(picodev), "p0", mac)) {
DEBUG_ERROR("device init failed");
return;
}
stack->__pico_ipv4_link_add(&(picodev), ipaddr, netmask);
// DEBUG_INFO("device initialized as ipv4_addr = %s", ipv4_str);
// picostack->__pico_icmp4_ping("10.8.8.1", 20, 1000, 10000, 64, cb_ping);
}
#elif defined(SDK_IPV6)
if(ip.isV6())
{
struct pico_ip6 ipaddr, netmask;
char ipv6_str[INET6_ADDRSTRLEN], nm_str[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, ip.rawIpData(), ipv6_str, INET6_ADDRSTRLEN);
inet_ntop(AF_INET6, ip.netmask().rawIpData(), nm_str, INET6_ADDRSTRLEN);
stack->__pico_string_to_ipv6(ipv6_str, ipaddr.addr);
stack->__pico_string_to_ipv6(nm_str, netmask.addr);
stack->__pico_ipv6_link_add(&(picodev), ipaddr, netmask);
picodev.send = pico_eth_send; // tx
picodev.poll = pico_eth_poll; // rx
uint8_t mac[PICO_SIZE_ETH];
picotap->_mac.copyTo(mac, PICO_SIZE_ETH);
DEBUG_ATTN("mac = %s", picotap->_mac.toString().c_str());
if( 0 != stack->__pico_device_init(&(picodev), "p0", mac)) {
DEBUG_ERROR("device init failed");
return;
}
DEBUG_ATTN("device initialized as ipv6_addr = %s", ipv6_str);
}
#endif
}
}
// I/O thread loop
void pico_loop(NetconEthernetTap *tap)
{
DEBUG_INFO();
while(tap->_run)
{
tap->_phy.poll((unsigned long)std::min(500,1000));
usleep(1000);
tap->picostack->__pico_stack_tick();
}
}
// RX packets from network onto internal buffer
// Also notifies the tap service that data can be read, buffer will be emptied by pico_handleRead()
static void pico_cb_tcp_read(NetconEthernetTap *tap, struct pico_socket *s)
{
// TODO: Verify
DEBUG_INFO();
Connection *conn = tap->getConnection(s);
if(conn) {
int r;
do {
//int avail = DEFAULT_TCP_RX_BUF_SZ - conn->rxsz;
//if(avail) {
r = tap->picostack->__pico_socket_read(s, conn->rxbuf + (conn->rxsz), ZT_MAX_MTU);
tap->_phy.setNotifyWritable(conn->sock, true);
DEBUG_INFO("read=%d", r);
if (r > 0) {
conn->rxsz += r;
}
//}
if (r < 0) {
exit(5);
}
}
while(r > 0);
return;
}
DEBUG_ERROR("invalid connection");
}
// TX packets from internal buffer to network
static void pico_cb_tcp_write(NetconEthernetTap *tap, struct pico_socket *s)
{
Connection *conn = tap->getConnection(s);
if(!conn)
DEBUG_ERROR("invalid connection");
if(!conn->txsz)
return;
DEBUG_INFO("txsz=%d bytes ready to be written", conn->txsz);
// Only called from a locked context, no need to lock anything
if(conn->txsz > 0) {
int r = conn->txsz < ZT_MAX_MTU ? conn->txsz : ZT_MAX_MTU;
if((r = tap->picostack->__pico_socket_write(s, &conn->txbuf, r)) < 0) {
DEBUG_ERROR("unable to write to pico_socket=%p", (void*)s);
return;
}
int sz = (conn->txsz)-r;
if(sz)
memmove(&conn->txbuf, (conn->txbuf+r), sz);
conn->txsz -= r;
int max = conn->type == SOCK_STREAM ? DEFAULT_TCP_TX_BUF_SZ : DEFAULT_UDP_TX_BUF_SZ;
DEBUG_TRANS("[TCP TX] ---> :: {TX: %.3f%%, RX: %.3f%%, sock=%p} :: %d bytes",
(float)conn->txsz / (float)max, (float)conn->rxsz / max, (void*)&conn->sock, r);
return;
}
}
// Main callback for TCP connections
static void pico_cb_tcp(uint16_t ev, struct pico_socket *s)
{
Mutex::Lock _l(picotap->_tcpconns_m);
Connection *conn = picotap->getConnection(s);
if(!conn) {
DEBUG_ERROR("invalid connection");
}
if (ev & PICO_SOCK_EV_RD) {
pico_cb_tcp_read(picotap, s);
}
// Accept connection (analogous to lwip_nc_accept)
if (ev & PICO_SOCK_EV_CONN) {
DEBUG_INFO("connection established with server, sock=%p", (void*)(conn->picosock));
uint32_t peer;
uint16_t port;
struct pico_socket *client = picotap->picostack->__pico_socket_accept(s, &peer, &port);
if(!client) {
DEBUG_ERROR("there was an error accepting the connection, sock=%p", (void*)(conn->picosock));
}
ZT_PHY_SOCKFD_TYPE fds[2];
if(socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) {
if(errno < 0) {
picotap->sendReturnValue(conn, -1, errno);
DEBUG_ERROR("unable to create socketpair");
return;
}
}
Connection *newTcpConn = new Connection();
picotap->_Connections.push_back(newTcpConn);
newTcpConn->type = SOCK_STREAM;
newTcpConn->sock = picotap->_phy.wrapSocket(fds[0], newTcpConn);
newTcpConn->picosock = client;
int fd = picotap->_phy.getDescriptor(conn->sock);
if(sock_fd_write(fd, fds[1]) < 0) {
DEBUG_ERROR("error sending new fd to client application");
}
}
if (ev & PICO_SOCK_EV_FIN) {
DEBUG_INFO("socket closed. Exit normally.");
//picotap->__pico_timer_add(2000, compare_results, NULL);
}
if (ev & PICO_SOCK_EV_ERR) {
DEBUG_INFO("socket error received" /*, strerror(pico_err)*/);
//exit(1);
}
if (ev & PICO_SOCK_EV_CLOSE) {
DEBUG_INFO("socket received close from peer - Wrong case if not all client data sent!");
picotap->picostack->__pico_socket_close(s);
picotap->closeConnection(conn);
return;
}
if (ev & PICO_SOCK_EV_WR) {
pico_cb_tcp_write(picotap, s);
}
}
// Called when an incoming ping is received
/*
static void pico_cb_ping(struct pico_icmp4_stats *s)
{
DEBUG_INFO();
char host[30];
picotap->picostack->__pico_ipv4_to_string(host, s->dst.addr);
if (s->err == 0) {
printf("%lu bytes from %s: icmp_req=%lu ttl=%lu time=%lu ms\n", s->size,
host, s->seq, s->ttl, (long unsigned int)s->time);
} else {
printf("PING %lu to %s: Error %d\n", s->seq, host, s->err);
}
}
*/
// Sends data to the tap device (in our case, the ZeroTier service)
static int pico_eth_send(struct pico_device *dev, void *buf, int len)
{
DEBUG_INFO("len=%d", len);
struct eth_hdr *ethhdr;
ethhdr = (struct eth_hdr *)buf;
MAC src_mac;
MAC dest_mac;
src_mac.setTo(ethhdr->src.addr, 6);
dest_mac.setTo(ethhdr->dest.addr, 6);
picotap->_handler(picotap->_arg,picotap->_nwid,src_mac,dest_mac,
Utils::ntoh((uint16_t)ethhdr->type),0, ((char*)buf) + sizeof(struct eth_hdr),len - sizeof(struct eth_hdr));
return len;
}
// Receives data from the tap device and encapsulates it into a ZeroTier ethernet frame and places it in a locked memory buffer
void pico_rx(NetconEthernetTap *tap, const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len)
{
// DEBUG_INFO();
// Since picoTCP only allows the reception of frames from within the polling function, we
// must enqueue each frame into a memory structure shared by both threads. This structure will
Mutex::Lock _l(tap->_pico_frame_rxbuf_m);
if(len > ((1024 * 1024) - tap->pico_frame_rxbuf_tot)) {
DEBUG_ERROR("dropping packet (len = %d) - not enough space left on RX frame buffer", len);
return;
}
//if(len != memcpy(pico_frame_rxbuf, data, len)) {
// DEBUG_ERROR("dropping packet (len = %d) - unable to copy contents of frame to RX frame buffer", len);
// return;
//}
// assemble new eth header
struct eth_hdr ethhdr;
from.copyTo(ethhdr.src.addr, 6);
to.copyTo(ethhdr.dest.addr, 6);
ethhdr.type = Utils::hton((uint16_t)etherType);
int newlen = len+sizeof(struct eth_hdr);
memcpy(tap->pico_frame_rxbuf + tap->pico_frame_rxbuf_tot, &newlen, sizeof(newlen)); // size of frame
memcpy(tap->pico_frame_rxbuf + tap->pico_frame_rxbuf_tot + sizeof(newlen), ðhdr, sizeof(ethhdr)); // new eth header
memcpy(tap->pico_frame_rxbuf + tap->pico_frame_rxbuf_tot + sizeof(newlen) + sizeof(ethhdr), data, len); // frame data
tap->pico_frame_rxbuf_tot += len + sizeof(len) + sizeof(ethhdr);
// DEBUG_INFO("RX frame buffer %3f full", (float)pico_frame_rxbuf_tot / (float)(1024 * 1024));
DEBUG_INFO("len=%d", len);
}
// Is called periodically by the stack, this removes data from the locked memory buffer and feeds it into the stack.
// A maximum of 'loop_score' frames can be processed in each call
static int pico_eth_poll(struct pico_device *dev, int loop_score)
{
// DEBUG_EXTRA();
// OPTIMIZATION: The copy logic and/or buffer structure should be reworked for better performance after the BETA
// NetconEthernetTap *tap = (NetconEthernetTap*)netif->state;
Mutex::Lock _l(picotap->_pico_frame_rxbuf_m);
unsigned char frame[ZT_MAX_MTU];
uint32_t len;
while (picotap->pico_frame_rxbuf_tot > 0) {
memset(frame, 0, sizeof(frame));
len = 0;
memcpy(&len, picotap->pico_frame_rxbuf, sizeof(len)); // get frame len
memcpy(frame, picotap->pico_frame_rxbuf + sizeof(len), len); // get frame data
memmove(picotap->pico_frame_rxbuf, picotap->pico_frame_rxbuf + sizeof(len) + len, ZT_MAX_MTU-(sizeof(len) + len));
picotap->picostack->__pico_stack_recv(dev, (uint8_t*)frame, len);
picotap->pico_frame_rxbuf_tot-=(sizeof(len) + len);
// DEBUG_EXTRA("RX frame buffer %3f full", (float)(picotap->pico_frame_rxbuf_tot) / (float)(MAX_PICO_FRAME_RX_BUF_SZ));
loop_score--;
}
return loop_score;
}
// Creates a new pico_socket and Connection object to represent a new connection to be.
static Connection *pico_handleSocket(PhySocket *sock, void **uptr, struct socket_st* socket_rpc)
{
DEBUG_INFO();
struct pico_socket * psock;
#if defined(SDK_IPV4)
psock = picotap->picostack->__pico_socket_open(PICO_PROTO_IPV4, PICO_PROTO_TCP, &pico_cb_tcp);
#elif defined(SDK_IPV6)
psock = picotap->picostack->__pico_socket_open(PICO_PROTO_IPV6, PICO_PROTO_TCP, &pico_cb_tcp);
#endif
if(psock) {
DEBUG_ATTN("psock = %p", (void*)psock);
Connection * newConn = new Connection();
*uptr = newConn;
newConn->type = socket_rpc->socket_type;
newConn->sock = sock;
newConn->local_addr = NULL;
newConn->peer_addr = NULL;
newConn->picosock = psock;
picotap->_Connections.push_back(newConn);
return newConn;
}
else {
DEBUG_ERROR("failed to create pico_socket");
}
return NULL;
}
// Writes data from the I/O buffer to the network stack
static void pico_handleWrite(Connection *conn)
{
DEBUG_INFO();
if(!conn || !conn->picosock) {
DEBUG_ERROR(" invalid connection");
return;
}
int r, max_write_len = conn->txsz < ZT_MAX_MTU ? conn->txsz : ZT_MAX_MTU;
if((r = picotap->picostack->__pico_socket_write(conn->picosock, &conn->txbuf, max_write_len)) < 0) {
DEBUG_ERROR("unable to write to pico_socket(%p)", (void*)&(conn->picosock));
return;
}
/*
if(pico_err == PICO_ERR_EINVAL)
DEBUG_ERROR("PICO_ERR_EINVAL - invalid argument");
if(pico_err == PICO_ERR_EIO)
DEBUG_ERROR("PICO_ERR_EIO - input/output error");
if(pico_err == PICO_ERR_ENOTCONN)
DEBUG_ERROR("PICO_ERR_ENOTCONN - the socket is not connected");
if(pico_err == PICO_ERR_ESHUTDOWN)
DEBUG_ERROR("PICO_ERR_ESHUTDOWN - cannot send after transport endpoint shutdown");
if(pico_err == PICO_ERR_EADDRNOTAVAIL)
DEBUG_ERROR("PICO_ERR_EADDRNOTAVAIL - address not available");
if(pico_err == PICO_ERR_EHOSTUNREACH)
DEBUG_ERROR("PICO_ERR_EHOSTUNREACH - host is unreachable");
if(pico_err == PICO_ERR_ENOMEM)
DEBUG_ERROR("PICO_ERR_ENOMEM - not enough space");
if(pico_err == PICO_ERR_EAGAIN)
DEBUG_ERROR("PICO_ERR_EAGAIN - resource temporarily unavailable");
*/
// adjust buffer
int sz = (conn->txsz)-r;
if(sz)
memmove(&conn->txbuf, (conn->txbuf+r), sz);
conn->txsz -= r;
int max = conn->type == SOCK_STREAM ? DEFAULT_TCP_TX_BUF_SZ : DEFAULT_UDP_TX_BUF_SZ;
DEBUG_TRANS("[TCP TX] ---> :: {TX: %.3f%%, RX: %.3f%%, sock=%p} :: %d bytes",
(float)conn->txsz / (float)max, (float)conn->rxsz / max, (void*)&conn->sock, r);
}
// Instructs the stack to connect to a remote host
static void pico_handleConnect(PhySocket *sock, PhySocket *rpcSock, Connection *conn, struct connect_st* connect_rpc)
{
DEBUG_INFO();
if(conn->picosock) {
struct sockaddr_in *addr = (struct sockaddr_in *) &connect_rpc->addr;
int ret;
// TODO: Rewrite this
#if defined(SDK_IPV4)
struct pico_ip4 zaddr;
struct sockaddr_in *in4 = (struct sockaddr_in*)&connect_rpc->addr;
char ipv4_str[INET_ADDRSTRLEN];
inet_ntop(AF_INET, &(in4->sin_addr), ipv4_str, INET_ADDRSTRLEN);
picotap->picostack->__pico_string_to_ipv4(ipv4_str, &(zaddr.addr));
DEBUG_ATTN("addr=%s:%d", ipv4_str, addr->sin_port);
ret = picotap->picostack->__pico_socket_connect(conn->picosock, &zaddr, addr->sin_port);
#elif defined(SDK_IPV6) // "fd56:5799:d8f6:1238:8c99:9322:30ce:418a"
struct pico_ip6 zaddr;
struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&connect_rpc->addr;
char ipv6_str[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &(in6->sin6_addr), ipv6_str, INET6_ADDRSTRLEN);
picotap->picostack->__pico_string_to_ipv6(ipv6_str, zaddr.addr);
DEBUG_ATTN("addr=%s:%d", ipv6_str, addr->sin_port);
ret = picotap->picostack->__pico_socket_connect(conn->picosock, &zaddr, addr->sin_port);
#endif
if(ret == PICO_ERR_EPROTONOSUPPORT) {
DEBUG_ERROR("PICO_ERR_EPROTONOSUPPORT");
}
if(ret == PICO_ERR_EINVAL) {
DEBUG_ERROR("PICO_ERR_EINVAL");
}
if(ret == PICO_ERR_EHOSTUNREACH) {
DEBUG_ERROR("PICO_ERR_EHOSTUNREACH");
}
picotap->sendReturnValue(rpcSock, 0, ERR_OK);
}
}
// Instructs the stack to bind to a given address
static void pico_handleBind(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct bind_st *bind_rpc)
{
DEBUG_INFO();
Connection *conn = picotap->getConnection(sock);
if(!sock) {
DEBUG_ERROR("invalid connection");
return;
}
struct sockaddr_in *addr = (struct sockaddr_in *) &bind_rpc->addr;
int ret;
// TODO: Rewrite this
#if defined(SDK_IPV4)
struct pico_ip4 zaddr;
struct sockaddr_in *in4 = (struct sockaddr_in*)&bind_rpc->addr;
char ipv4_str[INET_ADDRSTRLEN];
inet_ntop(AF_INET, &(in4->sin_addr), ipv4_str, INET_ADDRSTRLEN);
picotap->picostack->__pico_string_to_ipv4(ipv4_str, &(zaddr.addr));
DEBUG_ATTN("addr=%s", ipv4_str/*, ntohs((uint16_t*)&(addr->sin_port))*/);
ret = picotap->picostack->__pico_socket_bind(conn->picosock, &zaddr, (uint16_t*)&(addr->sin_port));
#elif defined(SDK_IPV6)
struct pico_ip6 zaddr;
struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&bind_rpc->addr;
char ipv6_str[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &(in6->sin6_addr), ipv6_str, INET6_ADDRSTRLEN);
picotap->picostack->__pico_string_to_ipv6(ipv6_str, zaddr.addr);
DEBUG_ATTN("addr=%s", ipv6_str/*, ntohs((uint16_t*)&(addr->sin_port))*/);
ret = picotap->picostack->__pico_socket_bind(conn->picosock, &zaddr, (uint16_t*)&(addr->sin_port));
#endif
if(ret < 0) {
DEBUG_ERROR("unable to bind pico_socket(%p)", (void*)(conn->picosock));
if(ret == PICO_ERR_EINVAL) {
DEBUG_ERROR("PICO_ERR_EINVAL - invalid argument");
picotap->sendReturnValue(rpcSock, -1, EINVAL);
}
if(ret == PICO_ERR_ENOMEM) {
DEBUG_ERROR("PICO_ERR_ENOMEM - not enough space");
picotap->sendReturnValue(rpcSock, -1, ENOMEM);
}
if(ret == PICO_ERR_ENXIO) {
DEBUG_ERROR("PICO_ERR_ENXIO - no such device or address");
picotap->sendReturnValue(rpcSock, -1, ENXIO);
}
}
picotap->sendReturnValue(rpcSock, ERR_OK, ERR_OK); // success
}
// Puts a pico_socket into a listening state to receive incoming connection requests
static void pico_handleListen(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct listen_st *listen_rpc)
{
Connection *conn = picotap->getConnection(sock);
DEBUG_ATTN("conn = %p", (void*)conn);
if(!sock || !conn) {
DEBUG_ERROR("invalid connection");
return;
}
int ret, backlog = 1;
if((ret = picotap->picostack->__pico_socket_listen(conn->picosock, backlog)) < 0)
{
if(ret == PICO_ERR_EINVAL) {
DEBUG_ERROR("PICO_ERR_EINVAL - invalid argument");
picotap->sendReturnValue(rpcSock, -1, EINVAL);
}
if(ret == PICO_ERR_EISCONN) {
DEBUG_ERROR("PICO_ERR_EISCONN - socket is connected");
picotap->sendReturnValue(rpcSock, -1, EISCONN);
}
}
picotap->sendReturnValue(rpcSock, ERR_OK, ERR_OK); // success
}
// Feeds data into the client socket from the I/O buffer associated with the connection
static void pico_handleRead(PhySocket *sock,void **uptr,bool lwip_invoked)
{
// DEBUG_INFO();
Connection *conn = picotap->getConnection(sock);
if(conn && conn->rxsz) {
float max = conn->type == SOCK_STREAM ? (float)DEFAULT_TCP_RX_BUF_SZ : (float)DEFAULT_UDP_RX_BUF_SZ;
long n = picotap->_phy.streamSend(conn->sock, conn->rxbuf, /* ZT_MAX_MTU */ conn->rxsz);
// extract address and payload size info
if(conn->type==SOCK_DGRAM) {
int payload_sz, addr_sz_offset = sizeof(struct sockaddr_storage);
memcpy(&payload_sz, conn->rxbuf + addr_sz_offset, sizeof(int));
struct sockaddr_storage addr;
memcpy(&addr, conn->rxbuf, addr_sz_offset);
// adjust buffer
if(conn->rxsz-n > 0) // If more remains on buffer
memcpy(conn->rxbuf, conn->rxbuf+ZT_MAX_MTU, conn->rxsz - ZT_MAX_MTU);
conn->rxsz -= ZT_MAX_MTU;
}
if(conn->type==SOCK_STREAM) {
//int payload_sz, addr_sz_offset = sizeof(struct sockaddr_storage);
//memcpy(&payload_sz, conn->rxbuf + addr_sz_offset, sizeof(int));
//struct sockaddr_storage addr;
//memcpy(&addr, conn->rxbuf, addr_sz_offset);
// adjust buffer
if(conn->rxsz-n > 0) // If more remains on buffer
memcpy(conn->rxbuf, conn->rxbuf+n, conn->rxsz - n);
conn->rxsz -= n;
DEBUG_INFO("rxsz=%d", conn->rxsz);
}
if(n) {
//DEBUG_INFO("wrote %d bytes to client application", n);
if(conn->type==SOCK_STREAM) { // Only acknolwedge receipt of TCP packets
DEBUG_TRANS("[TCP RX] <--- :: {TX: %.3f%%, RX: %.3f%%, sock=%p} :: %ld bytes",
(float)conn->txsz / max, (float)conn->rxsz / max, (void*)conn->sock, n);
}
picotap->_phy.setNotifyWritable(conn->sock, true);
}
if(!n || !(conn->rxsz)) {
picotap->_phy.setNotifyWritable(conn->sock, false);
}
}
}
// Closes a pico_socket
/*
static void pico_handleClose(Connection *conn)
{
DEBUG_INFO();
int ret;
if(conn && conn->picosock) {
if((ret = picotap->picostack->__pico_socket_close(conn->picosock)) < 0) {
DEBUG_ERROR("error closing pico_socket(%p)", (void*)(conn->picosock));
// sendReturnValue()
}
return;
}
DEBUG_ERROR("invalid connection or pico_socket");
}
*/
#endif // SDK_PICOTCP
/*------------------------------------------------------------------------------
-------------------------------- Tap Service ----------------------------------
------------------------------------------------------------------------------*/
#if SDK_LWIP
static err_t tapif_init(struct netif *netif)
{
// Actual init functionality is in addIp() of tap
return ERR_OK;
}
/*
* Outputs data from the pbuf queue to the interface
*/
static err_t low_level_output(struct netif *netif, struct pbuf *p)
{
struct pbuf *q;
char buf[ZT_MAX_MTU+32];
char *bufptr;
int totalLength = 0;
ZeroTier::NetconEthernetTap *tap = (ZeroTier::NetconEthernetTap*)netif->state;
bufptr = buf;
// Copy data from each pbuf, one at a time
for(q = p; q != NULL; q = q->next) {
memcpy(bufptr, q->payload, q->len);
bufptr += q->len;
totalLength += q->len;
}
// [Send packet to network]
// Split ethernet header and feed into handler
struct eth_hdr *ethhdr;
ethhdr = (struct eth_hdr *)buf;
ZeroTier::MAC src_mac;
ZeroTier::MAC dest_mac;
src_mac.setTo(ethhdr->src.addr, 6);
dest_mac.setTo(ethhdr->dest.addr, 6);
tap->_handler(tap->_arg,tap->_nwid,src_mac,dest_mac,
Utils::ntoh((uint16_t)ethhdr->type),0,buf + sizeof(struct eth_hdr),totalLength - sizeof(struct eth_hdr));
return ERR_OK;
}
#endif
// ---------------------------------------------------------------------------
NetconEthernetTap::NetconEthernetTap(
const char *homePath,
const MAC &mac,
unsigned int mtu,
unsigned int metric,
uint64_t nwid,
const char *friendlyName,
void (*handler)(void *,uint64_t,const MAC &,const MAC &,unsigned int,unsigned int,const void *,unsigned int),
void *arg) :
_homePath(homePath),
_mac(mac),
_mtu(mtu),
_nwid(nwid),
_handler(handler),
_arg(arg),
_phy(this,false,true),
_unixListenSocket((PhySocket *)0),
_enabled(true),
_run(true)
{
sockstate = -1;
char sockPath[4096],stackPath[4096];
Utils::snprintf(sockPath,sizeof(sockPath),"%s%snc_%.16llx",homePath,ZT_PATH_SEPARATOR_S,_nwid,ZT_PATH_SEPARATOR_S,(unsigned long long)nwid);
_dev = sockPath; // in SDK mode, set device to be just the network ID
// SIP-0
// Load and initialize network stack library
#if defined(SDK_LWIP)
Utils::snprintf(stackPath,sizeof(stackPath),"%s%sliblwip.so",homePath,ZT_PATH_SEPARATOR_S);
lwipstack = new lwIP_stack(stackPath);
if(!lwipstack) {
DEBUG_ERROR("unable to dynamically load a new instance of (%s) (searched ZeroTier home path)", stackPath);
throw std::runtime_error("");
}
lwipstack->__lwip_init();
DEBUG_EXTRA("network stack initialized (%p)", lwipstack);
#elif defined(SDK_PICOTCP)
Utils::snprintf(stackPath,sizeof(stackPath),"%s%slibpicotcp.so",homePath,ZT_PATH_SEPARATOR_S);
picostack = new picoTCP_stack(stackPath);
if(!picostack) {
DEBUG_ERROR("unable to dynamically load a new instance of (%s) (searched ZeroTier home path)", stackPath);
throw std::runtime_error("");
}
picostack->__pico_stack_init();
DEBUG_EXTRA("network stack initialized (%p)", picostack);
#elif defined(SDK_JIP)
Utils::snprintf(stackPath,sizeof(stackPath),"%s%slibjip.so",homePath,ZT_PATH_SEPARATOR_S);
jipstack = new jip_stack(stackPath);
#endif
_unixListenSocket = _phy.unixListen(sockPath,(void *)this);
DEBUG_INFO("tap initialized on: path=%s", sockPath);
if (!_unixListenSocket)
DEBUG_ERROR("unable to bind to: path=%s", sockPath);
_thread = Thread::start(this);
}
NetconEthernetTap::~NetconEthernetTap()
{
_run = false;
_phy.whack();
_phy.whack(); // TODO: Rationale?
Thread::join(_thread);
_phy.close(_unixListenSocket,false);
#if defined(SDK_LWIP)
delete lwipstack;
#endif
#if defined(SDK_PICOTCP)
delete picostack;
#endif
#if defined(SDK_JIP)
delete jipstack;
#endif
}
void NetconEthernetTap::setEnabled(bool en)
{
_enabled = en;
}
bool NetconEthernetTap::enabled() const
{
return _enabled;
}
void NetconEthernetTap::lwIP_init_interface(const InetAddress &ip)
{
#if defined(SDK_LWIP)
Mutex::Lock _l(_ips_m);
if (std::find(_ips.begin(),_ips.end(),ip) == _ips.end()) {
_ips.push_back(ip);
std::sort(_ips.begin(),_ips.end());
#if defined(SDK_IPV4)
if (ip.isV4()) {
// Set IP
static ip_addr_t ipaddr, netmask, gw;
IP4_ADDR(&gw,127,0,0,1);
ipaddr.addr = *((u32_t *)ip.rawIpData());
netmask.addr = *((u32_t *)ip.netmask().rawIpData());
lwipstack->__netif_add(&interface,&ipaddr, &netmask, &gw, NULL, tapif_init, lwipstack->_ethernet_input);
interface.state = this;
interface.output = lwipstack->_etharp_output;
_mac.copyTo(interface.hwaddr, 6);
interface.mtu = _mtu;
interface.name[0] = 'l';
interface.name[1] = '4';
interface.linkoutput = low_level_output;
interface.hwaddr_len = 6;
interface.flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_IGMP | NETIF_FLAG_LINK_UP | NETIF_FLAG_UP;
lwipstack->__netif_set_default(&interface);
lwipstack->__netif_set_up(&interface);
DEBUG_INFO("addr=%s, netmask=%s", ip.toString().c_str(), ip.netmask().toString().c_str());
}
#endif
#if defined(SDK_IPV6)
if(ip.isV6()) {
DEBUG_INFO("local_addr=%s", ip.toString().c_str());
static ip6_addr_t addr6;
struct sockaddr_in6 in6;
memcpy(in6.sin6_addr.s6_addr,ip.rawIpData(),16);
in6_to_ip6((ip6_addr *)&addr6, &in6);
interface6.mtu = _mtu;
interface6.name[0] = 'l';
interface6.name[1] = '6';
interface6.hwaddr_len = 6;
interface6.linkoutput = low_level_output;
interface6.ip6_autoconfig_enabled = 1;
_mac.copyTo(interface6.hwaddr, interface6.hwaddr_len);
lwipstack->__netif_create_ip6_linklocal_address(&interface6, 1);
lwipstack->__netif_add(&interface6, NULL, tapif_init, lwipstack->_ethernet_input);
lwipstack->__netif_set_default(&interface6);
lwipstack->__netif_set_up(&interface6);
netif_ip6_addr_set_state(&interface6, 1, IP6_ADDR_TENTATIVE);
ip6_addr_copy(ip_2_ip6(interface6.ip6_addr[1]), addr6);
interface6.output_ip6 = lwipstack->_ethip6_output;
interface6.state = this;
interface6.flags = NETIF_FLAG_LINK_UP | NETIF_FLAG_UP;
DEBUG_INFO("addr=%s, netmask=%s", ip.toString().c_str(), ip.netmask().toString().c_str());
}
#endif
}
#endif
}
void NetconEthernetTap::jip_init_interface(const InetAddress &ip)
{
// will be similar to lwIP initialization process
}
bool NetconEthernetTap::addIp(const InetAddress &ip)
{
// SIP-1
// Initialize network stack's interface, assign addresses
#if defined(SDK_LWIP)
lwIP_init_interface(ip);
#elif defined(SDK_PICOTCP)
picotap = this;
pico_init_interface(this, ip);
#elif defined(SDK_JIP)
jip_init_interface(ip);
#endif
return true;
}
bool NetconEthernetTap::removeIp(const InetAddress &ip)
{
Mutex::Lock _l(_ips_m);
std::vector::iterator i(std::find(_ips.begin(),_ips.end(),ip));
if (i == _ips.end())
return false;
_ips.erase(i);
if (ip.isV4()) {
// TODO: dealloc from LWIP
}
return true;
}
std::vector NetconEthernetTap::ips() const
{
Mutex::Lock _l(_ips_m);
return _ips;
}
void NetconEthernetTap::lwIP_rx(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len)
{
#if defined(SDK_LWIP)
// DEBUG_EXTRA();
struct pbuf *p,*q;
if (!_enabled)
return;
struct eth_hdr ethhdr;
from.copyTo(ethhdr.src.addr, 6);
to.copyTo(ethhdr.dest.addr, 6);
ethhdr.type = Utils::hton((uint16_t)etherType);
p = lwipstack->__pbuf_alloc(PBUF_RAW, len+sizeof(struct eth_hdr), PBUF_POOL);
if (p != NULL) {
const char *dataptr = reinterpret_cast(data);
// First pbuf gets ethernet header at start
q = p;
if (q->len < sizeof(ethhdr)) {
DEBUG_ERROR("dropped packet: first pbuf smaller than ethernet header");
return;
}
memcpy(q->payload,ðhdr,sizeof(ethhdr));
memcpy((char*)q->payload + sizeof(ethhdr),dataptr,q->len - sizeof(ethhdr));
dataptr += q->len - sizeof(ethhdr);
// Remaining pbufs (if any) get rest of data
while ((q = q->next)) {
memcpy(q->payload,dataptr,q->len);
dataptr += q->len;
}
}
else {
DEBUG_ERROR("dropped packet: no pbufs available");
return;
}
{
#if defined(SDK_IPV6)
if(interface6.input(p, &interface6) != ERR_OK) {
DEBUG_ERROR("error while feeding frame into stack interface6");
}
#endif
#if defined(SDK_IPV4)
if(interface.input(p, &interface) != ERR_OK) {
DEBUG_ERROR("error while feeding frame into stack interface");
}
#endif
}
#endif
}
void NetconEthernetTap::jip_rx(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len)
{
DEBUG_INFO();
}
void NetconEthernetTap::put(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len)
{
// DEBUG_EXTRA("RX packet: len=%d, etherType=%d", len, etherType);
// SIP-
// RX packet
#if defined(SDK_LWIP)
lwIP_rx(from,to,etherType,data,len);
#elif defined(SDK_PICOTCP)
pico_rx(this, from,to,etherType,data,len);
#elif defined(SDK_JIP)
jip_rx(from,to,etherType,data,len);
#endif
}
std::string NetconEthernetTap::deviceName() const
{
return _dev;
}
void NetconEthernetTap::setFriendlyName(const char *friendlyName) {
}
void NetconEthernetTap::scanMulticastGroups(std::vector &added,std::vector &removed)
{
std::vector newGroups;
Mutex::Lock _l(_multicastGroups_m);
// TODO: get multicast subscriptions from LWIP
std::vector allIps(ips());
for(std::vector::iterator ip(allIps.begin());ip!=allIps.end();++ip)
newGroups.push_back(MulticastGroup::deriveMulticastGroupForAddressResolution(*ip));
std::sort(newGroups.begin(),newGroups.end());
std::unique(newGroups.begin(),newGroups.end());
for(std::vector::iterator m(newGroups.begin());m!=newGroups.end();++m) {
if (!std::binary_search(_multicastGroups.begin(),_multicastGroups.end(),*m))
added.push_back(*m);
}
for(std::vector::iterator m(_multicastGroups.begin());m!=_multicastGroups.end();++m) {
if (!std::binary_search(newGroups.begin(),newGroups.end(),*m))
removed.push_back(*m);
}
_multicastGroups.swap(newGroups);
}
void NetconEthernetTap::lwIP_loop()
{
#if defined(SDK_LWIP)
DEBUG_INFO();
uint64_t prev_tcp_time = 0, prev_status_time = 0, prev_discovery_time = 0;
// Main timer loop
while (_run) {
uint64_t now = OSUtils::now();
uint64_t since_tcp = now - prev_tcp_time;
uint64_t since_discovery = now - prev_discovery_time;
uint64_t since_status = now - prev_status_time;
uint64_t tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL;
uint64_t discovery_remaining = 5000;
#if defined(LWIP_IPV6)
#define DISCOVERY_INTERVAL 1000 // fuck you
#elif
#define DISCOVERY_INTERVAL ARP_TMR_INTERVAL
#endif
// Connection prunning
if (since_status >= STATUS_TMR_INTERVAL) {
prev_status_time = now;
for(size_t i=0;i<_Connections.size();++i) {
if(!_Connections[i]->sock || _Connections[i]->type != SOCK_STREAM)
continue;
int fd = _phy.getDescriptor(_Connections[i]->sock);
// DEBUG_INFO(" tap_thread(): tcp\\jobs = {%d, %d}\n", _Connection.size(), jobmap.size());
// If there's anything on the RX buf, set to notify in case we stalled
if(_Connections[i]->rxsz > 0)
_phy.setNotifyWritable(_Connections[i]->sock, true);
fcntl(fd, F_SETFL, O_NONBLOCK);
unsigned char tmpbuf[BUF_SZ];
ssize_t n = read(fd,&tmpbuf,BUF_SZ);
if(_Connections[i]->TCP_pcb->state == SYN_SENT) {
DEBUG_EXTRA(" should finish or be removed soon, sock=%p, state=SYN_SENT",
(void*)&(_Connections[i]->sock));
}
if((n < 0 && errno != EAGAIN) || (n == 0 && errno == EAGAIN)) {
//DEBUG_INFO(" closing sock (%x)", (void*)_Connections[i]->sock);
closeConnection(_Connections[i]->sock);
} else if (n > 0) {
DEBUG_INFO(" data read during connection check (%ld bytes)", n);
phyOnUnixData(_Connections[i]->sock,_phy.getuptr(_Connections[i]->sock),&tmpbuf,n);
}
}
}
// Main TCP/ETHARP timer section
if (since_tcp >= ZT_LWIP_TCP_TIMER_INTERVAL) {
prev_tcp_time = now;
lwipstack->__tcp_tmr();
// FIXME: could be removed or refactored?
// Makeshift poll
for(size_t i=0;i<_Connections.size();++i) {
if(_Connections[i]->txsz > 0){
handleWrite(_Connections[i]);
}
}
} else {
tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL - since_tcp;
}
if (since_discovery >= DISCOVERY_INTERVAL) {
prev_discovery_time = now;
#if defined(SDK_IPV4)
lwipstack->__etharp_tmr();
#endif
#if defined(SDK_IPV6)
lwipstack->__nd6_tmr();
#endif
} else {
discovery_remaining = DISCOVERY_INTERVAL - since_discovery;
}
_phy.poll((unsigned long)std::min(tcp_remaining,discovery_remaining));
}
lwipstack->close();
#endif
}
void NetconEthernetTap::jip_loop()
{
DEBUG_INFO();
while(_run)
{
}
}
void NetconEthernetTap::threadMain()
throw()
{
// SIP-2
// Enter main thread loop for network stack
#if defined(SDK_LWIP)
lwIP_loop();
#elif defined(SDK_PICOTCP)
pico_loop(this);
#elif defined(SDK_JIP)
jip_loop();
#endif
}
Connection *NetconEthernetTap::getConnection(PhySocket *sock)
{
for(size_t i=0;i<_Connections.size();++i) {
if(_Connections[i]->sock == sock)
return _Connections[i];
}
return NULL;
}
Connection *NetconEthernetTap::getConnection(struct pico_socket *sock)
{
for(size_t i=0;i<_Connections.size();++i) {
if(_Connections[i]->picosock == sock)
return _Connections[i];
}
return NULL;
}
void NetconEthernetTap::closeConnection(PhySocket *sock)
{
DEBUG_EXTRA("sock=%p", (void*)sock);
//return;
Mutex::Lock _l(_close_m);
// Here we assume _tcpconns_m is already locked by caller
if(!sock) {
DEBUG_EXTRA("invalid PhySocket");
return;
}
Connection *conn = getConnection(sock);
if(!conn)
return;
// picoTCP
#if defined(SDK_PICOTCP)
// pico_handleClose(conn);
#endif
// lwIP
#if defined(SDK_LWIP)
if(conn->type==SOCK_DGRAM) {
lwipstack->__udp_remove(conn->UDP_pcb);
}
if(conn->TCP_pcb && conn->TCP_pcb->state != CLOSED) {
DEBUG_EXTRA("conn=%p, sock=%p, PCB->state = %d",
(void*)&conn, (void*)&sock, conn->TCP_pcb->state);
if(conn->TCP_pcb->state == SYN_SENT /*|| conn->TCP_pcb->state == CLOSE_WAIT*/) {
DEBUG_EXTRA("ignoring close request. invalid PCB state for this operation. sock=%p", (void*)&sock);
return;
}
// DEBUG_BLANK("__tcp_close(...)");
if(lwipstack->__tcp_close(conn->TCP_pcb) == ERR_OK) {
// Unregister callbacks for this PCB
lwipstack->__tcp_arg(conn->TCP_pcb, NULL);
lwipstack->__tcp_recv(conn->TCP_pcb, NULL);
lwipstack->__tcp_err(conn->TCP_pcb, NULL);
lwipstack->__tcp_sent(conn->TCP_pcb, NULL);
lwipstack->__tcp_poll(conn->TCP_pcb, NULL, 1);
}
else {
DEBUG_EXTRA("error while calling tcp_close() sock=%p", (void*)&sock);
}
}
#endif
for(size_t i=0;i<_Connections.size();++i) {
if(_Connections[i] == conn){
_Connections.erase(_Connections.begin() + i);
delete conn;
break;
}
}
if(!sock)
return;
close(_phy.getDescriptor(sock));
_phy.close(sock, false);
}
void NetconEthernetTap::phyOnUnixClose(PhySocket *sock,void **uptr) {
DEBUG_EXTRA("sock=%p", (void*)&sock);
Mutex::Lock _l(_tcpconns_m);
//closeConnection(sock);
}
void NetconEthernetTap::handleRead(PhySocket *sock,void **uptr,bool lwip_invoked)
{
//DEBUG_EXTRA("handleRead(sock=%p): lwip_invoked = %d\n", (void*)&sock, lwip_invoked);
// picoTCP
#if defined(SDK_PICOTCP)
pico_handleRead(sock, uptr, lwip_invoked);
#endif
// lwIP
#if defined(SDK_LWIP)
if(!lwip_invoked) {
_tcpconns_m.lock();
_rx_buf_m.lock();
}
Connection *conn = getConnection(sock);
if(conn && conn->rxsz) {
float max = conn->type == SOCK_STREAM ? (float)DEFAULT_TCP_RX_BUF_SZ : (float)DEFAULT_UDP_RX_BUF_SZ;
long n = _phy.streamSend(conn->sock, conn->rxbuf, ZT_MAX_MTU);
int payload_sz, addr_sz_offset = sizeof(struct sockaddr_storage);
memcpy(&payload_sz, conn->rxbuf + addr_sz_offset, sizeof(int)); // OPT:
// extract address
struct sockaddr_storage addr;
memcpy(&addr, conn->rxbuf, addr_sz_offset);
if(n == ZT_MAX_MTU) {
if(conn->rxsz-n > 0) // If more remains on buffer
memcpy(conn->rxbuf, conn->rxbuf+ZT_MAX_MTU, conn->rxsz - ZT_MAX_MTU);
conn->rxsz -= ZT_MAX_MTU;
// DGRAM
if(conn->type==SOCK_DGRAM){
_phy.setNotifyWritable(conn->sock, false);
#if DEBUG_LEVEL >= MSG_TRANSFER
struct sockaddr_in * addr_in2 = (struct sockaddr_in *)&addr;
int port = lwipstack->__lwip_ntohs(addr_in2->sin_port);
int ip = addr_in2->sin_addr.s_addr;
unsigned char d[4];
d[0] = ip & 0xFF;
d[1] = (ip >> 8) & 0xFF;
d[2] = (ip >> 16) & 0xFF;
d[3] = (ip >> 24) & 0xFF;
DEBUG_TRANS("UDP RX <--- :: {TX: %.3f%%, RX: %d, sock=%p} :: payload = %d bytes (src_addr=%d.%d.%d.%d:%d)",
(float)conn->txsz / max, conn->rxsz/* / max*/, (void*)conn->sock, payload_sz, d[0],d[1],d[2],d[3], port);
#endif
}
// STREAM
//DEBUG_INFO("phyOnUnixWritable(): tid = %d\n", pthread_mach_thread_np(pthread_self()));
if(conn->type==SOCK_STREAM) { // Only acknolwedge receipt of TCP packets
lwipstack->__tcp_recved(conn->TCP_pcb, n);
DEBUG_TRANS("TCP RX <--- :: {TX: %.3f%%, RX: %.3f%%, sock=%p} :: %ld bytes",
(float)conn->txsz / max, (float)conn->rxsz / max, (void*)conn->sock, n);
}
} else {
DEBUG_EXTRA(" errno = %d, rxsz = %d", errno, conn->rxsz);
_phy.setNotifyWritable(conn->sock, false);
}
}
// If everything on the buffer has been written
if(conn->rxsz == 0) {
_phy.setNotifyWritable(conn->sock, false);
}
if(!lwip_invoked) {
_tcpconns_m.unlock();
_rx_buf_m.unlock();
}
#endif
}
void NetconEthernetTap::phyOnUnixWritable(PhySocket *sock,void **uptr,bool lwip_invoked)
{
handleRead(sock,uptr,lwip_invoked);
}
void NetconEthernetTap::phyOnUnixData(PhySocket *sock, void **uptr, void *data, ssize_t len)
{
DEBUG_EXTRA("sock=%p, len=%d", (void*)&sock, (int)len);
uint64_t CANARY_num;
pid_t pid, tid;
ssize_t wlen = len;
char cmd, timestamp[20], CANARY[CANARY_SZ], padding[] = {PADDING};
void *payload;
unsigned char *buf = (unsigned char*)data;
std::pair sockdata;
PhySocket *rpcSock;
bool foundJob = false, detected_rpc = false;
Connection *conn;
// RPC
char phrase[RPC_PHRASE_SZ];
memset(phrase, 0, RPC_PHRASE_SZ);
if(len == BUF_SZ) {
memcpy(phrase, buf, RPC_PHRASE_SZ);
if(strcmp(phrase, RPC_PHRASE) == 0)
detected_rpc = true;
}
if(detected_rpc) {
unloadRPC(data, pid, tid, timestamp, CANARY, cmd, payload);
memcpy(&CANARY_num, CANARY, CANARY_SZ);
// DEBUG_EXTRA(" RPC: sock=%p, (pid=%d, tid=%d, timestamp=%s, cmd=%d)", (void*)&sock, pid, tid, timestamp, cmd);
if(cmd == RPC_SOCKET) {
DEBUG_INFO("RPC_SOCKET, sock=%p", (void*)&sock);
// Create new lwip socket and associate it with this sock
struct socket_st socket_rpc;
memcpy(&socket_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct socket_st));
Connection * new_conn;
if((new_conn = handleSocket(sock, uptr, &socket_rpc))) {
new_conn->pid = pid; // Merely kept to look up application path/names later, not strictly necessary
}
} else {
jobmap[CANARY_num] = std::pair(sock, data);
}
write(_phy.getDescriptor(sock), "z", 1); // RPC ACK byte to maintain order
}
// STREAM
else {
int data_start = -1, data_end = -1, canary_pos = -1, padding_pos = -1;
// Look for padding
std::string padding_pattern(padding, padding+PADDING_SZ);
std::string buffer(buf, buf + len);
padding_pos = buffer.find(padding_pattern);
canary_pos = padding_pos-CANARY_SZ;
// Grab token, next we'll use it to look up an RPC job
if(canary_pos > -1) {
memcpy(&CANARY_num, buf+canary_pos, CANARY_SZ);
if(CANARY_num != 0) {
// Find job
sockdata = jobmap[CANARY_num];
if(!sockdata.first) {
DEBUG_ERROR("unable to locate job entry for %lu, sock=%p", CANARY_num, (void*)&sock);
return;
} else
foundJob = true;
}
}
conn = getConnection(sock);
if(!conn)
return;
if(padding_pos == -1) { // [DATA]
memcpy(&conn->txbuf[conn->txsz], buf, wlen);
} else { // Padding found, implies a canary is present
// [CANARY]
if(len == CANARY_SZ+PADDING_SZ && canary_pos == 0) {
wlen = 0; // Nothing to write
} else {
// [CANARY] + [DATA]
if(len > CANARY_SZ+PADDING_SZ && canary_pos == 0) {
wlen = len - CANARY_SZ+PADDING_SZ;
data_start = padding_pos+PADDING_SZ;
memcpy((&conn->txbuf)+conn->txsz, buf+data_start, wlen);
}
// [DATA] + [CANARY]
if(len > CANARY_SZ+PADDING_SZ && canary_pos > 0 && canary_pos == len - CANARY_SZ+PADDING_SZ) {
wlen = len - CANARY_SZ+PADDING_SZ;
data_start = 0;
memcpy((&conn->txbuf)+conn->txsz, buf+data_start, wlen);
}
// [DATA] + [CANARY] + [DATA]
if(len > CANARY_SZ+PADDING_SZ && canary_pos > 0 && len > (canary_pos + CANARY_SZ+PADDING_SZ)) {
wlen = len - CANARY_SZ+PADDING_SZ;
data_start = 0;
data_end = padding_pos-CANARY_SZ;
memcpy((&conn->txbuf)+conn->txsz, buf+data_start, (data_end-data_start)+1);
memcpy((&conn->txbuf)+conn->txsz, buf+(padding_pos+PADDING_SZ), len-(canary_pos+CANARY_SZ+PADDING_SZ));
}
}
}
// Write data from stream
if(wlen) {
if(conn->type == SOCK_STREAM) { // We only disable TCP "connections"
int softmax = conn->type == SOCK_STREAM ? DEFAULT_TCP_RX_BUF_SZ : DEFAULT_UDP_RX_BUF_SZ;
if(conn->txsz > softmax) {
_phy.setNotifyReadable(sock, false);
conn->disabled = true;
}
else if (conn->disabled) {
conn->disabled = false;
_phy.setNotifyReadable(sock, true);
}
}
conn->txsz += wlen;
handleWrite(conn);
}
}
// Process RPC if we have a corresponding jobmap entry
if(foundJob) {
rpcSock = sockdata.first;
buf = (unsigned char*)sockdata.second;
unloadRPC(buf, pid, tid, timestamp, CANARY, cmd, payload);
//DEBUG_EXTRA(" RPC: sock=%p, (pid=%d, tid=%d, timestamp=%s, cmd=%d)", (void*)&sock, pid, tid, timestamp, cmd);
switch(cmd) {
case RPC_BIND:
DEBUG_INFO("RPC_BIND, sock=%p", (void*)&sock);
struct bind_st bind_rpc;
memcpy(&bind_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct bind_st));
handleBind(sock, rpcSock, uptr, &bind_rpc);
break;
case RPC_LISTEN:
DEBUG_INFO("RPC_LISTEN, sock=%p", (void*)&sock);
struct listen_st listen_rpc;
memcpy(&listen_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct listen_st));
handleListen(sock, rpcSock, uptr, &listen_rpc);
break;
case RPC_GETSOCKNAME:
DEBUG_INFO("RPC_GETSOCKNAME, sock=%p", (void*)&sock);
struct getsockname_st getsockname_rpc;
memcpy(&getsockname_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct getsockname_st));
handleGetsockname(sock, rpcSock, uptr, &getsockname_rpc);
break;
case RPC_GETPEERNAME:
DEBUG_INFO("RPC_GETPEERNAME, sock=%p", (void*)&sock);
struct getsockname_st getpeername_rpc;
memcpy(&getpeername_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct getsockname_st));
handleGetpeername(sock, rpcSock, uptr, &getpeername_rpc);
break;
case RPC_CONNECT:
DEBUG_INFO("RPC_CONNECT, sock=%p", (void*)&sock);
struct connect_st connect_rpc;
memcpy(&connect_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct connect_st));
handleConnect(sock, rpcSock, conn, &connect_rpc);
jobmap.erase(CANARY_num);
return; // Keep open RPC, we'll use it once in nc_connected to send retval
default:
break;
}
Mutex::Lock _l(_tcpconns_m);
closeConnection(sockdata.first); // close RPC after sending retval, no longer needed
jobmap.erase(CANARY_num);
return;
}
}
int NetconEthernetTap::sendReturnValue(PhySocket *sock, int retval, int _errno = 0){
DEBUG_EXTRA("sock=%p", (void*)&sock);
return sendReturnValue(_phy.getDescriptor(sock), retval, _errno);
}
int NetconEthernetTap::sendReturnValue(int fd, int retval, int _errno = 0)
{
//#if !defined(USE_SOCKS_PROXY)
DEBUG_EXTRA("fd=%d, retval=%d, errno=%d", fd, retval, _errno);
int sz = sizeof(char) + sizeof(retval) + sizeof(errno);
char retmsg[sz];
memset(&retmsg, 0, sizeof(retmsg));
retmsg[0]=RPC_RETVAL;
memcpy(&retmsg[1], &retval, sizeof(retval));
memcpy(&retmsg[1]+sizeof(retval), &_errno, sizeof(_errno));
return write(fd, &retmsg, sz);
//#else
// return 1;
//#endif
}
void NetconEthernetTap::unloadRPC(void *data, pid_t &pid, pid_t &tid,
char (timestamp[RPC_TIMESTAMP_SZ]), char (CANARY[sizeof(uint64_t)]), char &cmd, void* &payload)
{
unsigned char *buf = (unsigned char*)data;
memcpy(&pid, &buf[IDX_PID], sizeof(pid_t));
memcpy(&tid, &buf[IDX_TID], sizeof(pid_t));
memcpy(timestamp, &buf[IDX_TIME], RPC_TIMESTAMP_SZ);
memcpy(&cmd, &buf[IDX_PAYLOAD], sizeof(char));
memcpy(CANARY, &buf[IDX_PAYLOAD+1], CANARY_SZ);
}
/*------------------------------------------------------------------------------
--------------------------------- LWIP callbacks -------------------------------
------------------------------------------------------------------------------*/
#if defined(SDK_LWIP)
err_t NetconEthernetTap::nc_accept(void *arg, struct tcp_pcb *newPCB, err_t err)
{
DEBUG_ATTN("pcb=%p", (void*)&newPCB);
Larg *l = (Larg*)arg;
Mutex::Lock _l(l->tap->_tcpconns_m);
Connection *conn = l->conn;
NetconEthernetTap *tap = l->tap;
if(!conn)
return -1;
if(conn->type==SOCK_DGRAM)
return -1;
if(!conn->sock)
return -1;
int fd = tap->_phy.getDescriptor(conn->sock);
if(conn) {
// create new socketpair
ZT_PHY_SOCKFD_TYPE fds[2];
if(socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) {
if(errno < 0) {
l->tap->sendReturnValue(conn, -1, errno);
DEBUG_ERROR("unable to create socketpair");
return ERR_MEM;
}
}
// create and populate new Connection
Connection *newTcpConn = new Connection();
l->tap->_Connections.push_back(newTcpConn);
newTcpConn->TCP_pcb = newPCB;
newTcpConn->type = SOCK_STREAM;
newTcpConn->sock = tap->_phy.wrapSocket(fds[0], newTcpConn);
if(sock_fd_write(fd, fds[1]) < 0)
return -1;
tap->lwipstack->__tcp_arg(newPCB, new Larg(tap, newTcpConn));
tap->lwipstack->__tcp_recv(newPCB, nc_recved);
tap->lwipstack->__tcp_err(newPCB, nc_err);
tap->lwipstack->__tcp_sent(newPCB, nc_sent);
tap->lwipstack->__tcp_poll(newPCB, nc_poll, 1);
if(conn->TCP_pcb->state == LISTEN)
return ERR_OK;
tcp_accepted(conn->TCP_pcb); // Let lwIP know that it can queue additional incoming connections
return ERR_OK;
} else
DEBUG_ERROR("can't locate Connection object for PCB");
return -1;
}
void NetconEthernetTap::nc_udp_recved(void * arg, struct udp_pcb * upcb, struct pbuf * p, ip_addr_t * addr, u16_t port)
{
Larg *l = (Larg*)arg;
DEBUG_EXTRA("nc_udp_recved(conn=%p,pcb=%p,port=%d)\n", (void*)&(l->conn), (void*)&upcb, port);
/*
int tot = 0;
unsigned char *addr_pos, *sz_pos, *payload_pos;
struct pbuf* q = p;
struct sockaddr_storage sockaddr_big;
#if defined(LWIP_IPV6)
struct sockaddr_in6 addr_in;
addr_in.sin6_addr.s6_addr = addr->u_addr.ip6.addr;
addr_in.sin6_port = port;
#else // ipv4
struct sockaddr_in *addr_in = (struct sockaddr_in *)&sockaddr_big;
addr_in->sin_addr.s_addr = addr->addr;
addr_in->sin_port = port;
#endif
// TODO: Finish address treatment
Mutex::Lock _l2(l->tap->_rx_buf_m);
// Cycle through pbufs and write them to the RX buffer
// The RX "buffer" will be emptied via phyOnUnixWritable()
if(p) {
// Intra-API "packetization" scheme: [addr_len|addr|payload_len|payload]
if(l->conn->rxsz == DEFAULT_UDP_RX_BUF_SZ) { // if UDP buffer full
DEBUG_INFO("UDP RX buffer full. Discarding oldest payload segment");
memmove(l->conn->rxbuf, l->conn->rxbuf + ZT_MAX_MTU, DEFAULT_UDP_RX_BUF_SZ - ZT_MAX_MTU);
addr_pos = l->conn->rxbuf + (DEFAULT_UDP_RX_BUF_SZ - ZT_MAX_MTU); // TODO:
sz_pos = addr_pos + sizeof(struct sockaddr_storage);
l->conn->rxsz -= ZT_MAX_MTU;
}
else {
addr_pos = l->conn->rxbuf + l->conn->rxsz; // where we'll prepend the size of the address
sz_pos = addr_pos + sizeof(struct sockaddr_storage);
}
payload_pos = addr_pos + sizeof(struct sockaddr_storage) + sizeof(tot); // where we'll write the payload
// write remote host address
memcpy(addr_pos, &addr_in, sizeof(struct sockaddr_storage));
}
while(p != NULL) {
if(p->len <= 0)
break;
int len = p->len;
memcpy(payload_pos, p->payload, len);
payload_pos = payload_pos + len;
p = p->next;
tot += len;
}
if(tot) {
l->conn->rxsz += ZT_MAX_MTU;
memcpy(sz_pos, &tot, sizeof(tot));
//DEBUG_EXTRA(" nc_udp_recved(): data_len = %d, rxsz = %d, addr_info_len = %d\n",
// tot, l->conn->rxsz, sizeof(u32_t) + sizeof(u16_t));
l->tap->phyOnUnixWritable(l->conn->sock, NULL, true);
l->tap->_phy.setNotifyWritable(l->conn->sock, true);
}
l->tap->lwipstack->__pbuf_free(q);
*/
}
err_t NetconEthernetTap::nc_recved(void *arg, struct tcp_pcb *PCB, struct pbuf *p, err_t err)
{
Larg *l = (Larg*)arg;
DEBUG_EXTRA("conn=%p, pcb=%p", (void*)&(l->conn), (void*)&PCB);
int tot = 0;
struct pbuf* q = p;
Mutex::Lock _l(l->tap->_tcpconns_m);
if(!l->conn) {
DEBUG_ERROR("no connection");
return ERR_OK;
}
if(p == NULL) {
if(l->conn->TCP_pcb->state == CLOSE_WAIT){
l->tap->closeConnection(l->conn->sock);
return ERR_ABRT;
}
return err;
}
Mutex::Lock _l2(l->tap->_rx_buf_m);
// Cycle through pbufs and write them to the RX buffer
// The RX buffer will be emptied via phyOnUnixWritable()
while(p != NULL) {
if(p->len <= 0)
break;
int avail = DEFAULT_TCP_RX_BUF_SZ - l->conn->rxsz;
int len = p->len;
if(avail < len)
DEBUG_ERROR("not enough room (%d bytes) on RX buffer", avail);
memcpy(l->conn->rxbuf + (l->conn->rxsz), p->payload, len);
l->conn->rxsz += len;
p = p->next;
tot += len;
}
if(tot) {
//#if defined(USE_SOCKS_PROXY)
// l->tap->phyOnTcpWritable(l->conn->sock, NULL, true);
//#else
l->tap->phyOnUnixWritable(l->conn->sock, NULL, true);
//#endif
}
l->tap->lwipstack->__pbuf_free(q);
return ERR_OK;
}
err_t NetconEthernetTap::nc_sent(void* arg, struct tcp_pcb *PCB, u16_t len)
{
DEBUG_EXTRA("pcb=%p", (void*)&PCB);
Larg *l = (Larg*)arg;
Mutex::Lock _l(l->tap->_tcpconns_m);
if(l->conn->probation && l->conn->txsz == 0){
l->conn->probation = false; // TX buffer now empty, removing from probation
}
if(l && l->conn && len && !l->conn->probation) {
int softmax = l->conn->type == SOCK_STREAM ? DEFAULT_TCP_TX_BUF_SZ : DEFAULT_UDP_TX_BUF_SZ;
if(l->conn->txsz < softmax) {
l->tap->_phy.setNotifyReadable(l->conn->sock, true);
l->tap->_phy.whack();
}
}
return ERR_OK;
}
err_t NetconEthernetTap::nc_connected_proxy(void *arg, struct tcp_pcb *PCB, err_t err)
{
DEBUG_INFO("pcb=%p", (void*)&PCB);
return ERR_OK;
}
err_t NetconEthernetTap::nc_connected(void *arg, struct tcp_pcb *PCB, err_t err)
{
DEBUG_ATTN("pcb=%p", (void*)&PCB);
Larg *l = (Larg*)arg;
if(l && l->conn)
l->tap->sendReturnValue(l->tap->_phy.getDescriptor(l->conn->rpcSock), ERR_OK);
return ERR_OK;
}
err_t NetconEthernetTap::nc_poll(void* arg, struct tcp_pcb *PCB)
{
return ERR_OK;
}
void NetconEthernetTap::nc_err(void *arg, err_t err)
{
DEBUG_ERROR("err=%d", err);
Larg *l = (Larg*)arg;
Mutex::Lock _l(l->tap->_tcpconns_m);
if(!l->conn)
DEBUG_ERROR("conn==NULL");
int fd = l->tap->_phy.getDescriptor(l->conn->sock);
switch(err)
{
case ERR_MEM:
DEBUG_ERROR("ERR_MEM->ENOMEM");
l->tap->sendReturnValue(fd, -1, ENOMEM);
break;
case ERR_BUF:
DEBUG_ERROR("ERR_BUF->ENOBUFS");
l->tap->sendReturnValue(fd, -1, ENOBUFS);
break;
case ERR_TIMEOUT:
DEBUG_ERROR("ERR_TIMEOUT->ETIMEDOUT");
l->tap->sendReturnValue(fd, -1, ETIMEDOUT);
break;
case ERR_RTE:
DEBUG_ERROR("ERR_RTE->ENETUNREACH");
l->tap->sendReturnValue(fd, -1, ENETUNREACH);
break;
case ERR_INPROGRESS:
DEBUG_ERROR("ERR_INPROGRESS->EINPROGRESS");
l->tap->sendReturnValue(fd, -1, EINPROGRESS);
break;
case ERR_VAL:
DEBUG_ERROR("ERR_VAL->EINVAL");
l->tap->sendReturnValue(fd, -1, EINVAL);
break;
case ERR_WOULDBLOCK:
DEBUG_ERROR("ERR_WOULDBLOCK->EWOULDBLOCK");
l->tap->sendReturnValue(fd, -1, EWOULDBLOCK);
break;
case ERR_USE:
DEBUG_ERROR("ERR_USE->EADDRINUSE");
l->tap->sendReturnValue(fd, -1, EADDRINUSE);
break;
case ERR_ISCONN:
DEBUG_ERROR("ERR_ISCONN->EISCONN");
l->tap->sendReturnValue(fd, -1, EISCONN);
break;
case ERR_ABRT:
DEBUG_ERROR("ERR_ABRT->ECONNREFUSED");
l->tap->sendReturnValue(fd, -1, ECONNREFUSED);
break;
// TODO: Below are errors which don't have a standard errno correlate
case ERR_RST:
l->tap->sendReturnValue(fd, -1, -1);
break;
case ERR_CLSD:
l->tap->sendReturnValue(fd, -1, -1);
break;
case ERR_CONN:
l->tap->sendReturnValue(fd, -1, -1);
break;
case ERR_ARG:
l->tap->sendReturnValue(fd, -1, -1);
break;
case ERR_IF:
l->tap->sendReturnValue(fd, -1, -1);
break;
default:
break;
}
DEBUG_ERROR(" closing connection");
l->tap->closeConnection(l->conn);
}
#endif // SDK_LWIP
/*------------------------------------------------------------------------------
----------------------------- RPC Handler functions ----------------------------
------------------------------------------------------------------------------*/
void NetconEthernetTap::handleGetsockname(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct getsockname_st *getsockname_rpc)
{
Mutex::Lock _l(_tcpconns_m);
Connection *conn = getConnection(sock);
if(conn->local_addr == NULL){
DEBUG_EXTRA("no address info available. is it bound?");
struct sockaddr_storage storage;
memset(&storage, 0, sizeof(struct sockaddr_storage));
write(_phy.getDescriptor(rpcSock), NULL, sizeof(struct sockaddr_storage));
return;
}
write(_phy.getDescriptor(rpcSock), conn->local_addr, sizeof(struct sockaddr_storage));
}
void NetconEthernetTap::handleGetpeername(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct getsockname_st *getsockname_rpc)
{
Mutex::Lock _l(_tcpconns_m);
Connection *conn = getConnection(sock);
if(conn->peer_addr == NULL){
DEBUG_EXTRA("no peer address info available. is it connected?");
struct sockaddr_storage storage;
memset(&storage, 0, sizeof(struct sockaddr_storage));
write(_phy.getDescriptor(rpcSock), NULL, sizeof(struct sockaddr_storage));
return;
}
write(_phy.getDescriptor(rpcSock), conn->peer_addr, sizeof(struct sockaddr_storage));
}
void NetconEthernetTap::handleBind(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct bind_st *bind_rpc)
{
Mutex::Lock _l(_tcpconns_m);
if(!_ips.size()) {
// We haven't been given an address yet. Binding at this stage is premature
DEBUG_ERROR("cannot bind yet. ZT address hasn't been provided");
sendReturnValue(rpcSock, -1, ENOMEM);
return;
}
// picoTCP
#if defined(SDK_PICOTCP)
pico_handleBind(sock,rpcSock,uptr,bind_rpc);
#endif
// lwIP
#if defined(SDK_LWIP)
ip_addr_t ba;
char addrstr[INET6_ADDRSTRLEN];
struct sockaddr_in6 *rawAddr = (struct sockaddr_in6 *) &bind_rpc->addr;
struct sockaddr *addr = (struct sockaddr*)rawAddr;
int err, port = lwipstack->__lwip_ntohs(rawAddr->sin6_port);
// ipv4
#if defined(SDK_IPV4)
if(addr->sa_family == AF_INET) {
struct sockaddr_in *connaddr = (struct sockaddr_in *)addr;
inet_ntop(AF_INET, &(connaddr->sin_addr), addrstr, INET_ADDRSTRLEN);
sprintf(addrstr, "%s:%d", addrstr, lwipstack->__lwip_ntohs(connaddr->sin_port));
}
struct sockaddr_in *rawAddr4 = (struct sockaddr_in *) &bind_rpc->addr;
ba = convert_ip(rawAddr4);
port = lwipstack->__lwip_ntohs(rawAddr4->sin_port);
#endif
// ipv6
#if defined(SDK_IPV6)
struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&bind_rpc->addr;
in6_to_ip6((ip6_addr *)&ba, in6);
if(addr->sa_family == AF_INET6) {
struct sockaddr_in6 *connaddr6 = (struct sockaddr_in6 *)addr;
inet_ntop(AF_INET6, &(connaddr6->sin6_addr), addrstr, INET6_ADDRSTRLEN);
sprintf(addrstr, "%s:%d", addrstr, lwipstack->__lwip_ntohs(connaddr6->sin6_port));
}
#endif
Connection *conn = getConnection(sock);
DEBUG_ATTN(" addr=%s, sock=%p, fd=%d", addrstr, (void*)&sock, bind_rpc->fd);
if(conn) {
if(conn->type == SOCK_DGRAM) {
#if defined(__ANDROID__)
err = lwipstack->__udp_bind(conn->UDP_pcb, NULL, port);
#else
err = lwipstack->__udp_bind(conn->UDP_pcb, (const ip_addr_t *)&ba, port);
#endif
if(err == ERR_USE) // port in use
sendReturnValue(rpcSock, -1, EADDRINUSE);
else {
lwipstack->__udp_recv(conn->UDP_pcb, nc_udp_recved, new Larg(this, conn));
struct sockaddr_in addr_in;
memcpy(&addr_in, &bind_rpc->addr, sizeof(addr_in));
addr_in.sin_port = Utils::ntoh(conn->UDP_pcb->local_port); // Newly assigned port
memcpy(&conn->local_addr, &addr_in, sizeof(addr_in));
sendReturnValue(rpcSock, ERR_OK, ERR_OK); // Success
}
return;
}
else if (conn->type == SOCK_STREAM) {
if(conn->TCP_pcb->state == CLOSED){
err = lwipstack->__tcp_bind(conn->TCP_pcb, (const ip_addr_t *)&ba, port);
if(err != ERR_OK) {
DEBUG_ERROR("err=%d", err);
if(err == ERR_USE)
sendReturnValue(rpcSock, -1, EADDRINUSE);
if(err == ERR_MEM)
sendReturnValue(rpcSock, -1, ENOMEM);
if(err == ERR_BUF)
sendReturnValue(rpcSock, -1, ENOMEM);
} else {
conn->local_addr = (struct sockaddr_storage *) &bind_rpc->addr;
sendReturnValue(rpcSock, ERR_OK, ERR_OK); // Success
}
} else {
DEBUG_ERROR(" ignoring BIND request, PCB (conn=%p, pcb=%p) not in CLOSED state. ",
(void*)&conn, (void*)&conn->TCP_pcb);
sendReturnValue(rpcSock, -1, EINVAL);
}
}
} else {
DEBUG_ERROR(" unable to locate Connection");
sendReturnValue(rpcSock, -1, EBADF);
}
#endif
}
void NetconEthernetTap::handleListen(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct listen_st *listen_rpc)
{
DEBUG_ATTN("sock=%p", (void*)&sock);
Mutex::Lock _l(_tcpconns_m);
// picoTCP
#if defined(SDK_PICOTCP)
pico_handleListen(sock, rpcSock, uptr, listen_rpc);
#endif
// lwIP
#if defined(SDK_LWIP)
Connection *conn = getConnection(sock);
if(conn->type==SOCK_DGRAM) {
// FIX: Added sendReturnValue() call to fix listen() return bug on Android
sendReturnValue(rpcSock, ERR_OK, ERR_OK);
return;
}
if(!conn) {
DEBUG_ERROR(" unable to locate Connection");
sendReturnValue(rpcSock, -1, EBADF);
return;
}
if(conn->TCP_pcb->state == LISTEN) {
DEBUG_ERROR(" PCB is already in listening state");
sendReturnValue(rpcSock, ERR_OK, ERR_OK);
return;
}
struct tcp_pcb* listeningPCB;
#ifdef TCP_LISTEN_BACKLOG
listeningPCB = lwipstack->__tcp_listen_with_backlog(conn->TCP_pcb, listen_rpc->backlog);
#else
listeningPCB = lwipstack->__tcp_listen(conn->pcb);
#endif
if(listeningPCB != NULL) {
conn->TCP_pcb = listeningPCB;
lwipstack->__tcp_accept(listeningPCB, nc_accept);
lwipstack->__tcp_arg(listeningPCB, new Larg(this, conn));
fcntl(_phy.getDescriptor(conn->sock), F_SETFL, O_NONBLOCK);
conn->listening = true;
sendReturnValue(rpcSock, ERR_OK, ERR_OK);
return;
}
sendReturnValue(rpcSock, -1, -1);
#endif
}
Connection * NetconEthernetTap::handleSocketProxy(PhySocket *sock, int socket_type)
{
/*
Connection *conn = getConnection(sock);
if(!conn){
DEBUG_ERROR("unable to locate Connection object for this PhySocket sock=%p", (void*)&sock);
return NULL;
}
DEBUG_ATTN("sock=%p", (void*)&sock);
struct udp_pcb *new_udp_PCB = NULL;
struct tcp_pcb *new_tcp_PCB = NULL;
if(socket_type == SOCK_DGRAM) {
DEBUG_EXTRA("SOCK_DGRAM");
Mutex::Lock _l(_tcpconns_m);
new_udp_PCB = lwipstack->__udp_new();
}
else if(socket_type == SOCK_STREAM) {
DEBUG_EXTRA("SOCK_STREAM");
Mutex::Lock _l(_tcpconns_m);
new_tcp_PCB = lwipstack->__tcp_new();
}
if(new_udp_PCB || new_tcp_PCB) {
conn->sock = sock;
conn->type = socket_type;
conn->local_addr = NULL;
conn->peer_addr = NULL;
if(conn->type == SOCK_DGRAM) conn->UDP_pcb = new_udp_PCB;
if(conn->type == SOCK_STREAM) conn->TCP_pcb = new_tcp_PCB;
DEBUG_INFO(" updated sock=%p", (void*)&sock);
return conn;
}
DEBUG_ERROR(" memory not available for new PCB");
*/
return NULL;
}
Connection * NetconEthernetTap::handleSocket(PhySocket *sock, void **uptr, struct socket_st* socket_rpc)
{
DEBUG_ATTN("sock=%p, sock_type=%d", (void*)&sock, socket_rpc->socket_type);
// picoTCP
#if defined(SDK_PICOTCP)
return pico_handleSocket(sock, uptr, socket_rpc);
#endif
// lwIP
#if defined(SDK_LWIP)
struct udp_pcb *new_udp_PCB = NULL;
struct tcp_pcb *new_tcp_PCB = NULL;
if(socket_rpc->socket_type == SOCK_DGRAM) {
DEBUG_EXTRA("SOCK_DGRAM");
Mutex::Lock _l(_tcpconns_m);
new_udp_PCB = lwipstack->__udp_new();
}
else if(socket_rpc->socket_type == SOCK_STREAM) {
DEBUG_EXTRA("SOCK_STREAM");
Mutex::Lock _l(_tcpconns_m);
new_tcp_PCB = lwipstack->__tcp_new();
}
else if(socket_rpc->socket_type == SOCK_RAW) {
DEBUG_ERROR("SOCK_RAW, not currently supported.");
}
if(new_udp_PCB || new_tcp_PCB) {
Connection * newConn = new Connection();
*uptr = newConn;
newConn->type = socket_rpc->socket_type;
newConn->sock = sock;
newConn->local_addr = NULL;
newConn->peer_addr = NULL;
if(newConn->type == SOCK_DGRAM) newConn->UDP_pcb = new_udp_PCB;
if(newConn->type == SOCK_STREAM) newConn->TCP_pcb = new_tcp_PCB;
_Connections.push_back(newConn);
return newConn;
}
DEBUG_ERROR(" memory not available for new PCB");
sendReturnValue(_phy.getDescriptor(sock), -1, ENOMEM);
#endif
return NULL;
}
int NetconEthernetTap::handleConnectProxy(PhySocket *sock, struct sockaddr_in *rawAddr)
{
/*
DEBUG_ATTN("sock=%p", (void*)&sock);
Mutex::Lock _l(_tcpconns_m);
int port = rawAddr->sin_port;
ip_addr_t connAddr = convert_ip(rawAddr);
int err = 0;
Connection *conn = getConnection(sock);
if(!conn) {
DEBUG_INFO(" unable to locate Connection object for sock=%p", (void*)&sock);
return -1;
}
if(conn->type == SOCK_DGRAM) {
// Generates no network traffic
if((err = lwipstack->__udp_connect(conn->UDP_pcb,&connAddr,port)) < 0)
DEBUG_INFO("error while connecting to with UDP (sock=%p)", (void*)&sock);
lwipstack->__udp_recv(conn->UDP_pcb, nc_udp_recved, new Larg(this, conn));
errno = ERR_OK;
return 0;
}
if(conn != NULL) {
lwipstack->__tcp_sent(conn->TCP_pcb, nc_sent);
lwipstack->__tcp_recv(conn->TCP_pcb, nc_recved);
lwipstack->__tcp_err(conn->TCP_pcb, nc_err);
lwipstack->__tcp_poll(conn->TCP_pcb, nc_poll, APPLICATION_POLL_FREQ);
lwipstack->__tcp_arg(conn->TCP_pcb, new Larg(this, conn));
int ip = rawAddr->sin_addr.s_addr;
unsigned char d[4];
d[0] = ip & 0xFF;
d[1] = (ip >> 8) & 0xFF;
d[2] = (ip >> 16) & 0xFF;
d[3] = (ip >> 24) & 0xFF;
DEBUG_INFO(" addr=%d.%d.%d.%d:%d", d[0],d[1],d[2],d[3], port);
DEBUG_INFO(" pcb->state=%x", conn->TCP_pcb->state);
if(conn->TCP_pcb->state != CLOSED) {
DEBUG_INFO(" cannot connect using this PCB, PCB!=CLOSED");
errno = EAGAIN;
return -1;
}
if((err = lwipstack->__tcp_connect(conn->TCP_pcb,&connAddr,port,nc_connected_proxy)) < 0)
{
if(err == ERR_ISCONN) {
errno = EISCONN; // Already in connected state
return -1;
} if(err == ERR_USE) {
errno = EADDRINUSE; // Already in use
return -1;
} if(err == ERR_VAL) {
errno = EINVAL; // Invalid ipaddress parameter
return -1;
} if(err == ERR_RTE) {
errno = ENETUNREACH; // No route to host
return -1;
} if(err == ERR_BUF) {
errno = EAGAIN; // No more ports available
return -1;
}
if(err == ERR_MEM) {
// Can occur for the following reasons: tcp_enqueue_flags()
// 1) tcp_enqueue_flags is always called with either SYN or FIN in flags.
// We need one available snd_buf byte to do that.
// This means we can't send FIN while snd_buf==0. A better fix would be to
// not include SYN and FIN sequence numbers in the snd_buf count.
// 2) Cannot allocate new pbuf
// 3) Cannot allocate new TCP segment
errno = EAGAIN; // TODO: Doesn't describe the problem well, but closest match
return -1;
}
// We should only return a value if failure happens immediately
// Otherwise, we still need to wait for a callback from lwIP.
// - This is because an ERR_OK from tcp_connect() only verifies
// that the SYN packet was enqueued onto the stack properly,
// that's it!
// - Most instances of a retval for a connect() should happen
// in the nc_connect() and nc_err() callbacks!
DEBUG_ERROR(" unable to connect");
errno = EAGAIN;
return -1;
}
// Everything seems to be ok, but we don't have enough info to retval
conn->listening=true;
return 0;
} else {
DEBUG_ERROR(" could not locate PCB based on application-provided fd");
errno = EBADF;
return -1;
}
*/
return -1;
}
void NetconEthernetTap::handleConnect(PhySocket *sock, PhySocket *rpcSock, Connection *conn, struct connect_st* connect_rpc)
{
DEBUG_ATTN("sock=%p", (void*)&sock);
Mutex::Lock _l(_tcpconns_m);
// picoTCP
#if defined(SDK_PICOTCP)
pico_handleConnect(sock, rpcSock, conn, connect_rpc);
#endif
// lwIP
#if defined(SDK_LWIP)
ip_addr_t ba;
char addrstr[INET6_ADDRSTRLEN];
struct sockaddr_in6 *rawAddr = (struct sockaddr_in6 *) &connect_rpc->addr;
struct sockaddr *addr = (struct sockaddr*)rawAddr;
int err, port = lwipstack->__lwip_ntohs(rawAddr->sin6_port);
// ipv4
#if defined(SDK_IPV4)
if(addr->sa_family == AF_INET) {
struct sockaddr_in *connaddr = (struct sockaddr_in *)addr;
inet_ntop(AF_INET, &(connaddr->sin_addr), addrstr, INET_ADDRSTRLEN);
sprintf(addrstr, "%s:%d", addrstr, lwipstack->__lwip_ntohs(connaddr->sin_port));
}
struct sockaddr_in *rawAddr4 = (struct sockaddr_in *) &connect_rpc->addr;
ba = convert_ip(rawAddr4);
port = lwipstack->__lwip_ntohs(rawAddr4->sin_port);
#endif
// ipv6
#if defined(SDK_IPV6)
struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&connect_rpc->addr;
in6_to_ip6((ip6_addr *)&ba, in6);
if(addr->sa_family == AF_INET6) {
struct sockaddr_in6 *connaddr6 = (struct sockaddr_in6 *)addr;
inet_ntop(AF_INET6, &(connaddr6->sin6_addr), addrstr, INET6_ADDRSTRLEN);
sprintf(addrstr, "%s:%d", addrstr, lwipstack->__lwip_ntohs(connaddr6->sin6_port));
}
#endif
DEBUG_INFO("addr=%s", addrstr);
if(conn->type == SOCK_DGRAM) {
// Generates no network traffic
if((err = lwipstack->__udp_connect(conn->UDP_pcb,(ip_addr_t *)&ba,port)) < 0)
DEBUG_ERROR("error while connecting to with UDP");
lwipstack->__udp_recv(conn->UDP_pcb, nc_udp_recved, new Larg(this, conn));
sendReturnValue(rpcSock, 0, ERR_OK);
return;
}
if(conn != NULL) {
lwipstack->__tcp_sent(conn->TCP_pcb, nc_sent);
lwipstack->__tcp_recv(conn->TCP_pcb, nc_recved);
lwipstack->__tcp_err(conn->TCP_pcb, nc_err);
lwipstack->__tcp_poll(conn->TCP_pcb, nc_poll, APPLICATION_POLL_FREQ);
lwipstack->__tcp_arg(conn->TCP_pcb, new Larg(this, conn));
DEBUG_EXTRA(" pcb->state=%x", conn->TCP_pcb->state);
if(conn->TCP_pcb->state != CLOSED) {
DEBUG_INFO(" cannot connect using this PCB, PCB!=CLOSED");
sendReturnValue(rpcSock, -1, EAGAIN);
return;
}
if((err = lwipstack->__tcp_connect(conn->TCP_pcb,&ba,port,nc_connected)) < 0)
{
if(err == ERR_ISCONN) {
sendReturnValue(rpcSock, -1, EISCONN); // Already in connected state
return;
} if(err == ERR_USE) {
sendReturnValue(rpcSock, -1, EADDRINUSE); // Already in use
return;
} if(err == ERR_VAL) {
sendReturnValue(rpcSock, -1, EINVAL); // Invalid ipaddress parameter
return;
} if(err == ERR_RTE) {
sendReturnValue(rpcSock, -1, ENETUNREACH); // No route to host
return;
} if(err == ERR_BUF) {
sendReturnValue(rpcSock, -1, EAGAIN); // No more ports available
return;
}
if(err == ERR_MEM) {
sendReturnValue(rpcSock, -1, EAGAIN); // TODO: Doesn't describe the problem well, but closest match
return;
}
// We should only return a value if failure happens immediately
// Otherwise, we still need to wait for a callback from lwIP.
// - This is because an ERR_OK from tcp_connect() only verifies
// that the SYN packet was enqueued onto the stack properly,
// that's it!
// - Most instances of a retval for a connect() should happen
// in the nc_connect() and nc_err() callbacks!
DEBUG_ERROR(" unable to connect");
sendReturnValue(rpcSock, -1, EAGAIN);
}
// Everything seems to be ok, but we don't have enough info to retval
conn->listening=true;
conn->rpcSock=rpcSock; // used for return value from lwip CB
}
else {
DEBUG_ERROR(" could not locate PCB based on application-provided fd");
sendReturnValue(rpcSock, -1, EBADF);
}
#endif
}
void NetconEthernetTap::handleWrite(Connection *conn)
{
DEBUG_EXTRA("conn=%p", (void*)&conn);
// picoTCP
#if defined(SDK_PICOTCP)
pico_handleWrite(conn);
#endif
// lwIP
#if defined(SDK_LWIP)
if(!conn || (!conn->TCP_pcb && !conn->UDP_pcb)) {
DEBUG_ERROR(" invalid connection");
return;
}
if(conn->type == SOCK_DGRAM) {
if(!conn->UDP_pcb) {
DEBUG_ERROR(" invalid UDP_pcb, type=SOCK_DGRAM");
return;
}
// TODO: Packet re-assembly hasn't yet been tested with lwIP so UDP packets are limited to MTU-sized chunks
int udp_trans_len = conn->txsz < ZT_UDP_DEFAULT_PAYLOAD_MTU ? conn->txsz : ZT_UDP_DEFAULT_PAYLOAD_MTU;
DEBUG_EXTRA(" allocating pbuf chain of size=%d for UDP packet, txsz=%d", udp_trans_len, conn->txsz);
struct pbuf * pb = lwipstack->__pbuf_alloc(PBUF_TRANSPORT, udp_trans_len, PBUF_POOL);
if(!pb){
DEBUG_ERROR(" unable to allocate new pbuf of size=%d", conn->txsz);
return;
}
memcpy(pb->payload, conn->txbuf, udp_trans_len);
int err = lwipstack->__udp_send(conn->UDP_pcb, pb);
if(err == ERR_MEM) {
DEBUG_ERROR(" error sending packet. out of memory");
} else if(err == ERR_RTE) {
DEBUG_ERROR(" could not find route to destinations address");
} else if(err != ERR_OK) {
DEBUG_ERROR(" error sending packet - %d", err);
} else {
// Success
int buf_remaining = (conn->txsz)-udp_trans_len;
if(buf_remaining)
memmove(&conn->txbuf, (conn->txbuf+udp_trans_len), buf_remaining);
conn->txsz -= udp_trans_len;
#if DEBUG_LEVEL >= MSG_TRANSFER
struct sockaddr_in * addr_in2 = (struct sockaddr_in *)conn->peer_addr;
int port = lwipstack->__lwip_ntohs(addr_in2->sin_port);
int ip = addr_in2->sin_addr.s_addr;
unsigned char d[4];
d[0] = ip & 0xFF;
d[1] = (ip >> 8) & 0xFF;
d[2] = (ip >> 16) & 0xFF;
d[3] = (ip >> 24) & 0xFF;
DEBUG_TRANS("[UDP TX] ---> :: {TX: ------, RX: ------, sock=%p} :: %d bytes (dest_addr=%d.%d.%d.%d:%d)",
(void*)conn->sock, udp_trans_len, d[0], d[1], d[2], d[3], port);
#endif
}
lwipstack->__pbuf_free(pb);
return;
}
else if(conn->type == SOCK_STREAM) {
if(!conn->TCP_pcb) {
DEBUG_ERROR(" invalid TCP_pcb, type=SOCK_STREAM");
return;
}
// How much we are currently allowed to write to the connection
int sndbuf = conn->TCP_pcb->snd_buf;
int err, sz, r;
if(!sndbuf) {
// PCB send buffer is full, turn off readability notifications for the
// corresponding PhySocket until nc_sent() is called and confirms that there is
// now space on the buffer
if(!conn->probation) {
DEBUG_ERROR(" LWIP stack is full, sndbuf == 0");
_phy.setNotifyReadable(conn->sock, false);
conn->probation = true;
}
return;
}
if(conn->txsz <= 0)
return; // Nothing to write
if(!conn->listening)
lwipstack->__tcp_output(conn->TCP_pcb);
if(conn->sock) {
r = conn->txsz < sndbuf ? conn->txsz : sndbuf;
// Writes data pulled from the client's socket buffer to LWIP. This merely sends the
// data to LWIP to be enqueued and eventually sent to the network.
if(r > 0) {
err = lwipstack->__tcp_write(conn->TCP_pcb, &conn->txbuf, r, TCP_WRITE_FLAG_COPY);
lwipstack->__tcp_output(conn->TCP_pcb);
if(err != ERR_OK) {
DEBUG_ERROR(" error while writing to PCB, err=%d", err);
if(err == -1)
DEBUG_ERROR("out of memory");
return;
} else {
// adjust buffer
sz = (conn->txsz)-r;
if(sz)
memmove(&conn->txbuf, (conn->txbuf+r), sz);
conn->txsz -= r;
int max = conn->type == SOCK_STREAM ? DEFAULT_TCP_TX_BUF_SZ : DEFAULT_UDP_TX_BUF_SZ;
DEBUG_TRANS("[TCP TX] ---> :: {TX: %.3f%%, RX: %.3f%%, sock=%p} :: %d bytes",
(float)conn->txsz / (float)max, (float)conn->rxsz / max, (void*)&conn->sock, r);
return;
}
}
}
}
#endif
}
} // namespace ZeroTier