/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2015 ZeroTier, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #if defined(SDK_PICOTCP) #include "tap.hpp" #include "picotcp.hpp" #include "pico_stack.h" #include "pico_ipv4.h" #include "pico_icmp4.h" #include "pico_dev_tap.h" #include "pico_protocol.h" #include "pico_socket.h" #include "pico_eth.h" namespace ZeroTier { // Reference to the tap interface // This is needed due to the fact that there's a lot going on in the tap interface // that needs to be updated on each of the network stack's callbacks and not every // network stack provides a mechanism for storing a reference to the tap. // // In future releases this will be replaced with a new structure of static pointers that // will make it easier to maintain multiple active tap interfaces NetconEthernetTap *picotap; struct pico_device picodev; int pico_eth_send(struct pico_device *dev, void *buf, int len); int pico_eth_poll(struct pico_device *dev, int loop_score); // Initialize network stack's interfaces and assign addresses void pico_init_interface(NetconEthernetTap *tap, const InetAddress &ip) { picoTCP_stack *stack = tap->picostack; if (std::find(picotap->_ips.begin(),picotap->_ips.end(),ip) == picotap->_ips.end()) { picotap->_ips.push_back(ip); std::sort(picotap->_ips.begin(),picotap->_ips.end()); #if defined(SDK_IPV4) if(ip.isV4()) { struct pico_ip4 ipaddr, netmask; ipaddr.addr = *((uint32_t *)ip.rawIpData()); netmask.addr = *((uint32_t *)ip.netmask().rawIpData()); uint8_t mac[PICO_SIZE_ETH]; picotap->_mac.copyTo(mac, PICO_SIZE_ETH); DEBUG_ATTN("mac = %s", picotap->_mac.toString().c_str()); picodev.send = pico_eth_send; // tx picodev.poll = pico_eth_poll; // rx picodev.mtu = picotap->_mtu; if( 0 != stack->__pico_device_init(&(picodev), "p0", mac)) { DEBUG_ERROR("device init failed"); return; } stack->__pico_ipv4_link_add(&(picodev), ipaddr, netmask); // DEBUG_INFO("device initialized as ipv4_addr = %s", ipv4_str); // picostack->__pico_icmp4_ping("10.8.8.1", 20, 1000, 10000, 64, cb_ping); } #elif defined(SDK_IPV6) if(ip.isV6()) { struct pico_ip6 ipaddr, netmask; char ipv6_str[INET6_ADDRSTRLEN], nm_str[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, ip.rawIpData(), ipv6_str, INET6_ADDRSTRLEN); inet_ntop(AF_INET6, ip.netmask().rawIpData(), nm_str, INET6_ADDRSTRLEN); stack->__pico_string_to_ipv6(ipv6_str, ipaddr.addr); stack->__pico_string_to_ipv6(nm_str, netmask.addr); stack->__pico_ipv6_link_add(&(picodev), ipaddr, netmask); picodev.send = pico_eth_send; // tx picodev.poll = pico_eth_poll; // rx uint8_t mac[PICO_SIZE_ETH]; picotap->_mac.copyTo(mac, PICO_SIZE_ETH); DEBUG_ATTN("mac = %s", picotap->_mac.toString().c_str()); if( 0 != stack->__pico_device_init(&(picodev), "p0", mac)) { DEBUG_ERROR("device init failed"); return; } DEBUG_ATTN("device initialized as ipv6_addr = %s", ipv6_str); } #endif } } // Main stack loop void pico_loop(NetconEthernetTap *tap) { while(tap->_run) { tap->_phy.poll(ZT_PHY_POLL_INTERVAL); // in ms tap->picostack->__pico_stack_tick(); } } // RX packets from [ZT->STACK] onto RXBUF // Also notify the tap service that data can be read: // [RXBUF -> (ZTSOCK->APP)] // ----------------------------------------- // | TAP <-> MEM BUFFER <-> STACK <-> APP | // | | // | APP <-> I/O BUFFER <-> STACK <-> TAP | // | |<-----------------| | RX // ----------------------------------------- // After this step, buffer will be emptied periodically by pico_handleRead() void pico_cb_tcp_read(NetconEthernetTap *tap, struct pico_socket *s) { Connection *conn = tap->getConnection(s); if(conn) { int r; uint16_t port = 0; union { struct pico_ip4 ip4; struct pico_ip6 ip6; } peer; do { int avail = DEFAULT_TCP_RX_BUF_SZ - conn->rxsz; if(avail) { r = tap->picostack->__pico_socket_recvfrom(s, conn->rxbuf + (conn->rxsz), SDK_MTU, (void *)&peer.ip4.addr, &port); // DEBUG_ATTN("received packet (%d byte) from %08X:%u", r, long_be2(peer.ip4.addr), short_be(port)); tap->_phy.setNotifyWritable(conn->sock, true); if (r > 0) conn->rxsz += r; } else DEBUG_ERROR("not enough space left on I/O RX buffer for pico_socket(%p)", s); } while(r > 0); return; } DEBUG_ERROR("invalid connection"); } // RX packets from the stack onto internal buffer // Also notifies the tap service that data can be read // ----------------------------------------- // | TAP <-> MEM BUFFER <-> STACK <-> APP | // | | // | APP <-> I/O BUFFER <-> STACK <-> TAP | // | |<-----------------| | RX // ----------------------------------------- // After this step, buffer will be emptied periodically by pico_handleRead() // Read payload is encapsulated as such: // // [addr|payload_len|payload] // void pico_cb_udp_read(NetconEthernetTap *tap, struct pico_socket *s) { Connection *conn = tap->getConnection(s); if(conn) { uint16_t port = 0; union { struct pico_ip4 ip4; struct pico_ip6 ip6; } peer; char tmpbuf[SDK_MTU]; unsigned char *addr_pos, *sz_pos, *payload_pos; struct sockaddr_in addr_in; addr_in.sin_addr.s_addr = peer.ip4.addr; addr_in.sin_port = port; // RX int r = tap->picostack->__pico_socket_recvfrom(s, tmpbuf, SDK_MTU, (void *)&peer.ip4.addr, &port); //DEBUG_FLOW(" [ RXBUF <- STACK] Receiving (%d) from stack, copying to receving buffer", r); // Mutex::Lock _l2(tap->_rx_buf_m); // struct sockaddr_in6 addr_in6; // addr_in6.sin6_addr.s6_addr; // addr_in6.sin6_port = Utils::ntoh(s->remote_port); // DEBUG_ATTN("remote_port=%d, local_port=%d", s->remote_port, Utils::ntoh(s->local_port)); picotap->_rx_buf_m.lock(); if(conn->rxsz == DEFAULT_UDP_RX_BUF_SZ) { // if UDP buffer full //DEBUG_FLOW(" [ RXBUF <- STACK] UDP RX buffer full. Discarding oldest payload segment"); memmove(conn->rxbuf, conn->rxbuf + SDK_MTU, DEFAULT_UDP_RX_BUF_SZ - SDK_MTU); addr_pos = conn->rxbuf + (DEFAULT_UDP_RX_BUF_SZ - SDK_MTU); // TODO: sz_pos = addr_pos + sizeof(struct sockaddr_storage); conn->rxsz -= SDK_MTU; } else { addr_pos = conn->rxbuf + conn->rxsz; // where we'll prepend the size of the address sz_pos = addr_pos + sizeof(struct sockaddr_storage); } payload_pos = addr_pos + sizeof(struct sockaddr_storage) + sizeof(r); memcpy(addr_pos, &addr_in, sizeof(struct sockaddr_storage)); memcpy(payload_pos, tmpbuf, r); // write payload to app's socket // Adjust buffer size if(r) { conn->rxsz += SDK_MTU; memcpy(sz_pos, &r, sizeof(r)); } if (r < 0) { DEBUG_ERROR("unable to read from picosock=%p", s); } picotap->_rx_buf_m.unlock(); // TODO: Revisit logic if(r) tap->phyOnUnixWritable(conn->sock, NULL, true); //DEBUG_EXTRA(" Copied onto rxbuf (%d) from stack socket", r); return; } } // TX packets from internal buffer to network void pico_cb_tcp_write(NetconEthernetTap *tap, struct pico_socket *s) { Connection *conn = tap->getConnection(s); if(!conn) DEBUG_ERROR("invalid connection"); if(!conn->txsz) return; // Only called from a locked context, no need to lock anything if(conn->txsz > 0) { int r, max_write_len = conn->txsz < SDK_MTU ? conn->txsz : SDK_MTU; if((r = tap->picostack->__pico_socket_write(s, &conn->txbuf, max_write_len)) < 0) { DEBUG_ERROR("unable to write to picosock=%p", s); return; } int sz = (conn->txsz)-r; if(sz) memmove(&conn->txbuf, (conn->txbuf+r), sz); conn->txsz -= r; #if DEBUG_LEVEL >= MSG_TRANSFER int max = conn->type == SOCK_STREAM ? DEFAULT_TCP_TX_BUF_SZ : DEFAULT_UDP_TX_BUF_SZ; DEBUG_TRANS("[TCP TX] ---> :: {TX: %.3f%%, RX: %.3f%%, physock=%p} :: %d bytes", (float)conn->txsz / (float)max, (float)conn->rxsz / max, conn->sock, r); #endif return; } } // Main callback for TCP connections void pico_cb_socket_activity(uint16_t ev, struct pico_socket *s) { int err; Mutex::Lock _l(picotap->_tcpconns_m); Connection *conn = picotap->getConnection(s); if(!conn) { DEBUG_ERROR("invalid connection"); } // Accept connection (analogous to lwip_nc_accept) if (ev & PICO_SOCK_EV_CONN) { DEBUG_INFO("connection established with server, picosock=%p",(conn->picosock)); uint32_t peer; uint16_t port; struct pico_socket *client = picotap->picostack->__pico_socket_accept(s, &peer, &port); if(!client) { DEBUG_EXTRA("unable to accept conn. (event might not be incoming, not necessarily an error), picosock=%p", (conn->picosock)); } ZT_PHY_SOCKFD_TYPE fds[2]; if(socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) { if(errno < 0) { // FIXME: Return a value to the client //picotap->sendReturnValue(conn, -1, errno); DEBUG_ERROR("unable to create socketpair"); return; } } Connection *newTcpConn = new Connection(); picotap->_Connections.push_back(newTcpConn); newTcpConn->type = SOCK_STREAM; newTcpConn->sock = picotap->_phy.wrapSocket(fds[0], newTcpConn); newTcpConn->picosock = client; int fd = picotap->_phy.getDescriptor(conn->sock); if(sock_fd_write(fd, fds[1]) < 0) { DEBUG_ERROR("error sending new fd to client application"); } DEBUG_EXTRA("conn=%p, physock=%p, listen_picosock=%p, new_picosock=%p, fd=%d", newTcpConn, newTcpConn->sock, s, client, fds[1]); } if (ev & PICO_SOCK_EV_FIN) { DEBUG_INFO("socket closed. exit normally. picosock=%p\n\n", s); //picotap->__pico_timer_add(2000, compare_results, NULL); } if (ev & PICO_SOCK_EV_ERR) { DEBUG_INFO("socket error received" /*, strerror(pico_err)*/); } if (ev & PICO_SOCK_EV_CLOSE) { err = picotap->picostack->__pico_socket_close(s); DEBUG_INFO("socket closure = %d, picosock=%p", err, s); if(err==0) { picotap->closeConnection(conn->sock); } return; } // Read from picoTCP socket if (ev & PICO_SOCK_EV_RD) { if(conn->type==SOCK_STREAM) pico_cb_tcp_read(picotap, s); if(conn->type==SOCK_DGRAM) pico_cb_udp_read(picotap, s); } // Write to picoTCP socket if (ev & PICO_SOCK_EV_WR) { pico_cb_tcp_write(picotap, s); } } // Called when an incoming ping is received /* static void pico_cb_ping(struct pico_icmp4_stats *s) { DEBUG_INFO(); char host[30]; picotap->picostack->__pico_ipv4_to_string(host, s->dst.addr); if (s->err == 0) { printf("%lu bytes from %s: icmp_req=%lu ttl=%lu time=%lu ms\n", s->size, host, s->seq, s->ttl, (long unsigned int)s->time); } else { printf("PING %lu to %s: Error %d\n", s->seq, host, s->err); } } */ // Called from the stack, sends data to the tap device (in our case, the ZeroTier service) // ----------------------------------------- // | TAP <-> MEM BUFFER <-> STACK <-> APP | // | |<-------------------------| | TX // | APP <-> I/O BUFFER <-> STACK <-> TAP | // | | // ----------------------------------------- int pico_eth_send(struct pico_device *dev, void *buf, int len) { struct pico_eth_hdr *ethhdr; ethhdr = (struct pico_eth_hdr *)buf; MAC src_mac; MAC dest_mac; src_mac.setTo(ethhdr->saddr, 6); dest_mac.setTo(ethhdr->daddr, 6); picotap->_handler(picotap->_arg,NULL,picotap->_nwid,src_mac,dest_mac, Utils::ntoh((uint16_t)ethhdr->proto),0, ((char*)buf) + sizeof(struct pico_eth_hdr),len - sizeof(struct pico_eth_hdr)); return len; } // Receives data from the tap device and encapsulates it into a ZeroTier ethernet frame and places it in a locked memory buffer // ----------------------------------------- // | TAP <-> MEM BUFFER <-> STACK <-> APP | // | |--------------->| | RX // | APP <-> I/O BUFFER <-> STACK <-> TAP | // | | // ----------------------------------------- // It will then periodically be transfered into the network stack via pico_eth_poll() void pico_rx(NetconEthernetTap *tap, const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len) { // Since picoTCP only allows the reception of frames from within the polling function, we // must enqueue each frame into a memory structure shared by both threads. This structure will Mutex::Lock _l(tap->_pico_frame_rxbuf_m); // assemble new eth header struct pico_eth_hdr ethhdr; from.copyTo(ethhdr.saddr, 6); to.copyTo(ethhdr.daddr, 6); ethhdr.proto = Utils::hton((uint16_t)etherType); int newlen = len + sizeof(int) + sizeof(struct pico_eth_hdr); int mylen; while(newlen > (MAX_PICO_FRAME_RX_BUF_SZ-tap->pico_frame_rxbuf_tot) && ethhdr.proto == 56710) { mylen = 0; //DEBUG_FLOW(" [ ZTWIRE -> FBUF ] not enough space left on RX frame buffer, dropping oldest packet in buffer"); /* memcpy(&mylen, picotap->pico_frame_rxbuf, sizeof(len)); memmove(tap->pico_frame_rxbuf, tap->pico_frame_rxbuf + mylen, MAX_PICO_FRAME_RX_BUF_SZ-mylen); // shift buffer picotap->pico_frame_rxbuf_tot-=mylen; */ memset(tap->pico_frame_rxbuf,0,MAX_PICO_FRAME_RX_BUF_SZ); picotap->pico_frame_rxbuf_tot=0; } memcpy(tap->pico_frame_rxbuf + tap->pico_frame_rxbuf_tot, &newlen, sizeof(newlen)); // size of frame + meta memcpy(tap->pico_frame_rxbuf + tap->pico_frame_rxbuf_tot + sizeof(newlen), ðhdr, sizeof(ethhdr)); // new eth header memcpy(tap->pico_frame_rxbuf + tap->pico_frame_rxbuf_tot + sizeof(newlen) + sizeof(ethhdr), data, len); // frame data tap->pico_frame_rxbuf_tot += newlen; DEBUG_FLOW(" [ ZTWIRE -> FBUF ] Move FRAME(sz=%d) into FBUF(sz=%d), data_len=%d", newlen, picotap->pico_frame_rxbuf_tot, len); } // Called periodically by the stack, this removes data from the locked memory buffer (FBUF) and feeds it into the stack. // A maximum of 'loop_score' frames can be processed in each call // ----------------------------------------- // | TAP <-> MEM BUFFER <-> STACK <-> APP | // | |----------------->| | RX // | APP <-> I/O BUFFER <-> STACK <-> TAP | // | | // ----------------------------------------- int pico_eth_poll(struct pico_device *dev, int loop_score) { // OPTIMIZATION: The copy logic and/or buffer structure should be reworked for better performance after the BETA // NetconEthernetTap *tap = (NetconEthernetTap*)netif->state; Mutex::Lock _l(picotap->_pico_frame_rxbuf_m); unsigned char frame[SDK_MTU]; int len; while (picotap->pico_frame_rxbuf_tot > 0 && loop_score > 0) { //DEBUG_FLOW(" [ FBUF -> STACK] Frame buffer SZ=%d", picotap->pico_frame_rxbuf_tot); memset(frame, 0, sizeof(frame)); len = 0; memcpy(&len, picotap->pico_frame_rxbuf, sizeof(len)); // get frame len if(len >= 0) { //DEBUG_FLOW(" [ FBUF -> STACK] Moving FRAME of size (%d) from FBUF(sz=%d) into stack",len, picotap->pico_frame_rxbuf_tot-len); memcpy(frame, picotap->pico_frame_rxbuf + sizeof(len), len-(sizeof(len)) ); // get frame data memmove(picotap->pico_frame_rxbuf, picotap->pico_frame_rxbuf + len, MAX_PICO_FRAME_RX_BUF_SZ-len); // shift buffer picotap->picostack->__pico_stack_recv(dev, (uint8_t*)frame, (len-sizeof(len))); picotap->pico_frame_rxbuf_tot-=len; } else { DEBUG_ERROR("Skipping frame of size (%d)",len); exit(0); } loop_score--; } return loop_score; } // Creates a new pico_socket and Connection object to represent a new connection to be. Connection *pico_handleSocket(PhySocket *sock, void **uptr, struct socket_st* socket_rpc) { struct pico_socket * psock; int protocol, protocol_version; #if defined(SDK_IPV4) protocol_version = PICO_PROTO_IPV4; #elif defined(SDK_IPV6) protocol_version = PICO_PROTO_IPV6; #endif if(socket_rpc->socket_type == SOCK_DGRAM) { protocol = PICO_PROTO_UDP; psock = picotap->picostack->__pico_socket_open(protocol_version, protocol, &pico_cb_socket_activity); } if(socket_rpc->socket_type == SOCK_STREAM) { protocol = PICO_PROTO_TCP; psock = picotap->picostack->__pico_socket_open(protocol_version, protocol, &pico_cb_socket_activity); } if(psock) { DEBUG_ATTN("physock=%p, picosock=%p", sock, psock); Connection * newConn = new Connection(); *uptr = newConn; newConn->type = socket_rpc->socket_type; newConn->sock = sock; /* int res = 0; int sendbuff = UNIX_SOCK_BUF_SIZE; socklen_t optlen = sizeof(sendbuff); res = setsockopt(picotap->_phy.getDescriptor(sock), SOL_SOCKET, SO_RCVBUF, &sendbuff, sizeof(sendbuff)); if(res == -1) //DEBUG_ERROR("Error while setting RX buffer limits"); res = setsockopt(picotap->_phy.getDescriptor(sock), SOL_SOCKET, SO_SNDBUF, &sendbuff, sizeof(sendbuff)); if(res == -1) //DEBUG_ERROR("Error while setting TX buffer limits"); // Get buffer size // optlen = sizeof(sendbuff); // res = getsockopt(picotap->_phy.getDescriptor(sock), SOL_SOCKET, SO_SNDBUF, &sendbuff, &optlen); // DEBUG_INFO("buflen=%d", sendbuff); */ newConn->local_addr = NULL; newConn->picosock = psock; picotap->_Connections.push_back(newConn); memset(newConn->rxbuf, 0, DEFAULT_UDP_RX_BUF_SZ); return newConn; } else DEBUG_ERROR("failed to create pico_socket"); return NULL; } // Writes data from the I/O buffer to the network stack // ----------------------------------------- // | TAP <-> MEM BUFFER <-> STACK <-> APP | // | | // | APP <-> I/O BUFFER <-> STACK <-> TAP | // | |----------------->| | TX // ----------------------------------------- void pico_handleWrite(Connection *conn) { if(!conn || !conn->picosock) { DEBUG_ERROR(" invalid connection"); return; } int max, r, max_write_len = conn->txsz < SDK_MTU ? conn->txsz : SDK_MTU; if((r = picotap->picostack->__pico_socket_write(conn->picosock, &conn->txbuf, max_write_len)) < 0) { DEBUG_ERROR("unable to write to picosock=%p, r=%d", (conn->picosock), r); return; } // TODO: Errors /* if(pico_err == PICO_ERR_EINVAL) DEBUG_ERROR("PICO_ERR_EINVAL - invalid argument"); if(pico_err == PICO_ERR_EIO) DEBUG_ERROR("PICO_ERR_EIO - input/output error"); if(pico_err == PICO_ERR_ENOTCONN) DEBUG_ERROR("PICO_ERR_ENOTCONN - the socket is not connected"); if(pico_err == PICO_ERR_ESHUTDOWN) DEBUG_ERROR("PICO_ERR_ESHUTDOWN - cannot send after transport endpoint shutdown"); if(pico_err == PICO_ERR_EADDRNOTAVAIL) DEBUG_ERROR("PICO_ERR_EADDRNOTAVAIL - address not available"); if(pico_err == PICO_ERR_EHOSTUNREACH) DEBUG_ERROR("PICO_ERR_EHOSTUNREACH - host is unreachable"); if(pico_err == PICO_ERR_ENOMEM) DEBUG_ERROR("PICO_ERR_ENOMEM - not enough space"); if(pico_err == PICO_ERR_EAGAIN) DEBUG_ERROR("PICO_ERR_EAGAIN - resource temporarily unavailable"); */ // adjust buffer int sz = (conn->txsz)-r; if(sz) memmove(&conn->txbuf, (conn->txbuf+r), sz); conn->txsz -= r; if(conn->type == SOCK_STREAM) { max = DEFAULT_TCP_TX_BUF_SZ; DEBUG_TRANS("[TCP TX] ---> :: {TX: %.3f%%, RX: %.3f%%, physock=%p} :: %d bytes", (float)conn->txsz / (float)max, (float)conn->rxsz / max, conn->sock, r); } if(conn->type == SOCK_DGRAM) { max = DEFAULT_UDP_TX_BUF_SZ; DEBUG_TRANS("[UDP TX] ---> :: {TX: %.3f%%, RX: %.3f%%, physock=%p} :: %d bytes", (float)conn->txsz / (float)max, (float)conn->rxsz / max, conn->sock, r); } } // Instructs the stack to connect to a remote host void pico_handleConnect(PhySocket *sock, PhySocket *rpcSock, Connection *conn, struct connect_st* connect_rpc) { if(conn->picosock) { struct sockaddr_in *addr = (struct sockaddr_in *) &connect_rpc->addr; int ret; // TODO: Rewrite this #if defined(SDK_IPV4) struct pico_ip4 zaddr; struct sockaddr_in *in4 = (struct sockaddr_in*)&connect_rpc->addr; char ipv4_str[INET_ADDRSTRLEN]; inet_ntop(AF_INET, &(in4->sin_addr), ipv4_str, INET_ADDRSTRLEN); picotap->picostack->__pico_string_to_ipv4(ipv4_str, &(zaddr.addr)); //DEBUG_ATTN("addr=%s:%d", ipv4_str, Utils::ntoh(addr->sin_port)); ret = picotap->picostack->__pico_socket_connect(conn->picosock, &zaddr, addr->sin_port); #elif defined(SDK_IPV6) // "fd56:5799:d8f6:1238:8c99:9322:30ce:418a" struct pico_ip6 zaddr; struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&connect_rpc->addr; char ipv6_str[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, &(in6->sin6_addr), ipv6_str, INET6_ADDRSTRLEN); picotap->picostack->__pico_string_to_ipv6(ipv6_str, zaddr.addr); //DEBUG_ATTN("addr=%s:%d", ipv6_str, Utils::ntoh(addr->sin_port)); ret = picotap->picostack->__pico_socket_connect(conn->picosock, &zaddr, addr->sin_port); #endif memcpy(&(conn->peer_addr), &connect_rpc->addr, sizeof(struct sockaddr_storage)); if(ret == PICO_ERR_EPROTONOSUPPORT) DEBUG_ERROR("PICO_ERR_EPROTONOSUPPORT"); if(ret == PICO_ERR_EINVAL) DEBUG_ERROR("PICO_ERR_EINVAL"); if(ret == PICO_ERR_EHOSTUNREACH) DEBUG_ERROR("PICO_ERR_EHOSTUNREACH"); picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), 0, ERR_OK); } } // Instructs the stack to bind to a given address void pico_handleBind(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct bind_st *bind_rpc) { Connection *conn = picotap->getConnection(sock); if(!sock) { DEBUG_ERROR("invalid connection"); return; } struct sockaddr_in *addr = (struct sockaddr_in *) &bind_rpc->addr; int ret; // TODO: Rewrite this #if defined(SDK_IPV4) struct pico_ip4 zaddr; struct sockaddr_in *in4 = (struct sockaddr_in*)&bind_rpc->addr; char ipv4_str[INET_ADDRSTRLEN]; inet_ntop(AF_INET, &(in4->sin_addr), ipv4_str, INET_ADDRSTRLEN); picotap->picostack->__pico_string_to_ipv4(ipv4_str, &(zaddr.addr)); DEBUG_ATTN("addr=%s:%d, physock=%p, picosock=%p", ipv4_str, Utils::ntoh(addr->sin_port), sock, (conn->picosock)); ret = picotap->picostack->__pico_socket_bind(conn->picosock, &zaddr, (uint16_t*)&(addr->sin_port)); #elif defined(SDK_IPV6) struct pico_ip6 zaddr; struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&bind_rpc->addr; char ipv6_str[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, &(in6->sin6_addr), ipv6_str, INET6_ADDRSTRLEN); picotap->picostack->__pico_string_to_ipv6(ipv6_str, zaddr.addr); DEBUG_ATTN("addr=%s:%d, physock=%p, picosock=%p", ipv6_str, Utils::ntoh(addr->sin_port), sock, (conn->picosock)); ret = picotap->picostack->__pico_socket_bind(conn->picosock, &zaddr, (uint16_t*)&(addr->sin_port)); #endif if(ret < 0) { DEBUG_ERROR("unable to bind pico_socket(%p), err=%d", (conn->picosock), ret); if(ret == PICO_ERR_EINVAL) { DEBUG_ERROR("PICO_ERR_EINVAL - invalid argument"); picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), -1, EINVAL); } if(ret == PICO_ERR_ENOMEM) { DEBUG_ERROR("PICO_ERR_ENOMEM - not enough space"); picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), -1, ENOMEM); } if(ret == PICO_ERR_ENXIO) { DEBUG_ERROR("PICO_ERR_ENXIO - no such device or address"); picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), -1, ENXIO); } } picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), ERR_OK, ERR_OK); // success } // Puts a pico_socket into a listening state to receive incoming connection requests void pico_handleListen(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct listen_st *listen_rpc) { Connection *conn = picotap->getConnection(sock); DEBUG_ATTN("physock=%p, conn=%p, picosock=%p", sock, conn, conn->picosock); if(!sock || !conn) { DEBUG_ERROR("invalid connection"); return; } int ret, backlog = 100; if((ret = picotap->picostack->__pico_socket_listen(conn->picosock, backlog)) < 0) { if(ret == PICO_ERR_EINVAL) { DEBUG_ERROR("PICO_ERR_EINVAL - invalid argument"); picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), -1, EINVAL); } if(ret == PICO_ERR_EISCONN) { DEBUG_ERROR("PICO_ERR_EISCONN - socket is connected"); picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), -1, EISCONN); } } picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), ERR_OK, ERR_OK); // success } // Feeds data into the local app socket from the I/O buffer associated with the "connection" // [ (APP<-ZTSOCK) <- RXBUF ] // ----------------------------------------- // | TAP <-> MEM BUFFER <-> STACK <-> APP | // | | // | APP <-> I/O BUFFER <-> STACK <-> TAP | // | |<---------------| | RX // ----------------------------------------- void pico_handleRead(PhySocket *sock,void **uptr,bool lwip_invoked) { if(!lwip_invoked) { // The stack thread writes to RXBUF as well picotap->_tcpconns_m.lock(); picotap->_rx_buf_m.lock(); } int tot = 0, n = -1, write_attempts = 0; Connection *conn = picotap->getConnection(sock); if(conn && conn->rxsz) { // if(conn->type==SOCK_DGRAM) { // Try to write SDK_MTU-sized chunk to app socket while(tot < SDK_MTU) { write_attempts++; n = picotap->_phy.streamSend(conn->sock, (conn->rxbuf)+tot, SDK_MTU); tot += n; DEBUG_FLOW(" [ ZTSOCK <- RXBUF] wrote = %d, errno=%d", n, errno); // If socket is unavailable, attempt to write N times before giving up if(errno==35) { if(write_attempts == 1024) { n = SDK_MTU; // say we wrote it, even though we didn't (drop packet) tot = SDK_MTU; } } } int payload_sz, addr_sz_offset = sizeof(struct sockaddr_storage); memcpy(&payload_sz, conn->rxbuf + addr_sz_offset, sizeof(int)); struct sockaddr_storage addr; memcpy(&addr, conn->rxbuf, addr_sz_offset); // adjust buffer //DEBUG_FLOW(" [ ZTSOCK <- RXBUF] Copying data from receiving buffer to ZT-controlled app socket (n=%d, payload_sz=%d)", n, payload_sz); if(conn->rxsz-n > 0) { // If more remains on buffer memcpy(conn->rxbuf, conn->rxbuf+SDK_MTU, conn->rxsz - SDK_MTU); //DEBUG_FLOW(" [ ZTSOCK <- RXBUF] Data(%d) still on buffer, moving it up by one MTU", conn->rxsz-n); ////memset(conn->rxbuf, 0, DEFAULT_UDP_RX_BUF_SZ); ////conn->rxsz=SDK_MTU; } conn->rxsz -= SDK_MTU; } // if(conn->type==SOCK_STREAM) { n = picotap->_phy.streamSend(conn->sock, conn->rxbuf, conn->rxsz); if(conn->rxsz-n > 0) // If more remains on buffer memcpy(conn->rxbuf, conn->rxbuf+n, conn->rxsz - n); conn->rxsz -= n; } // Notify ZT I/O loop that it has new buffer contents if(n) { if(conn->type==SOCK_STREAM) { #if DEBUG_LEVEL >= MSG_TRANSFER float max = conn->type == SOCK_STREAM ? (float)DEFAULT_TCP_RX_BUF_SZ : (float)DEFAULT_UDP_RX_BUF_SZ; DEBUG_TRANS("[TCP RX] <--- :: {TX: %.3f%%, RX: %.3f%%, physock=%p} :: %d bytes", (float)conn->txsz / max, (float)conn->rxsz / max, conn->sock, n); #endif } if(conn->rxsz == 0) { picotap->_phy.setNotifyWritable(sock, false); } else { picotap->_phy.setNotifyWritable(sock, true); } } else { picotap->_phy.setNotifyWritable(sock, false); } } if(!lwip_invoked) { picotap->_tcpconns_m.unlock(); picotap->_rx_buf_m.unlock(); } DEBUG_FLOW(" [ ZTSOCK <- RXBUF] Emitted (%d) from RXBUF(%d) to socket", tot, conn->rxsz); } // Closes a pico_socket void pico_handleClose(PhySocket *sock) { /* int ret; if(conn && conn->picosock) { if((ret = picotap->picostack->__pico_socket_close(conn->picosock)) < 0) { DEBUG_ERROR("error closing pico_socket(%p)", (void*)(conn->picosock)); // sendReturnValue() } return; } DEBUG_ERROR("invalid connection or pico_socket"); */ } } #endif // SDK_PICOTCP