/* * ZeroTier SDK - Network Virtualization Everywhere * Copyright (C) 2011-2017 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * You can be released from the requirements of the license by purchasing * a commercial license. Buying such a license is mandatory as soon as you * develop commercial closed-source software that incorporates or links * directly against ZeroTier software without disclosing the source code * of your own application. */ /** * @file * * Ring buffer implementation for network stack drivers */ #ifndef ZT_RINGBUFFER_HPP #define ZT_RINGBUFFER_HPP #include #include namespace ZeroTier { template class RingBuffer { private: T * buf; size_t size; size_t begin; size_t end; bool wrap; public: /** * create a RingBuffer with space for up to size elements. */ explicit RingBuffer(size_t size) : size(size), begin(0), end(0), wrap(false) { buf = new T[size]; } RingBuffer(const RingBuffer & ring) { this(ring.size); begin = ring.begin; end = ring.end; memcpy(buf, ring.buf, sizeof(T) * size); } ~RingBuffer() { delete[] buf; } // get a reference to the underlying buffer T* get_buf() { return buf + begin; } // adjust buffer index pointer as if we copied data in size_t produce(size_t n) { n = std::min(n, getFree()); if (n == 0) { return n; } const size_t first_chunk = std::min(n, size - end); end = (end + first_chunk) % size; if (first_chunk < n) { const size_t second_chunk = n - first_chunk; end = (end + second_chunk) % size; } if (begin == end) { wrap = true; } return n; } // adjust buffer index pointer as if we copied data out size_t consume(size_t n) { n = std::min(n, count()); if (n == 0) { return n; } if (wrap) { wrap = false; } const size_t first_chunk = std::min(n, size - begin); begin = (begin + first_chunk) % size; if (first_chunk < n) { const size_t second_chunk = n - first_chunk; begin = (begin + second_chunk) % size; } return n; } size_t write(const T * data, size_t n) { n = std::min(n, getFree()); if (n == 0) { return n; } const size_t first_chunk = std::min(n, size - end); memcpy(buf + end, data, first_chunk * sizeof(T)); end = (end + first_chunk) % size; if (first_chunk < n) { const size_t second_chunk = n - first_chunk; memcpy(buf + end, data + first_chunk, second_chunk * sizeof(T)); end = (end + second_chunk) % size; } if (begin == end) { wrap = true; } return n; } size_t read(T * dest, size_t n) { n = std::min(n, count()); if (n == 0) { return n; } if (wrap) { wrap = false; } const size_t first_chunk = std::min(n, size - begin); memcpy(dest, buf + begin, first_chunk * sizeof(T)); begin = (begin + first_chunk) % size; if (first_chunk < n) { const size_t second_chunk = n - first_chunk; memcpy(dest + first_chunk, buf + begin, second_chunk * sizeof(T)); begin = (begin + second_chunk) % size; } return n; } size_t count() { if (end == begin) { return wrap ? size : 0; } else if (end > begin) { return end - begin; } else { return size + end - begin; } } size_t getFree() { return size - count(); } }; } #endif // ZT_RINGBUFFER_HPP