/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2015 ZeroTier, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include #include #include #include #include #include #include #include #include #include "SDK_EthernetTap.hpp" #include "SDK_Utils.hpp" #include "SDK.h" #include "SDK_defs.h" #include "SDK_Debug.h" #if defined(SDK_LWIP) #include "SDK_lwip.hpp" #elif defined(SDK_PICOTCP) #include "SDK_pico.hpp" #include "pico_stack.h" #include "pico_ipv4.h" #include "pico_icmp4.h" #include "pico_dev_tap.h" #include "pico_socket.h" #include "pico_protocol.h" #elif defined(SDK_JIP) #include "SDK_jip.hpp" #endif #include "Utils.hpp" #include "OSUtils.hpp" #include "Constants.hpp" #include "Phy.hpp" // LWIP #include "lwip/priv/tcp_priv.h" #include "lwip/nd6.h" #include "lwip/api.h" #include "lwip/ip.h" #include "lwip/ip_addr.h" #include "lwip/ip4_addr.h" #include "lwip/tcp.h" #include "lwip/init.h" #include "lwip/mem.h" #include "lwip/pbuf.h" #include "lwip/netif.h" #include "lwip/udp.h" #include "lwip/tcp.h" //#if !defined(__IOS__) && !defined(__ANDROID__) && !defined(__UNITY_3D__) && !defined(__XCODE__) // const ip_addr_t ip_addr_any = { IPADDR_ANY }; //#endif namespace ZeroTier { static NetconEthernetTap *picotap; /*------------------------------------------------------------------------------ ------------------------------- picoTCP callbacks ------------------------------ ---------- This section represents the "driver" for the picoTCP stack ---------- ------------------------------------------------------------------------------*/ // Prototypes static int pico_eth_send(struct pico_device *dev, void *buf, int len); static int pico_eth_poll(struct pico_device *dev, int loop_score); void picoTCP_init_interface(const InetAddress &ip) { picoTCP_stack *stack = picotap->picostack; // TODO: Move this somewhere more appropriate DEBUG_INFO(); if (std::find(picotap->_ips.begin(),picotap->_ips.end(),ip) == picotap->_ips.end()) { picotap->_ips.push_back(ip); std::sort(picotap->_ips.begin(),picotap->_ips.end()); #if defined(SDK_IPV4) if(ip.isV4()) { int id; struct pico_ip4 ipaddr, netmask; ipaddr.addr = *((u32_t *)ip.rawIpData()); netmask.addr = *((u32_t *)ip.netmask().rawIpData()); stack->__pico_ipv4_link_add(&(picotap->picodev), ipaddr, netmask); picotap->picodev.send = pico_eth_send; // tx picotap->picodev.poll = pico_eth_poll; // rx // Register the device in picoTCP uint8_t mac[PICO_SIZE_ETH]; picotap->_mac.copyTo(mac, PICO_SIZE_ETH); DEBUG_ATTN("mac = %s", picotap->_mac.toString().c_str()); if( 0 != stack->__pico_device_init(&(picotap->picodev), "p0", mac)) { DEBUG_ERROR("device init failed"); return; } // DEBUG_INFO("device initialized as ipv4_addr = %s", ipv4_str); // picostack->__pico_icmp4_ping("10.8.8.1", 20, 1000, 10000, 64, cb_ping); } #elif defined(SDK_IPV6) if(ip.isV6()) { struct pico_ip6 ipaddr, netmask; char ipv6_str[INET6_ADDRSTRLEN], nm_str[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, ip.rawIpData(), ipv6_str, INET6_ADDRSTRLEN); inet_ntop(AF_INET6, ip.netmask().rawIpData(), nm_str, INET6_ADDRSTRLEN); stack->__pico_string_to_ipv6(ipv6_str, ipaddr.addr); stack->__pico_string_to_ipv6(nm_str, netmask.addr); stack->__pico_ipv6_link_add(&(picotap->picodev), ipaddr, netmask); picotap->picodev.send = pico_eth_send; // tx picotap->picodev.poll = pico_eth_poll; // rx // Register the device in picoTCP uint8_t mac[PICO_SIZE_ETH]; picotap->_mac.copyTo(mac, PICO_SIZE_ETH); DEBUG_ATTN("mac = %s", picotap->_mac.toString().c_str()); if( 0 != stack->__pico_device_init(&(picotap->picodev), "p0", mac)) { DEBUG_ERROR("device init failed"); return; } DEBUG_INFO("device initialized as ipv6_addr = %s", ipv6_str); } #endif } } // RX // Copies data onto the RX buffer and notifies the system that data can be read, buffer will be emptied by pico_handleRead() static void pico_cb_tcp_read(struct pico_socket *s) { DEBUG_INFO(); Connection *conn = picotap->getConnection(s); if(conn) { int r; do { //int avail = DEFAULT_TCP_RX_BUF_SZ - conn->rxsz; //if(avail) { r = picotap->picostack->__pico_socket_read(s, conn->rxbuf + (conn->rxsz), ZT_MAX_MTU); picotap->_phy.setNotifyWritable(conn->sock, true); DEBUG_ATTN("read=%d", r); if (r > 0) { conn->rxsz += r; } //} if (r < 0) { exit(5); } } while(r > 0); return; } DEBUG_ERROR("invalid connection"); } // TX static void pico_cb_tcp_write(struct pico_socket *s) { Connection *conn = picotap->getConnection(s); if(!conn) DEBUG_ERROR("invalid connection"); DEBUG_INFO("txsz=%d bytes ready to be written", conn->txsz); // Only called from a locked context, no need to lock anything if(conn->txsz > 0) { int r = conn->txsz < ZT_MAX_MTU ? conn->txsz : ZT_MAX_MTU; if((r = picotap->picostack->__pico_socket_write(s, &conn->txbuf, r)) < 0) { DEBUG_ERROR("unable to write to pico_socket=%p", (void*)s); return; } int sz = (conn->txsz)-r; if(sz) memmove(&conn->txbuf, (conn->txbuf+r), sz); conn->txsz -= r; int max = conn->type == SOCK_STREAM ? DEFAULT_TCP_TX_BUF_SZ : DEFAULT_UDP_TX_BUF_SZ; DEBUG_TRANS("[TCP TX] ---> :: {TX: %.3f%%, RX: %.3f%%, sock=%p} :: %d bytes", (float)conn->txsz / (float)max, (float)conn->rxsz / max, (void*)&conn->sock, r); return; } } static void pico_cb_tcp(uint16_t ev, struct pico_socket *s) { //DEBUG_INFO("pico_socket=%p", (void*)s); Mutex::Lock _l(picotap->_tcpconns_m); Connection *conn = picotap->getConnection(s); if(!conn) { DEBUG_ERROR(" invalid connection"); } if (ev & PICO_SOCK_EV_RD) { pico_cb_tcp_read(s); } // Accept connection (analogous to lwip_nc_accept) if (ev & PICO_SOCK_EV_CONN) { DEBUG_INFO(" connection established with server."); uint32_t peer; uint16_t port; struct pico_socket *client = picotap->picostack->__pico_socket_accept(s, &peer, &port); if(!client) { DEBUG_ERROR(" there was an error accepting the connection"); } ZT_PHY_SOCKFD_TYPE fds[2]; if(socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) { if(errno < 0) { picotap->sendReturnValue(conn, -1, errno); DEBUG_ERROR(" unable to create socketpair"); return; } } Connection *newTcpConn = new Connection(); picotap->_Connections.push_back(newTcpConn); newTcpConn->type = SOCK_STREAM; newTcpConn->sock = picotap->_phy.wrapSocket(fds[0], newTcpConn); newTcpConn->picosock = client; int fd = picotap->_phy.getDescriptor(conn->sock); if(sock_fd_write(fd, fds[1]) < 0) { DEBUG_ERROR(" error sending new fd to client application"); } } if (ev & PICO_SOCK_EV_FIN) { DEBUG_INFO(" socket closed. Exit normally."); //picotap->__pico_timer_add(2000, compare_results, NULL); } if (ev & PICO_SOCK_EV_ERR) { DEBUG_INFO(" socket error received" /*, strerror(pico_err)*/); //exit(1); } if (ev & PICO_SOCK_EV_CLOSE) { DEBUG_INFO(" socket received close from peer - Wrong case if not all client data sent!"); picotap->picostack->__pico_socket_close(s); picotap->closeConnection(conn); return; } if (ev & PICO_SOCK_EV_WR) { pico_cb_tcp_write(s); } } static void cb_ping(struct pico_icmp4_stats *s) { DEBUG_INFO(); char host[30]; picotap->picostack->__pico_ipv4_to_string(host, s->dst.addr); if (s->err == 0) { // if all is well, print some pretty info printf("%lu bytes from %s: icmp_req=%lu ttl=%lu time=%lu ms\n", s->size, host, s->seq, s->ttl, (long unsigned int)s->time); //if (s->seq >= NUM_PING) //finished = 1; } else { // if something went wrong, print it and signal we want to stop printf("PING %lu to %s: Error %d\n", s->seq, host, s->err); //finished = 1; } } static int pico_eth_send(struct pico_device *dev, void *buf, int len) { DEBUG_INFO("len=%d", len); struct eth_hdr *ethhdr; ethhdr = (struct eth_hdr *)buf; ZeroTier::MAC src_mac; ZeroTier::MAC dest_mac; src_mac.setTo(ethhdr->src.addr, 6); dest_mac.setTo(ethhdr->dest.addr, 6); picotap->_handler(picotap->_arg,picotap->_nwid,src_mac,dest_mac, Utils::ntoh((uint16_t)ethhdr->type),0, ((char*)buf) + sizeof(struct eth_hdr),len - sizeof(struct eth_hdr)); return len; } static int pico_eth_poll(struct pico_device *dev, int loop_score) { // DEBUG_EXTRA(); // OPTIMIZATION: The copy logic and/or buffer structure should be reworked for better performance after the BETA // ZeroTier::NetconEthernetTap *tap = (ZeroTier::NetconEthernetTap*)netif->state; Mutex::Lock _l(picotap->_pico_frame_rxbuf_m); uint8_t *buf = NULL; uint32_t len = 0; struct eth_hdr ethhdr; unsigned char frame[ZT_MAX_MTU]; while (picotap->pico_frame_rxbuf_tot > 0) { memset(frame, 0, sizeof(frame)); unsigned int len = 0; memcpy(&len, picotap->pico_frame_rxbuf, sizeof(len)); // get frame len //DEBUG_EXTRA("reading frame len = %ld", len); memcpy(frame, picotap->pico_frame_rxbuf + sizeof(len), len); // get frame data memmove(picotap->pico_frame_rxbuf, picotap->pico_frame_rxbuf + sizeof(len) + len, ZT_MAX_MTU-(sizeof(len) + len)); int rx_ret = picotap->picostack->__pico_stack_recv(dev, (uint8_t*)frame, len); picotap->pico_frame_rxbuf_tot-=(sizeof(len) + len); //DEBUG_EXTRA("rx_ret = %d", rx_ret); //DEBUG_EXTRA("RX frame buffer %3f full", (float)(picotap->pico_frame_rxbuf_tot) / (float)(MAX_PICO_FRAME_RX_BUF_SZ)); loop_score--; } //DEBUG_ATTN("loop_score = %d", loop_score); return loop_score; } static Connection *pico_handleSocket(PhySocket *sock, void **uptr, struct socket_st* socket_rpc) { DEBUG_INFO(); struct pico_socket * psock; #if defined(SDK_IPV4) psock = picotap->picostack->__pico_socket_open(PICO_PROTO_IPV4, PICO_PROTO_TCP, &pico_cb_tcp); #elif defined(SDK_IPV6) psock = picotap->picostack->__pico_socket_open(PICO_PROTO_IPV6, PICO_PROTO_TCP, &pico_cb_tcp); #endif if(psock) { DEBUG_ATTN("psock = %p", (void*)psock); int yes = 1; //picostack->__pico_socket_setoption(psock, PICO_TCP_NODELAY, &yes); Connection * newConn = new Connection(); *uptr = newConn; newConn->type = socket_rpc->socket_type; newConn->sock = sock; newConn->local_addr = NULL; newConn->peer_addr = NULL; newConn->picosock = psock; picotap->_Connections.push_back(newConn); return newConn; } else { DEBUG_ERROR("failed to create pico_socket"); } return NULL; } static void pico_handleWrite(Connection *conn) { DEBUG_INFO(); if(!conn || !conn->picosock) { DEBUG_ERROR(" invalid connection"); return; } int r, max_write_len = conn->txsz < ZT_MAX_MTU ? conn->txsz : ZT_MAX_MTU; if((r = picotap->picostack->__pico_socket_write(conn->picosock, &conn->txbuf, max_write_len)) < 0) { DEBUG_ERROR("unable to write to pico_socket(%p)", (void*)&(conn->picosock)); return; } /* if(pico_err == PICO_ERR_EINVAL) DEBUG_ERROR("PICO_ERR_EINVAL - invalid argument"); if(pico_err == PICO_ERR_EIO) DEBUG_ERROR("PICO_ERR_EIO - input/output error"); if(pico_err == PICO_ERR_ENOTCONN) DEBUG_ERROR("PICO_ERR_ENOTCONN - the socket is not connected"); if(pico_err == PICO_ERR_ESHUTDOWN) DEBUG_ERROR("PICO_ERR_ESHUTDOWN - cannot send after transport endpoint shutdown"); if(pico_err == PICO_ERR_EADDRNOTAVAIL) DEBUG_ERROR("PICO_ERR_EADDRNOTAVAIL - address not available"); if(pico_err == PICO_ERR_EHOSTUNREACH) DEBUG_ERROR("PICO_ERR_EHOSTUNREACH - host is unreachable"); if(pico_err == PICO_ERR_ENOMEM) DEBUG_ERROR("PICO_ERR_ENOMEM - not enough space"); if(pico_err == PICO_ERR_EAGAIN) DEBUG_ERROR("PICO_ERR_EAGAIN - resource temporarily unavailable"); */ // adjust buffer int sz = (conn->txsz)-r; if(sz) memmove(&conn->txbuf, (conn->txbuf+r), sz); conn->txsz -= r; int max = conn->type == SOCK_STREAM ? DEFAULT_TCP_TX_BUF_SZ : DEFAULT_UDP_TX_BUF_SZ; DEBUG_TRANS("[TCP TX] ---> :: {TX: %.3f%%, RX: %.3f%%, sock=%p} :: %d bytes", (float)conn->txsz / (float)max, (float)conn->rxsz / max, (void*)&conn->sock, r); } static void pico_handleConnect(PhySocket *sock, PhySocket *rpcSock, Connection *conn, struct connect_st* connect_rpc) { DEBUG_INFO(); if(conn->picosock) { struct sockaddr_in *addr = (struct sockaddr_in *) &connect_rpc->addr; pico_address paddr; int ret; // TODO: Rewrite this #if defined(SDK_IPV4) struct pico_ip4 zaddr; struct sockaddr_in *in4 = (struct sockaddr_in*)&connect_rpc->addr; char ipv4_str[INET_ADDRSTRLEN]; inet_ntop(AF_INET, &(in4->sin_addr), ipv4_str, INET_ADDRSTRLEN); picotap->picostack->__pico_string_to_ipv4(ipv4_str, &(zaddr.addr)); ret = picotap->picostack->__pico_socket_connect(conn->picosock, &zaddr, addr->sin_port); #elif defined(SDK_IPV6) // "fd56:5799:d8f6:1238:8c99:9322:30ce:418a" struct pico_ip6 zaddr; struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&connect_rpc->addr; char ipv6_str[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, &(in6->sin6_addr), ipv6_str, INET6_ADDRSTRLEN); picotap->picostack->__pico_string_to_ipv6(ipv6_str, zaddr.addr); ret = picotap->picostack->__pico_socket_connect(conn->picosock, &zaddr, addr->sin_port); #endif if(ret == PICO_ERR_EPROTONOSUPPORT) { DEBUG_ERROR("PICO_ERR_EPROTONOSUPPORT"); } if(ret == PICO_ERR_EINVAL) { DEBUG_ERROR("PICO_ERR_EINVAL"); } if(ret == PICO_ERR_EHOSTUNREACH) { DEBUG_ERROR("PICO_ERR_EHOSTUNREACH"); } picotap->sendReturnValue(rpcSock, 0, ERR_OK); } } static void pico_handleBind(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct bind_st *bind_rpc) { DEBUG_INFO(); Connection *conn = picotap->getConnection(sock); if(!sock) { DEBUG_ERROR("invalid connection"); return; } struct sockaddr_in *addr = (struct sockaddr_in *) &bind_rpc->addr; int ret; // TODO: Rewrite this #if defined(SDK_IPV4) struct pico_ip4 zaddr; struct sockaddr_in *in4 = (struct sockaddr_in*)&bind_rpc->addr; char ipv4_str[INET_ADDRSTRLEN]; inet_ntop(AF_INET, &(in4->sin_addr), ipv4_str, INET_ADDRSTRLEN); picotap->picostack->__pico_string_to_ipv4(ipv4_str, &(zaddr.addr)); ret = picotap->picostack->__pico_socket_bind(conn->picosock, &zaddr, (uint16_t*)&(addr->sin_port)); #elif defined(SDK_IPV6) struct pico_ip6 zaddr; struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&bind_rpc->addr; char ipv6_str[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, &(in6->sin6_addr), ipv6_str, INET6_ADDRSTRLEN); picotap->picostack->__pico_string_to_ipv6(ipv6_str, zaddr.addr); ret = picotap->picostack->__pico_socket_bind(conn->picosock, &zaddr, (uint16_t*)&(addr->sin_port)); #endif if(ret < 0) { DEBUG_ERROR("unable to bind pico_socket(%p)", (void*)(conn->picosock)); if(ret == PICO_ERR_EINVAL) { DEBUG_ERROR("PICO_ERR_EINVAL - invalid argument"); picotap->sendReturnValue(rpcSock, -1, EINVAL); } if(ret == PICO_ERR_ENOMEM) { DEBUG_ERROR("PICO_ERR_ENOMEM - not enough space"); picotap->sendReturnValue(rpcSock, -1, ENOMEM); } if(ret == PICO_ERR_ENXIO) { DEBUG_ERROR("PICO_ERR_ENXIO - no such device or address"); picotap->sendReturnValue(rpcSock, -1, ENXIO); } } picotap->sendReturnValue(rpcSock, ERR_OK, ERR_OK); // success } static void pico_handleListen(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct listen_st *listen_rpc) { Connection *conn = picotap->getConnection(sock); DEBUG_ATTN("conn = %p", (void*)conn); if(!sock || !conn) { DEBUG_ERROR("invalid connection"); return; } int ret, backlog = 1; if((ret = picotap->picostack->__pico_socket_listen(conn->picosock, backlog)) < 0) { if(ret == PICO_ERR_EINVAL) { DEBUG_ERROR("PICO_ERR_EINVAL - invalid argument"); picotap->sendReturnValue(rpcSock, -1, EINVAL); } if(ret == PICO_ERR_EISCONN) { DEBUG_ERROR("PICO_ERR_EISCONN - socket is connected"); picotap->sendReturnValue(rpcSock, -1, EISCONN); } } picotap->sendReturnValue(rpcSock, ERR_OK, ERR_OK); // success } static void pico_handleRead(PhySocket *sock,void **uptr,bool lwip_invoked) { /* int payload_sz, addr_sz_offset = sizeof(struct sockaddr_storage); memcpy(&payload_sz, conn->rxbuf + addr_sz_offset, sizeof(int)); // OPT: // extract address struct sockaddr_storage addr; memcpy(&addr, conn->rxbuf, addr_sz_offset); if(n == ZT_MAX_MTU) { if(conn->rxsz-n > 0) // If more remains on buffer memcpy(conn->rxbuf, conn->rxbuf+ZT_MAX_MTU, conn->rxsz - ZT_MAX_MTU); conn->rxsz -= ZT_MAX_MTU; // DGRAM if(conn->type==SOCK_DGRAM){ _phy.setNotifyWritable(conn->sock, false); #if DEBUG_LEVEL >= MSG_TRANSFER struct sockaddr_in * addr_in2 = (struct sockaddr_in *)&addr; int port = lwipstack->__lwip_ntohs(addr_in2->sin_port); int ip = addr_in2->sin_addr.s_addr; unsigned char d[4]; d[0] = ip & 0xFF; d[1] = (ip >> 8) & 0xFF; d[2] = (ip >> 16) & 0xFF; d[3] = (ip >> 24) & 0xFF; DEBUG_TRANS("UDP RX <--- :: {TX: %.3f%%, RX: %d, sock=%p} :: payload = %d bytes (src_addr=%d.%d.%d.%d:%d)", (float)conn->txsz / max, conn->rxsz, (void*)conn->sock, payload_sz, d[0],d[1],d[2],d[3], port); #endif } // STREAM //DEBUG_INFO("phyOnUnixWritable(): tid = %d\n", pthread_mach_thread_np(pthread_self())); if(conn->type==SOCK_STREAM) { // Only acknolwedge receipt of TCP packets lwipstack->__tcp_recved(conn->TCP_pcb, n); DEBUG_TRANS("TCP RX <--- :: {TX: %.3f%%, RX: %.3f%%, sock=%p} :: %ld bytes", (float)conn->txsz / max, (float)conn->rxsz / max, (void*)conn->sock, n); } } else { DEBUG_EXTRA(" errno = %d, rxsz = %d", errno, conn->rxsz); _phy.setNotifyWritable(conn->sock, false); } */ /* float max = conn->type == SOCK_STREAM ? (float)DEFAULT_TCP_RX_BUF_SZ : (float)DEFAULT_UDP_RX_BUF_SZ; long n = _phy.streamSend(conn->sock, conn->rxbuf, ZT_MAX_MTU); int payload_sz, addr_sz_offset = sizeof(struct sockaddr_storage); memcpy(&payload_sz, conn->rxbuf + addr_sz_offset, sizeof(int)); // OPT: // extract address struct sockaddr_storage addr; memcpy(&addr, conn->rxbuf, addr_sz_offset); */ Connection *conn = picotap->getConnection(sock); DEBUG_INFO("rxsz=%d", conn->rxsz); if(conn && conn->rxsz) { float max = conn->type == SOCK_STREAM ? (float)DEFAULT_TCP_RX_BUF_SZ : (float)DEFAULT_UDP_RX_BUF_SZ; long n = picotap->_phy.streamSend(conn->sock, conn->rxbuf, /* ZT_MAX_MTU */ conn->rxsz); DEBUG_INFO(" n=%d", n); // extract address and payload size info if(conn->type==SOCK_DGRAM) { int payload_sz, addr_sz_offset = sizeof(struct sockaddr_storage); memcpy(&payload_sz, conn->rxbuf + addr_sz_offset, sizeof(int)); struct sockaddr_storage addr; memcpy(&addr, conn->rxbuf, addr_sz_offset); // adjust buffer if(conn->rxsz-n > 0) // If more remains on buffer memcpy(conn->rxbuf, conn->rxbuf+ZT_MAX_MTU, conn->rxsz - ZT_MAX_MTU); conn->rxsz -= ZT_MAX_MTU; } if(conn->type==SOCK_STREAM) { //int payload_sz, addr_sz_offset = sizeof(struct sockaddr_storage); //memcpy(&payload_sz, conn->rxbuf + addr_sz_offset, sizeof(int)); //struct sockaddr_storage addr; //memcpy(&addr, conn->rxbuf, addr_sz_offset); // adjust buffer if(conn->rxsz-n > 0) // If more remains on buffer memcpy(conn->rxbuf, conn->rxbuf+n, conn->rxsz - n); conn->rxsz -= n; DEBUG_INFO(" rxsz=%d", conn->rxsz); } if(n) { //DEBUG_INFO("wrote %d bytes to client application", n); if(conn->type==SOCK_STREAM) { // Only acknolwedge receipt of TCP packets DEBUG_TRANS("[TCP RX] <--- :: {TX: %.3f%%, RX: %.3f%%, sock=%p} :: %ld bytes", (float)conn->txsz / max, (float)conn->rxsz / max, (void*)conn->sock, n); } } if(!n || !(conn->rxsz)) { //DEBUG_ERROR("error writing %d-byte-sized chunk to client socket", ZT_MAX_MTU); picotap->_phy.setNotifyWritable(conn->sock, false); } } } static void pico_handleClose(Connection *conn) { DEBUG_INFO(); int ret; if(conn && conn->picosock) { if((ret = picotap->picostack->__pico_socket_close(conn->picosock)) < 0) { DEBUG_ERROR("error closing pico_socket(%p)", (void*)(conn->picosock)); // sendReturnValue() } return; } DEBUG_ERROR("invalid connection or pico_socket"); } static err_t tapif_init(struct netif *netif) { // Actual init functionality is in addIp() of tap return ERR_OK; } /* * Outputs data from the pbuf queue to the interface */ static err_t low_level_output(struct netif *netif, struct pbuf *p) { struct pbuf *q; char buf[ZT_MAX_MTU+32]; char *bufptr; int totalLength = 0; ZeroTier::NetconEthernetTap *tap = (ZeroTier::NetconEthernetTap*)netif->state; bufptr = buf; // Copy data from each pbuf, one at a time for(q = p; q != NULL; q = q->next) { memcpy(bufptr, q->payload, q->len); bufptr += q->len; totalLength += q->len; } // [Send packet to network] // Split ethernet header and feed into handler struct eth_hdr *ethhdr; ethhdr = (struct eth_hdr *)buf; ZeroTier::MAC src_mac; ZeroTier::MAC dest_mac; src_mac.setTo(ethhdr->src.addr, 6); dest_mac.setTo(ethhdr->dest.addr, 6); tap->_handler(tap->_arg,tap->_nwid,src_mac,dest_mac, Utils::ntoh((uint16_t)ethhdr->type),0,buf + sizeof(struct eth_hdr),totalLength - sizeof(struct eth_hdr)); return ERR_OK; } // --------------------------------------------------------------------------- NetconEthernetTap::NetconEthernetTap( const char *homePath, const MAC &mac, unsigned int mtu, unsigned int metric, uint64_t nwid, const char *friendlyName, void (*handler)(void *,uint64_t,const MAC &,const MAC &,unsigned int,unsigned int,const void *,unsigned int), void *arg) : _homePath(homePath), _mac(mac), _mtu(mtu), _nwid(nwid), _handler(handler), _arg(arg), _phy(this,false,true), _unixListenSocket((PhySocket *)0), _enabled(true), _run(true) { sockstate = -1; char sockPath[4096],stackPath[4096]; Utils::snprintf(sockPath,sizeof(sockPath),"%s%snc_%.16llx",homePath,ZT_PATH_SEPARATOR_S,_nwid,ZT_PATH_SEPARATOR_S,(unsigned long long)nwid); _dev = sockPath; // in SDK mode, set device to be just the network ID // SIP-0 // Load and initialize network stack library #if defined(SDK_LWIP) Utils::snprintf(stackPath,sizeof(stackPath),"%s%sliblwip.so",homePath,ZT_PATH_SEPARATOR_S); lwipstack = new lwIP_stack(stackPath); #elif defined(SDK_PICOTCP) Utils::snprintf(stackPath,sizeof(stackPath),"%s%slibpicotcp.so",homePath,ZT_PATH_SEPARATOR_S); picostack = new picoTCP_stack(stackPath); #elif defined(SDK_JIP) Utils::snprintf(stackPath,sizeof(stackPath),"%s%slibjip.so",homePath,ZT_PATH_SEPARATOR_S); jipstack = new jip_stack(stackPath); #endif if(!lwipstack && !picostack && !jipstack) { DEBUG_ERROR("unable to dynamically load a new instance of (%s) (searched ZeroTier home path)", stackPath); throw std::runtime_error(""); } else { if(lwipstack) lwipstack->__lwip_init(); if(picostack) picostack->__pico_stack_init(); //if(jipstack) // jipstack->__jip_init(); _unixListenSocket = _phy.unixListen(sockPath,(void *)this); DEBUG_INFO("tap initialized on: path=%s", sockPath); if (!_unixListenSocket) DEBUG_ERROR("unable to bind to: path=%s", sockPath); _thread = Thread::start(this); } } NetconEthernetTap::~NetconEthernetTap() { _run = false; _phy.whack(); _phy.whack(); // TODO: Rationale? Thread::join(_thread); _phy.close(_unixListenSocket,false); delete lwipstack; } void NetconEthernetTap::setEnabled(bool en) { _enabled = en; } bool NetconEthernetTap::enabled() const { return _enabled; } void NetconEthernetTap::lwIP_init_interface(const InetAddress &ip) { DEBUG_INFO("local_addr=%s", ip.toString().c_str()); Mutex::Lock _l(_ips_m); // SIP-1 // Initialize network stack's interface, assign addresses if (std::find(_ips.begin(),_ips.end(),ip) == _ips.end()) { _ips.push_back(ip); std::sort(_ips.begin(),_ips.end()); /* if (ip.isV4()) { DEBUG_INFO("IPV4"); // Set IP static ip4_addr ipaddr, netmask, gw; IP4_ADDR(&gw,127,0,0,1); ipaddr.addr = *((u32_t *)ip.rawIpData()); netmask.addr = *((u32_t *)ip.netmask().rawIpData()); // Set up the lwip-netif for LWIP's sake lwipstack->__netif_add(&interface,&ipaddr, &netmask, &gw, NULL, tapif_init, lwipstack->_ethernet_input); interface.state = this; interface.output = lwipstack->_etharp_output; _mac.copyTo(interface.hwaddr, 6); interface.mtu = _mtu; interface.name[0] = 't'; interface.name[1] = 'p'; interface.linkoutput = low_level_output; interface.hwaddr_len = 6; interface.flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_IGMP; lwipstack->__netif_set_default(&interface); lwipstack->__netif_set_up(&interface); } */ /* if(ip.isV6()) { DEBUG_INFO("IPV6"); static ip6_addr_t addr6; IP6_ADDR2(&addr6, 0xfd56, 0x5799, 0xd8f6, 0x1238, 0x8c99, 0x93b4, 0x9d8e, 0x24f6); interface6.mtu = _mtu; interface6.name[0] = 't'; interface6.name[1] = 'p'; interface6.hwaddr_len = 6; interface6.linkoutput = low_level_output; interface6.ip6_autoconfig_enabled = 1; _mac.copyTo(interface6.hwaddr, interface6.hwaddr_len); lwipstack->__netif_create_ip6_linklocal_address(&interface6, 1); lwipstack->__netif_add(&interface6, NULL, tapif_init, lwipstack->_ethernet_input); lwipstack->__netif_set_default(&interface6); lwipstack->__netif_set_up(&interface6); netif_ip6_addr_set_state(&interface6, 1, IP6_ADDR_TENTATIVE); ip6_addr_copy(ip_2_ip6(interface6.ip6_addr[1]), addr6); interface6.output_ip6 = lwipstack->_ethip6_output; interface6.state = this; interface6.flags = NETIF_FLAG_LINK_UP | NETIF_FLAG_UP; } */ } } void NetconEthernetTap::jip_init_interface(const InetAddress &ip) { // will be similar to lwIP initialization process } bool NetconEthernetTap::addIp(const InetAddress &ip) { picotap = this; // SIP-3 // Initialize a new interface in the stack, assign an address #if defined(SDK_LWIP) lwIP_init_interface(ip); #elif defined(SDK_PICOTCP) picoTCP_init_interface(ip); #elif defined(SDK_JIP) jip_init_interface(ip); #endif return true; } bool NetconEthernetTap::removeIp(const InetAddress &ip) { Mutex::Lock _l(_ips_m); std::vector::iterator i(std::find(_ips.begin(),_ips.end(),ip)); if (i == _ips.end()) return false; _ips.erase(i); if (ip.isV4()) { // TODO: dealloc from LWIP } return true; } std::vector NetconEthernetTap::ips() const { Mutex::Lock _l(_ips_m); return _ips; } void NetconEthernetTap::lwIP_rx(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len) { DEBUG_INFO(); struct pbuf *p,*q; if (!_enabled) return; struct eth_hdr ethhdr; from.copyTo(ethhdr.src.addr, 6); to.copyTo(ethhdr.dest.addr, 6); ethhdr.type = Utils::hton((uint16_t)etherType); p = lwipstack->__pbuf_alloc(PBUF_RAW, len+sizeof(struct eth_hdr), PBUF_POOL); if (p != NULL) { const char *dataptr = reinterpret_cast(data); // First pbuf gets ethernet header at start q = p; if (q->len < sizeof(ethhdr)) { DEBUG_ERROR("dropped packet: first pbuf smaller than ethernet header"); return; } memcpy(q->payload,ðhdr,sizeof(ethhdr)); memcpy((char*)q->payload + sizeof(ethhdr),dataptr,q->len - sizeof(ethhdr)); dataptr += q->len - sizeof(ethhdr); // Remaining pbufs (if any) get rest of data while ((q = q->next)) { memcpy(q->payload,dataptr,q->len); dataptr += q->len; } } else { DEBUG_ERROR("dropped packet: no pbufs available"); return; } { if(interface6.input(p, &interface6) != ERR_OK) { DEBUG_ERROR("error while RX of packet (netif->input)"); } } } void NetconEthernetTap::picoTCP_rx(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len) { //DEBUG_INFO(); // Since picoTCP only allows the reception of frames from within the polling function, we // must enqueue each frame into a memory structure shared by both threads. This structure will Mutex::Lock _l(_pico_frame_rxbuf_m); if(len > ((1024 * 1024) - pico_frame_rxbuf_tot)) { DEBUG_ERROR("dropping packet (len = %d) - not enough space left on RX frame buffer", len); return; } //if(len != memcpy(pico_frame_rxbuf, data, len)) { // DEBUG_ERROR("dropping packet (len = %d) - unable to copy contents of frame to RX frame buffer", len); // return; //} // assemble new eth header struct eth_hdr ethhdr; from.copyTo(ethhdr.src.addr, 6); to.copyTo(ethhdr.dest.addr, 6); ethhdr.type = Utils::hton((uint16_t)etherType); int newlen = len+sizeof(struct eth_hdr); memcpy(pico_frame_rxbuf + pico_frame_rxbuf_tot, &newlen, sizeof(newlen)); // size of frame memcpy(pico_frame_rxbuf + pico_frame_rxbuf_tot + sizeof(newlen), ðhdr, sizeof(ethhdr)); // new eth header memcpy(pico_frame_rxbuf + pico_frame_rxbuf_tot + sizeof(newlen) + sizeof(ethhdr), data, len); // frame data pico_frame_rxbuf_tot += len + sizeof(len) + sizeof(ethhdr); //DEBUG_INFO("RX frame buffer %3f full", (float)pico_frame_rxbuf_tot / (float)(1024 * 1024)); DEBUG_INFO("len=%d", len); } void NetconEthernetTap::jip_rx(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len) { DEBUG_INFO(); } void NetconEthernetTap::put(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len) { DEBUG_EXTRA("RX packet: len=%d, etherType=%d", len, etherType); // SIP- // RX packet #if defined(SDK_LWIP) lwIP_rx(from,to,etherType,data,len); #elif defined(SDK_PICOTCP) picoTCP_rx(from,to,etherType,data,len); #elif defined(SDK_JIP) jip_rx(from,to,etherType,data,len); #endif } std::string NetconEthernetTap::deviceName() const { return _dev; } void NetconEthernetTap::setFriendlyName(const char *friendlyName) { } void NetconEthernetTap::scanMulticastGroups(std::vector &added,std::vector &removed) { std::vector newGroups; Mutex::Lock _l(_multicastGroups_m); // TODO: get multicast subscriptions from LWIP std::vector allIps(ips()); for(std::vector::iterator ip(allIps.begin());ip!=allIps.end();++ip) newGroups.push_back(MulticastGroup::deriveMulticastGroupForAddressResolution(*ip)); std::sort(newGroups.begin(),newGroups.end()); std::unique(newGroups.begin(),newGroups.end()); for(std::vector::iterator m(newGroups.begin());m!=newGroups.end();++m) { if (!std::binary_search(_multicastGroups.begin(),_multicastGroups.end(),*m)) added.push_back(*m); } for(std::vector::iterator m(_multicastGroups.begin());m!=_multicastGroups.end();++m) { if (!std::binary_search(newGroups.begin(),newGroups.end(),*m)) removed.push_back(*m); } _multicastGroups.swap(newGroups); } void NetconEthernetTap::lwIP_loop() { DEBUG_INFO(); uint64_t prev_tcp_time = 0, prev_status_time = 0, prev_discovery_time = 0; // Main timer loop while (_run) { uint64_t now = OSUtils::now(); uint64_t since_tcp = now - prev_tcp_time; uint64_t since_discovery = now - prev_discovery_time; uint64_t since_status = now - prev_status_time; uint64_t tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL; uint64_t discovery_remaining = 5000; #if defined(LWIP_IPV6) #define DISCOVERY_INTERVAL 1000 // fuck you #elif #define DISCOVERY_INTERVAL ARP_TMR_INTERVAL #endif // Connection prunning if (since_status >= STATUS_TMR_INTERVAL) { prev_status_time = now; for(size_t i=0;i<_Connections.size();++i) { if(!_Connections[i]->sock || _Connections[i]->type != SOCK_STREAM) continue; int fd = _phy.getDescriptor(_Connections[i]->sock); // DEBUG_INFO(" tap_thread(): tcp\\jobs = {%d, %d}\n", _Connection.size(), jobmap.size()); // If there's anything on the RX buf, set to notify in case we stalled if(_Connections[i]->rxsz > 0) _phy.setNotifyWritable(_Connections[i]->sock, true); fcntl(fd, F_SETFL, O_NONBLOCK); unsigned char tmpbuf[BUF_SZ]; ssize_t n = read(fd,&tmpbuf,BUF_SZ); if(_Connections[i]->TCP_pcb->state == SYN_SENT) { DEBUG_EXTRA(" should finish or be removed soon, sock=%p, state=SYN_SENT", (void*)&(_Connections[i]->sock)); } if((n < 0 && errno != EAGAIN) || (n == 0 && errno == EAGAIN)) { //DEBUG_INFO(" closing sock (%x)", (void*)_Connections[i]->sock); closeConnection(_Connections[i]->sock); } else if (n > 0) { DEBUG_INFO(" data read during connection check (%ld bytes)", n); phyOnUnixData(_Connections[i]->sock,_phy.getuptr(_Connections[i]->sock),&tmpbuf,n); } } } // Main TCP/ETHARP timer section if (since_tcp >= ZT_LWIP_TCP_TIMER_INTERVAL) { prev_tcp_time = now; lwipstack->__tcp_tmr(); // FIXME: could be removed or refactored? // Makeshift poll for(size_t i=0;i<_Connections.size();++i) { if(_Connections[i]->txsz > 0){ handleWrite(_Connections[i]); } } } else { tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL - since_tcp; } if (since_discovery >= DISCOVERY_INTERVAL) { prev_discovery_time = now; //#if defined(LWIP_IPV4) // DEBUG_EXTRA("etharp_tmr"); // lwipstack->__etharp_tmr(); //#endif #if defined(LWIP_IPV6) DEBUG_EXTRA("nd6_tmr"); lwipstack->__nd6_tmr(); #endif } else { discovery_remaining = DISCOVERY_INTERVAL - since_discovery; } _phy.poll((unsigned long)std::min(tcp_remaining,discovery_remaining)); } lwipstack->close(); } void NetconEthernetTap::picoTCP_loop() { DEBUG_INFO(); while(_run) { _phy.poll((unsigned long)std::min(100,200)); usleep(1000); picostack->__pico_stack_tick(); } } void NetconEthernetTap::jip_loop() { DEBUG_INFO(); while(_run) { } } void NetconEthernetTap::threadMain() throw() { // SIP-2 // Enter main thread loop for network stack #if defined(SDK_LWIP) lwIP_loop(); #elif defined(SDK_PICOTCP) picoTCP_loop(); #elif defined(SDK_JIP) jip_loop(); #endif } Connection *NetconEthernetTap::getConnection(PhySocket *sock) { for(size_t i=0;i<_Connections.size();++i) { if(_Connections[i]->sock == sock) return _Connections[i]; } return NULL; } Connection *NetconEthernetTap::getConnection(struct pico_socket *sock) { for(size_t i=0;i<_Connections.size();++i) { if(_Connections[i]->picosock == sock) return _Connections[i]; } return NULL; } void NetconEthernetTap::closeConnection(PhySocket *sock) { DEBUG_EXTRA("sock=%p", (void*)sock); //return; Mutex::Lock _l(_close_m); // Here we assume _tcpconns_m is already locked by caller if(!sock) { DEBUG_EXTRA("invalid PhySocket"); return; } Connection *conn = getConnection(sock); if(!conn) return; // picoTCP #if defined(SDK_PICOTCP) //pico_handleClose(conn); #endif // lwIP #if defined(SDK_LWIP) if(conn->type==SOCK_DGRAM) { lwipstack->__udp_remove(conn->UDP_pcb); } if(conn->TCP_pcb && conn->TCP_pcb->state != CLOSED) { DEBUG_EXTRA("conn=%p, sock=%p, PCB->state = %d", (void*)&conn, (void*)&sock, conn->TCP_pcb->state); if(conn->TCP_pcb->state == SYN_SENT /*|| conn->TCP_pcb->state == CLOSE_WAIT*/) { DEBUG_EXTRA("ignoring close request. invalid PCB state for this operation. sock=%p", (void*)&sock); return; } DEBUG_BLANK("__tcp_close(...)"); if(lwipstack->__tcp_close(conn->TCP_pcb) == ERR_OK) { // Unregister callbacks for this PCB lwipstack->__tcp_arg(conn->TCP_pcb, NULL); lwipstack->__tcp_recv(conn->TCP_pcb, NULL); lwipstack->__tcp_err(conn->TCP_pcb, NULL); lwipstack->__tcp_sent(conn->TCP_pcb, NULL); lwipstack->__tcp_poll(conn->TCP_pcb, NULL, 1); } else { DEBUG_EXTRA("error while calling tcp_close() sock=%p", (void*)&sock); } } #endif for(size_t i=0;i<_Connections.size();++i) { if(_Connections[i] == conn){ _Connections.erase(_Connections.begin() + i); delete conn; break; } } if(!sock) return; close(_phy.getDescriptor(sock)); _phy.close(sock, false); } void NetconEthernetTap::phyOnUnixClose(PhySocket *sock,void **uptr) { DEBUG_EXTRA("sock=%p", (void*)&sock); Mutex::Lock _l(_tcpconns_m); //closeConnection(sock); } void NetconEthernetTap::handleRead(PhySocket *sock,void **uptr,bool lwip_invoked) { //DEBUG_EXTRA("handleRead(sock=%p): lwip_invoked = %d\n", (void*)&sock, lwip_invoked); // picoTCP #if defined(SDK_PICOTCP) pico_handleRead(sock, uptr, lwip_invoked); #endif // lwIP #if defined(SDK_LWIP) if(!lwip_invoked) { _tcpconns_m.lock(); _rx_buf_m.lock(); } Connection *conn = getConnection(sock); if(conn && conn->rxsz) { float max = conn->type == SOCK_STREAM ? (float)DEFAULT_TCP_RX_BUF_SZ : (float)DEFAULT_UDP_RX_BUF_SZ; long n = _phy.streamSend(conn->sock, conn->rxbuf, ZT_MAX_MTU); int payload_sz, addr_sz_offset = sizeof(struct sockaddr_storage); memcpy(&payload_sz, conn->rxbuf + addr_sz_offset, sizeof(int)); // OPT: // extract address struct sockaddr_storage addr; memcpy(&addr, conn->rxbuf, addr_sz_offset); if(n == ZT_MAX_MTU) { if(conn->rxsz-n > 0) // If more remains on buffer memcpy(conn->rxbuf, conn->rxbuf+ZT_MAX_MTU, conn->rxsz - ZT_MAX_MTU); conn->rxsz -= ZT_MAX_MTU; // DGRAM if(conn->type==SOCK_DGRAM){ _phy.setNotifyWritable(conn->sock, false); #if DEBUG_LEVEL >= MSG_TRANSFER struct sockaddr_in * addr_in2 = (struct sockaddr_in *)&addr; int port = lwipstack->__lwip_ntohs(addr_in2->sin_port); int ip = addr_in2->sin_addr.s_addr; unsigned char d[4]; d[0] = ip & 0xFF; d[1] = (ip >> 8) & 0xFF; d[2] = (ip >> 16) & 0xFF; d[3] = (ip >> 24) & 0xFF; DEBUG_TRANS("UDP RX <--- :: {TX: %.3f%%, RX: %d, sock=%p} :: payload = %d bytes (src_addr=%d.%d.%d.%d:%d)", (float)conn->txsz / max, conn->rxsz/* / max*/, (void*)conn->sock, payload_sz, d[0],d[1],d[2],d[3], port); #endif } // STREAM //DEBUG_INFO("phyOnUnixWritable(): tid = %d\n", pthread_mach_thread_np(pthread_self())); if(conn->type==SOCK_STREAM) { // Only acknolwedge receipt of TCP packets lwipstack->__tcp_recved(conn->TCP_pcb, n); DEBUG_TRANS("TCP RX <--- :: {TX: %.3f%%, RX: %.3f%%, sock=%p} :: %ld bytes", (float)conn->txsz / max, (float)conn->rxsz / max, (void*)conn->sock, n); } } else { DEBUG_EXTRA(" errno = %d, rxsz = %d", errno, conn->rxsz); _phy.setNotifyWritable(conn->sock, false); } } // If everything on the buffer has been written if(conn->rxsz == 0) { _phy.setNotifyWritable(conn->sock, false); } if(!lwip_invoked) { _tcpconns_m.unlock(); _rx_buf_m.unlock(); } #endif } void NetconEthernetTap::phyOnUnixWritable(PhySocket *sock,void **uptr,bool lwip_invoked) { handleRead(sock,uptr,lwip_invoked); } void NetconEthernetTap::phyOnUnixData(PhySocket *sock, void **uptr, void *data, ssize_t len) { DEBUG_EXTRA("sock=%p, len=%d", (void*)&sock, (int)len); uint64_t CANARY_num; pid_t pid, tid; ssize_t wlen = len; char cmd, timestamp[20], CANARY[CANARY_SZ], padding[] = {PADDING}; void *payload; unsigned char *buf = (unsigned char*)data; std::pair sockdata; PhySocket *rpcSock; bool foundJob = false, detected_rpc = false; Connection *conn; // RPC char phrase[RPC_PHRASE_SZ]; memset(phrase, 0, RPC_PHRASE_SZ); if(len == BUF_SZ) { memcpy(phrase, buf, RPC_PHRASE_SZ); if(strcmp(phrase, RPC_PHRASE) == 0) detected_rpc = true; } if(detected_rpc) { unloadRPC(data, pid, tid, timestamp, CANARY, cmd, payload); memcpy(&CANARY_num, CANARY, CANARY_SZ); DEBUG_EXTRA(" RPC: sock=%p, (pid=%d, tid=%d, timestamp=%s, cmd=%d)", (void*)&sock, pid, tid, timestamp, cmd); if(cmd == RPC_SOCKET) { DEBUG_INFO(" RPC_SOCKET, sock=%p", (void*)&sock); // Create new lwip socket and associate it with this sock struct socket_st socket_rpc; memcpy(&socket_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct socket_st)); Connection * new_conn; if((new_conn = handleSocket(sock, uptr, &socket_rpc))) { new_conn->pid = pid; // Merely kept to look up application path/names later, not strictly necessary } } else { jobmap[CANARY_num] = std::pair(sock, data); } write(_phy.getDescriptor(sock), "z", 1); // RPC ACK byte to maintain order } // STREAM else { int data_start = -1, data_end = -1, canary_pos = -1, padding_pos = -1; // Look for padding std::string padding_pattern(padding, padding+PADDING_SZ); std::string buffer(buf, buf + len); padding_pos = buffer.find(padding_pattern); canary_pos = padding_pos-CANARY_SZ; // Grab token, next we'll use it to look up an RPC job if(canary_pos > -1) { memcpy(&CANARY_num, buf+canary_pos, CANARY_SZ); if(CANARY_num != 0) { // Find job sockdata = jobmap[CANARY_num]; if(!sockdata.first) { DEBUG_ERROR(" unable to locate job entry for %lu, sock=%p", CANARY_num, (void*)&sock); return; } else foundJob = true; } } conn = getConnection(sock); if(!conn) return; if(padding_pos == -1) { // [DATA] memcpy(&conn->txbuf[conn->txsz], buf, wlen); } else { // Padding found, implies a canary is present // [CANARY] if(len == CANARY_SZ+PADDING_SZ && canary_pos == 0) { wlen = 0; // Nothing to write } else { // [CANARY] + [DATA] if(len > CANARY_SZ+PADDING_SZ && canary_pos == 0) { wlen = len - CANARY_SZ+PADDING_SZ; data_start = padding_pos+PADDING_SZ; memcpy((&conn->txbuf)+conn->txsz, buf+data_start, wlen); } // [DATA] + [CANARY] if(len > CANARY_SZ+PADDING_SZ && canary_pos > 0 && canary_pos == len - CANARY_SZ+PADDING_SZ) { wlen = len - CANARY_SZ+PADDING_SZ; data_start = 0; memcpy((&conn->txbuf)+conn->txsz, buf+data_start, wlen); } // [DATA] + [CANARY] + [DATA] if(len > CANARY_SZ+PADDING_SZ && canary_pos > 0 && len > (canary_pos + CANARY_SZ+PADDING_SZ)) { wlen = len - CANARY_SZ+PADDING_SZ; data_start = 0; data_end = padding_pos-CANARY_SZ; memcpy((&conn->txbuf)+conn->txsz, buf+data_start, (data_end-data_start)+1); memcpy((&conn->txbuf)+conn->txsz, buf+(padding_pos+PADDING_SZ), len-(canary_pos+CANARY_SZ+PADDING_SZ)); } } } // Write data from stream if(wlen) { if(conn->type == SOCK_STREAM) { // We only disable TCP "connections" int softmax = conn->type == SOCK_STREAM ? DEFAULT_TCP_RX_BUF_SZ : DEFAULT_UDP_RX_BUF_SZ; if(conn->txsz > softmax) { _phy.setNotifyReadable(sock, false); conn->disabled = true; } else if (conn->disabled) { conn->disabled = false; _phy.setNotifyReadable(sock, true); } } conn->txsz += wlen; handleWrite(conn); } } // Process RPC if we have a corresponding jobmap entry if(foundJob) { rpcSock = sockdata.first; buf = (unsigned char*)sockdata.second; unloadRPC(buf, pid, tid, timestamp, CANARY, cmd, payload); DEBUG_EXTRA(" RPC: sock=%p, (pid=%d, tid=%d, timestamp=%s, cmd=%d)", (void*)&sock, pid, tid, timestamp, cmd); switch(cmd) { case RPC_BIND: DEBUG_INFO(" RPC_BIND, sock=%p", (void*)&sock); struct bind_st bind_rpc; memcpy(&bind_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct bind_st)); handleBind(sock, rpcSock, uptr, &bind_rpc); break; case RPC_LISTEN: DEBUG_INFO(" RPC_LISTEN, sock=%p", (void*)&sock); struct listen_st listen_rpc; memcpy(&listen_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct listen_st)); handleListen(sock, rpcSock, uptr, &listen_rpc); break; case RPC_GETSOCKNAME: DEBUG_INFO(" RPC_GETSOCKNAME, sock=%p", (void*)&sock); struct getsockname_st getsockname_rpc; memcpy(&getsockname_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct getsockname_st)); handleGetsockname(sock, rpcSock, uptr, &getsockname_rpc); break; case RPC_GETPEERNAME: DEBUG_INFO(" RPC_GETPEERNAME, sock=%p", (void*)&sock); struct getsockname_st getpeername_rpc; memcpy(&getpeername_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct getsockname_st)); handleGetpeername(sock, rpcSock, uptr, &getpeername_rpc); break; case RPC_CONNECT: DEBUG_INFO(" RPC_CONNECT, sock=%p", (void*)&sock); struct connect_st connect_rpc; memcpy(&connect_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct connect_st)); handleConnect(sock, rpcSock, conn, &connect_rpc); jobmap.erase(CANARY_num); return; // Keep open RPC, we'll use it once in nc_connected to send retval default: break; } Mutex::Lock _l(_tcpconns_m); closeConnection(sockdata.first); // close RPC after sending retval, no longer needed jobmap.erase(CANARY_num); return; } } int NetconEthernetTap::sendReturnValue(PhySocket *sock, int retval, int _errno = 0){ DEBUG_EXTRA("sock=%p", (void*)&sock); return sendReturnValue(_phy.getDescriptor(sock), retval, _errno); } int NetconEthernetTap::sendReturnValue(int fd, int retval, int _errno = 0) { //#if !defined(USE_SOCKS_PROXY) DEBUG_EXTRA("fd=%d, retval=%d, errno=%d", fd, retval, _errno); int sz = sizeof(char) + sizeof(retval) + sizeof(errno); char retmsg[sz]; memset(&retmsg, 0, sizeof(retmsg)); retmsg[0]=RPC_RETVAL; memcpy(&retmsg[1], &retval, sizeof(retval)); memcpy(&retmsg[1]+sizeof(retval), &_errno, sizeof(_errno)); return write(fd, &retmsg, sz); //#else // return 1; //#endif } void NetconEthernetTap::unloadRPC(void *data, pid_t &pid, pid_t &tid, char (timestamp[RPC_TIMESTAMP_SZ]), char (CANARY[sizeof(uint64_t)]), char &cmd, void* &payload) { unsigned char *buf = (unsigned char*)data; memcpy(&pid, &buf[IDX_PID], sizeof(pid_t)); memcpy(&tid, &buf[IDX_TID], sizeof(pid_t)); memcpy(timestamp, &buf[IDX_TIME], RPC_TIMESTAMP_SZ); memcpy(&cmd, &buf[IDX_PAYLOAD], sizeof(char)); memcpy(CANARY, &buf[IDX_PAYLOAD+1], CANARY_SZ); } /*------------------------------------------------------------------------------ --------------------------------- LWIP callbacks ------------------------------- ------------------------------------------------------------------------------*/ err_t NetconEthernetTap::nc_accept(void *arg, struct tcp_pcb *newPCB, err_t err) { DEBUG_ATTN("pcb=%p", (void*)&newPCB); Larg *l = (Larg*)arg; Mutex::Lock _l(l->tap->_tcpconns_m); Connection *conn = l->conn; NetconEthernetTap *tap = l->tap; if(!conn) return -1; if(conn->type==SOCK_DGRAM) return -1; if(!conn->sock) return -1; int fd = tap->_phy.getDescriptor(conn->sock); if(conn) { // create new socketpair ZT_PHY_SOCKFD_TYPE fds[2]; if(socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) { if(errno < 0) { l->tap->sendReturnValue(conn, -1, errno); DEBUG_ERROR("unable to create socketpair"); return ERR_MEM; } } // create and populate new Connection Connection *newTcpConn = new Connection(); l->tap->_Connections.push_back(newTcpConn); newTcpConn->TCP_pcb = newPCB; newTcpConn->type = SOCK_STREAM; newTcpConn->sock = tap->_phy.wrapSocket(fds[0], newTcpConn); if(sock_fd_write(fd, fds[1]) < 0) return -1; tap->lwipstack->__tcp_arg(newPCB, new Larg(tap, newTcpConn)); tap->lwipstack->__tcp_recv(newPCB, nc_recved); tap->lwipstack->__tcp_err(newPCB, nc_err); tap->lwipstack->__tcp_sent(newPCB, nc_sent); tap->lwipstack->__tcp_poll(newPCB, nc_poll, 1); if(conn->TCP_pcb->state == LISTEN) return ERR_OK; tcp_accepted(conn->TCP_pcb); // Let lwIP know that it can queue additional incoming connections return ERR_OK; } else DEBUG_ERROR("can't locate Connection object for PCB"); return -1; } void NetconEthernetTap::nc_udp_recved(void * arg, struct udp_pcb * upcb, struct pbuf * p, ip_addr_t * addr, u16_t port) { Larg *l = (Larg*)arg; DEBUG_EXTRA("nc_udp_recved(conn=%p,pcb=%p,port=%d)\n", (void*)&(l->conn), (void*)&upcb, port); /* int tot = 0; unsigned char *addr_pos, *sz_pos, *payload_pos; struct pbuf* q = p; struct sockaddr_storage sockaddr_big; #if defined(LWIP_IPV6) struct sockaddr_in6 addr_in; addr_in.sin6_addr.s6_addr = addr->u_addr.ip6.addr; addr_in.sin6_port = port; #else // ipv4 struct sockaddr_in *addr_in = (struct sockaddr_in *)&sockaddr_big; addr_in->sin_addr.s_addr = addr->addr; addr_in->sin_port = port; #endif // TODO: Finish address treatment Mutex::Lock _l2(l->tap->_rx_buf_m); // Cycle through pbufs and write them to the RX buffer // The RX "buffer" will be emptied via phyOnUnixWritable() if(p) { // Intra-API "packetization" scheme: [addr_len|addr|payload_len|payload] if(l->conn->rxsz == DEFAULT_UDP_RX_BUF_SZ) { // if UDP buffer full DEBUG_INFO("UDP RX buffer full. Discarding oldest payload segment"); memmove(l->conn->rxbuf, l->conn->rxbuf + ZT_MAX_MTU, DEFAULT_UDP_RX_BUF_SZ - ZT_MAX_MTU); addr_pos = l->conn->rxbuf + (DEFAULT_UDP_RX_BUF_SZ - ZT_MAX_MTU); // TODO: sz_pos = addr_pos + sizeof(struct sockaddr_storage); l->conn->rxsz -= ZT_MAX_MTU; } else { addr_pos = l->conn->rxbuf + l->conn->rxsz; // where we'll prepend the size of the address sz_pos = addr_pos + sizeof(struct sockaddr_storage); } payload_pos = addr_pos + sizeof(struct sockaddr_storage) + sizeof(tot); // where we'll write the payload // write remote host address memcpy(addr_pos, &addr_in, sizeof(struct sockaddr_storage)); } while(p != NULL) { if(p->len <= 0) break; int len = p->len; memcpy(payload_pos, p->payload, len); payload_pos = payload_pos + len; p = p->next; tot += len; } if(tot) { l->conn->rxsz += ZT_MAX_MTU; memcpy(sz_pos, &tot, sizeof(tot)); //DEBUG_EXTRA(" nc_udp_recved(): data_len = %d, rxsz = %d, addr_info_len = %d\n", // tot, l->conn->rxsz, sizeof(u32_t) + sizeof(u16_t)); l->tap->phyOnUnixWritable(l->conn->sock, NULL, true); l->tap->_phy.setNotifyWritable(l->conn->sock, true); } l->tap->lwipstack->__pbuf_free(q); */ } err_t NetconEthernetTap::nc_recved(void *arg, struct tcp_pcb *PCB, struct pbuf *p, err_t err) { Larg *l = (Larg*)arg; DEBUG_EXTRA("conn=%p, pcb=%p", (void*)&(l->conn), (void*)&PCB); int tot = 0; struct pbuf* q = p; Mutex::Lock _l(l->tap->_tcpconns_m); if(!l->conn) { DEBUG_ERROR("no connection"); return ERR_OK; } if(p == NULL) { if(l->conn->TCP_pcb->state == CLOSE_WAIT){ l->tap->closeConnection(l->conn->sock); return ERR_ABRT; } return err; } Mutex::Lock _l2(l->tap->_rx_buf_m); // Cycle through pbufs and write them to the RX buffer // The RX buffer will be emptied via phyOnUnixWritable() while(p != NULL) { if(p->len <= 0) break; int avail = DEFAULT_TCP_RX_BUF_SZ - l->conn->rxsz; int len = p->len; if(avail < len) DEBUG_ERROR("not enough room (%d bytes) on RX buffer", avail); memcpy(l->conn->rxbuf + (l->conn->rxsz), p->payload, len); l->conn->rxsz += len; p = p->next; tot += len; } if(tot) { //#if defined(USE_SOCKS_PROXY) // l->tap->phyOnTcpWritable(l->conn->sock, NULL, true); //#else l->tap->phyOnUnixWritable(l->conn->sock, NULL, true); //#endif } l->tap->lwipstack->__pbuf_free(q); return ERR_OK; } err_t NetconEthernetTap::nc_sent(void* arg, struct tcp_pcb *PCB, u16_t len) { DEBUG_EXTRA("pcb=%p", (void*)&PCB); Larg *l = (Larg*)arg; Mutex::Lock _l(l->tap->_tcpconns_m); if(l->conn->probation && l->conn->txsz == 0){ l->conn->probation = false; // TX buffer now empty, removing from probation } if(l && l->conn && len && !l->conn->probation) { int softmax = l->conn->type == SOCK_STREAM ? DEFAULT_TCP_TX_BUF_SZ : DEFAULT_UDP_TX_BUF_SZ; if(l->conn->txsz < softmax) { l->tap->_phy.setNotifyReadable(l->conn->sock, true); l->tap->_phy.whack(); } } return ERR_OK; } err_t NetconEthernetTap::nc_connected_proxy(void *arg, struct tcp_pcb *PCB, err_t err) { DEBUG_INFO("pcb=%p", (void*)&PCB); return ERR_OK; } err_t NetconEthernetTap::nc_connected(void *arg, struct tcp_pcb *PCB, err_t err) { DEBUG_ATTN("pcb=%p", (void*)&PCB); Larg *l = (Larg*)arg; if(l && l->conn) l->tap->sendReturnValue(l->tap->_phy.getDescriptor(l->conn->rpcSock), ERR_OK); return ERR_OK; } err_t NetconEthernetTap::nc_poll(void* arg, struct tcp_pcb *PCB) { return ERR_OK; } void NetconEthernetTap::nc_err(void *arg, err_t err) { DEBUG_ERROR("err=%d", err); Larg *l = (Larg*)arg; Mutex::Lock _l(l->tap->_tcpconns_m); if(!l->conn) DEBUG_ERROR("conn==NULL"); int fd = l->tap->_phy.getDescriptor(l->conn->sock); switch(err) { case ERR_MEM: DEBUG_ERROR("ERR_MEM->ENOMEM"); l->tap->sendReturnValue(fd, -1, ENOMEM); break; case ERR_BUF: DEBUG_ERROR("ERR_BUF->ENOBUFS"); l->tap->sendReturnValue(fd, -1, ENOBUFS); break; case ERR_TIMEOUT: DEBUG_ERROR("ERR_TIMEOUT->ETIMEDOUT"); l->tap->sendReturnValue(fd, -1, ETIMEDOUT); break; case ERR_RTE: DEBUG_ERROR("ERR_RTE->ENETUNREACH"); l->tap->sendReturnValue(fd, -1, ENETUNREACH); break; case ERR_INPROGRESS: DEBUG_ERROR("ERR_INPROGRESS->EINPROGRESS"); l->tap->sendReturnValue(fd, -1, EINPROGRESS); break; case ERR_VAL: DEBUG_ERROR("ERR_VAL->EINVAL"); l->tap->sendReturnValue(fd, -1, EINVAL); break; case ERR_WOULDBLOCK: DEBUG_ERROR("ERR_WOULDBLOCK->EWOULDBLOCK"); l->tap->sendReturnValue(fd, -1, EWOULDBLOCK); break; case ERR_USE: DEBUG_ERROR("ERR_USE->EADDRINUSE"); l->tap->sendReturnValue(fd, -1, EADDRINUSE); break; case ERR_ISCONN: DEBUG_ERROR("ERR_ISCONN->EISCONN"); l->tap->sendReturnValue(fd, -1, EISCONN); break; case ERR_ABRT: DEBUG_ERROR("ERR_ABRT->ECONNREFUSED"); l->tap->sendReturnValue(fd, -1, ECONNREFUSED); break; // TODO: Below are errors which don't have a standard errno correlate case ERR_RST: l->tap->sendReturnValue(fd, -1, -1); break; case ERR_CLSD: l->tap->sendReturnValue(fd, -1, -1); break; case ERR_CONN: l->tap->sendReturnValue(fd, -1, -1); break; case ERR_ARG: l->tap->sendReturnValue(fd, -1, -1); break; case ERR_IF: l->tap->sendReturnValue(fd, -1, -1); break; default: break; } DEBUG_ERROR(" closing connection"); l->tap->closeConnection(l->conn); } /*------------------------------------------------------------------------------ ----------------------------- RPC Handler functions ---------------------------- ------------------------------------------------------------------------------*/ void NetconEthernetTap::handleGetsockname(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct getsockname_st *getsockname_rpc) { Mutex::Lock _l(_tcpconns_m); Connection *conn = getConnection(sock); if(conn->local_addr == NULL){ DEBUG_EXTRA("no address info available. is it bound?"); struct sockaddr_storage storage; memset(&storage, 0, sizeof(struct sockaddr_storage)); write(_phy.getDescriptor(rpcSock), NULL, sizeof(struct sockaddr_storage)); return; } write(_phy.getDescriptor(rpcSock), conn->local_addr, sizeof(struct sockaddr_storage)); } void NetconEthernetTap::handleGetpeername(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct getsockname_st *getsockname_rpc) { Mutex::Lock _l(_tcpconns_m); Connection *conn = getConnection(sock); if(conn->peer_addr == NULL){ DEBUG_EXTRA("no peer address info available. is it connected?"); struct sockaddr_storage storage; memset(&storage, 0, sizeof(struct sockaddr_storage)); write(_phy.getDescriptor(rpcSock), NULL, sizeof(struct sockaddr_storage)); return; } write(_phy.getDescriptor(rpcSock), conn->peer_addr, sizeof(struct sockaddr_storage)); } void NetconEthernetTap::handleBind(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct bind_st *bind_rpc) { Mutex::Lock _l(_tcpconns_m); // picoTCP #if defined(SDK_PICOTCP) pico_handleBind(sock,rpcSock,uptr,bind_rpc); #endif // lwIP #if defined(SDK_LWIP) struct sockaddr_in *rawAddr = (struct sockaddr_in *) &bind_rpc->addr; int err, port = lwipstack->__lwip_ntohs(rawAddr->sin_port); ip_addr_t connAddr; static ip6_addr_t ba; IP6_ADDR2(&ba, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0); if(!_ips.size()) { // We haven't been given an address yet. Binding at this stage is premature DEBUG_ERROR("cannot bind yet. ZT address hasn't been provided"); sendReturnValue(rpcSock, -1, ENOMEM); return; } char addrstr[INET6_ADDRSTRLEN]; struct sockaddr *addr = (struct sockaddr*)rawAddr; if(addr->sa_family == AF_INET) { struct sockaddr_in *connaddr = (struct sockaddr_in *)addr; inet_ntop(AF_INET, &(connaddr->sin_addr), addrstr, INET_ADDRSTRLEN); sprintf(addrstr, "%s:%d", addrstr, lwipstack->__lwip_ntohs(connaddr->sin_port)); } if(addr->sa_family == AF_INET6) { struct sockaddr_in6 *connaddr6 = (struct sockaddr_in6 *)addr; inet_ntop(AF_INET6, &(connaddr6->sin6_addr), addrstr, INET6_ADDRSTRLEN); sprintf(addrstr, "%s:%d", addrstr, lwipstack->__lwip_ntohs(connaddr6->sin6_port)); } DEBUG_INFO("addr=%s", addrstr); Connection *conn = getConnection(sock); DEBUG_ATTN(" sock=%p, fd=%d, port=%d", (void*)&sock, bind_rpc->fd, port); if(conn) { if(conn->type == SOCK_DGRAM) { #if defined(__ANDROID__) err = lwipstack->__udp_bind(conn->UDP_pcb, NULL, port); #else // err = lwipstack->__udp_bind(conn->UDP_pcb, &ba, port); #endif if(err == ERR_USE) // port in use sendReturnValue(rpcSock, -1, EADDRINUSE); else { lwipstack->__udp_recv(conn->UDP_pcb, nc_udp_recved, new Larg(this, conn)); struct sockaddr_in addr_in; memcpy(&addr_in, &bind_rpc->addr, sizeof(addr_in)); addr_in.sin_port = Utils::ntoh(conn->UDP_pcb->local_port); // Newly assigned port memcpy(&conn->local_addr, &addr_in, sizeof(addr_in)); sendReturnValue(rpcSock, ERR_OK, ERR_OK); // Success } return; } else if (conn->type == SOCK_STREAM) { if(conn->TCP_pcb->state == CLOSED){ err = lwipstack->__tcp_bind(conn->TCP_pcb, &ba, port); if(err != ERR_OK) { DEBUG_ERROR("err=%d", err); if(err == ERR_USE) sendReturnValue(rpcSock, -1, EADDRINUSE); if(err == ERR_MEM) sendReturnValue(rpcSock, -1, ENOMEM); if(err == ERR_BUF) sendReturnValue(rpcSock, -1, ENOMEM); } else { conn->local_addr = (struct sockaddr_storage *) &bind_rpc->addr; sendReturnValue(rpcSock, ERR_OK, ERR_OK); // Success } } else { DEBUG_ERROR(" ignoring BIND request, PCB (conn=%p, pcb=%p) not in CLOSED state. ", (void*)&conn, (void*)&conn->TCP_pcb); sendReturnValue(rpcSock, -1, EINVAL); } } } else { DEBUG_ERROR(" unable to locate Connection"); sendReturnValue(rpcSock, -1, EBADF); } #endif } void NetconEthernetTap::handleListen(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct listen_st *listen_rpc) { DEBUG_ATTN("sock=%p", (void*)&sock); Mutex::Lock _l(_tcpconns_m); Connection *conn = getConnection(sock); // picoTCP #if defined(SDK_PICOTCP) pico_handleListen(sock, rpcSock, uptr, listen_rpc); #endif // lwIP #if defined(SDK_LWIP) if(conn->type==SOCK_DGRAM) { // FIX: Added sendReturnValue() call to fix listen() return bug on Android sendReturnValue(rpcSock, ERR_OK, ERR_OK); return; } if(!conn) { DEBUG_ERROR(" unable to locate Connection"); sendReturnValue(rpcSock, -1, EBADF); return; } if(conn->TCP_pcb->state == LISTEN) { DEBUG_ERROR(" PCB is already in listening state"); sendReturnValue(rpcSock, ERR_OK, ERR_OK); return; } struct tcp_pcb* listeningPCB; #ifdef TCP_LISTEN_BACKLOG listeningPCB = lwipstack->__tcp_listen_with_backlog(conn->TCP_pcb, listen_rpc->backlog); #else listeningPCB = lwipstack->__tcp_listen(conn->pcb); #endif if(listeningPCB != NULL) { conn->TCP_pcb = listeningPCB; lwipstack->__tcp_accept(listeningPCB, nc_accept); lwipstack->__tcp_arg(listeningPCB, new Larg(this, conn)); fcntl(_phy.getDescriptor(conn->sock), F_SETFL, O_NONBLOCK); conn->listening = true; sendReturnValue(rpcSock, ERR_OK, ERR_OK); return; } sendReturnValue(rpcSock, -1, -1); #endif } Connection * NetconEthernetTap::handleSocketProxy(PhySocket *sock, int socket_type) { Connection *conn = getConnection(sock); if(!conn){ DEBUG_ERROR("unable to locate Connection object for this PhySocket sock=%p", (void*)&sock); return NULL; } DEBUG_ATTN("sock=%p", (void*)&sock); struct udp_pcb *new_udp_PCB = NULL; struct tcp_pcb *new_tcp_PCB = NULL; if(socket_type == SOCK_DGRAM) { DEBUG_EXTRA("SOCK_DGRAM"); Mutex::Lock _l(_tcpconns_m); new_udp_PCB = lwipstack->__udp_new(); } else if(socket_type == SOCK_STREAM) { DEBUG_EXTRA("SOCK_STREAM"); Mutex::Lock _l(_tcpconns_m); new_tcp_PCB = lwipstack->__tcp_new(); } if(new_udp_PCB || new_tcp_PCB) { conn->sock = sock; conn->type = socket_type; conn->local_addr = NULL; conn->peer_addr = NULL; if(conn->type == SOCK_DGRAM) conn->UDP_pcb = new_udp_PCB; if(conn->type == SOCK_STREAM) conn->TCP_pcb = new_tcp_PCB; DEBUG_INFO(" updated sock=%p", (void*)&sock); return conn; } DEBUG_ERROR(" memory not available for new PCB"); return NULL; } Connection * NetconEthernetTap::handleSocket(PhySocket *sock, void **uptr, struct socket_st* socket_rpc) { DEBUG_ATTN("sock=%p, sock_type=%d", (void*)&sock, socket_rpc->socket_type); // picoTCP #if defined(SDK_PICOTCP) return pico_handleSocket(sock, uptr, socket_rpc); #endif // lwIP #if defined(SDK_LWIP) struct udp_pcb *new_udp_PCB = NULL; struct tcp_pcb *new_tcp_PCB = NULL; if(socket_rpc->socket_type == SOCK_DGRAM) { DEBUG_EXTRA("SOCK_DGRAM"); Mutex::Lock _l(_tcpconns_m); new_udp_PCB = lwipstack->__udp_new(); } else if(socket_rpc->socket_type == SOCK_STREAM) { DEBUG_EXTRA("SOCK_STREAM"); Mutex::Lock _l(_tcpconns_m); new_tcp_PCB = lwipstack->__tcp_new(); } else if(socket_rpc->socket_type == SOCK_RAW) { DEBUG_ERROR("SOCK_RAW, not currently supported."); } if(new_udp_PCB || new_tcp_PCB) { Connection * newConn = new Connection(); *uptr = newConn; newConn->type = socket_rpc->socket_type; newConn->sock = sock; newConn->local_addr = NULL; newConn->peer_addr = NULL; if(newConn->type == SOCK_DGRAM) newConn->UDP_pcb = new_udp_PCB; if(newConn->type == SOCK_STREAM) newConn->TCP_pcb = new_tcp_PCB; _Connections.push_back(newConn); return newConn; } DEBUG_ERROR(" memory not available for new PCB"); sendReturnValue(_phy.getDescriptor(sock), -1, ENOMEM); return NULL; #endif } int NetconEthernetTap::handleConnectProxy(PhySocket *sock, struct sockaddr_in *rawAddr) { DEBUG_ATTN("sock=%p", (void*)&sock); Mutex::Lock _l(_tcpconns_m); int port = rawAddr->sin_port; ip_addr_t connAddr = convert_ip(rawAddr); int err = 0; Connection *conn = getConnection(sock); if(!conn) { DEBUG_INFO(" unable to locate Connection object for sock=%p", (void*)&sock); return -1; } if(conn->type == SOCK_DGRAM) { // Generates no network traffic if((err = lwipstack->__udp_connect(conn->UDP_pcb,&connAddr,port)) < 0) DEBUG_INFO("error while connecting to with UDP (sock=%p)", (void*)&sock); lwipstack->__udp_recv(conn->UDP_pcb, nc_udp_recved, new Larg(this, conn)); errno = ERR_OK; return 0; } if(conn != NULL) { lwipstack->__tcp_sent(conn->TCP_pcb, nc_sent); lwipstack->__tcp_recv(conn->TCP_pcb, nc_recved); lwipstack->__tcp_err(conn->TCP_pcb, nc_err); lwipstack->__tcp_poll(conn->TCP_pcb, nc_poll, APPLICATION_POLL_FREQ); lwipstack->__tcp_arg(conn->TCP_pcb, new Larg(this, conn)); int ip = rawAddr->sin_addr.s_addr; unsigned char d[4]; d[0] = ip & 0xFF; d[1] = (ip >> 8) & 0xFF; d[2] = (ip >> 16) & 0xFF; d[3] = (ip >> 24) & 0xFF; DEBUG_INFO(" addr=%d.%d.%d.%d:%d", d[0],d[1],d[2],d[3], port); DEBUG_INFO(" pcb->state=%x", conn->TCP_pcb->state); if(conn->TCP_pcb->state != CLOSED) { DEBUG_INFO(" cannot connect using this PCB, PCB!=CLOSED"); errno = EAGAIN; return -1; } if((err = lwipstack->__tcp_connect(conn->TCP_pcb,&connAddr,port,nc_connected_proxy)) < 0) { if(err == ERR_ISCONN) { errno = EISCONN; // Already in connected state return -1; } if(err == ERR_USE) { errno = EADDRINUSE; // Already in use return -1; } if(err == ERR_VAL) { errno = EINVAL; // Invalid ipaddress parameter return -1; } if(err == ERR_RTE) { errno = ENETUNREACH; // No route to host return -1; } if(err == ERR_BUF) { errno = EAGAIN; // No more ports available return -1; } if(err == ERR_MEM) { /* Can occur for the following reasons: tcp_enqueue_flags() 1) tcp_enqueue_flags is always called with either SYN or FIN in flags. We need one available snd_buf byte to do that. This means we can't send FIN while snd_buf==0. A better fix would be to not include SYN and FIN sequence numbers in the snd_buf count. 2) Cannot allocate new pbuf 3) Cannot allocate new TCP segment */ errno = EAGAIN; // TODO: Doesn't describe the problem well, but closest match return -1; } // We should only return a value if failure happens immediately // Otherwise, we still need to wait for a callback from lwIP. // - This is because an ERR_OK from tcp_connect() only verifies // that the SYN packet was enqueued onto the stack properly, // that's it! // - Most instances of a retval for a connect() should happen // in the nc_connect() and nc_err() callbacks! DEBUG_ERROR(" unable to connect"); errno = EAGAIN; return -1; } // Everything seems to be ok, but we don't have enough info to retval conn->listening=true; return 0; } else { DEBUG_ERROR(" could not locate PCB based on application-provided fd"); errno = EBADF; return -1; } return -1; } void NetconEthernetTap::handleConnect(PhySocket *sock, PhySocket *rpcSock, Connection *conn, struct connect_st* connect_rpc) { DEBUG_ATTN("sock=%p", (void*)&sock); Mutex::Lock _l(_tcpconns_m); // picoTCP #if defined(SDK_PICOTCP) pico_handleConnect(sock, rpcSock, conn, connect_rpc); #endif // lwIP #if defined(SDK_LWIP) struct sockaddr_in *rawAddr = (struct sockaddr_in *) &connect_rpc->addr; int port = lwipstack->__lwip_ntohs(rawAddr->sin_port); ip_addr_t connAddr = convert_ip(rawAddr); int err = 0, ip = rawAddr->sin_addr.s_addr; char addrstr[INET6_ADDRSTRLEN]; struct sockaddr *addr = (struct sockaddr*)rawAddr; if(addr->sa_family == AF_INET) { struct sockaddr_in *connaddr = (struct sockaddr_in *)addr; inet_ntop(AF_INET, &(connaddr->sin_addr), addrstr, INET_ADDRSTRLEN); sprintf(addrstr, "%s:%d", addrstr, lwipstack->__lwip_ntohs(connaddr->sin_port)); } if(addr->sa_family == AF_INET6) { struct sockaddr_in6 *connaddr6 = (struct sockaddr_in6 *)addr; inet_ntop(AF_INET6, &(connaddr6->sin6_addr), addrstr, INET6_ADDRSTRLEN); sprintf(addrstr, "%s:%d", addrstr, lwipstack->__lwip_ntohs(connaddr6->sin6_port)); } DEBUG_INFO("addr=%s", addrstr); if(conn->type == SOCK_DGRAM) { // Generates no network traffic if((err = lwipstack->__udp_connect(conn->UDP_pcb,&connAddr,port)) < 0) DEBUG_ERROR("error while connecting to with UDP"); lwipstack->__udp_recv(conn->UDP_pcb, nc_udp_recved, new Larg(this, conn)); sendReturnValue(rpcSock, 0, ERR_OK); return; } if(conn != NULL) { lwipstack->__tcp_sent(conn->TCP_pcb, nc_sent); lwipstack->__tcp_recv(conn->TCP_pcb, nc_recved); lwipstack->__tcp_err(conn->TCP_pcb, nc_err); lwipstack->__tcp_poll(conn->TCP_pcb, nc_poll, APPLICATION_POLL_FREQ); lwipstack->__tcp_arg(conn->TCP_pcb, new Larg(this, conn)); DEBUG_EXTRA(" pcb->state=%x", conn->TCP_pcb->state); if(conn->TCP_pcb->state != CLOSED) { DEBUG_INFO(" cannot connect using this PCB, PCB!=CLOSED"); sendReturnValue(rpcSock, -1, EAGAIN); return; } static ip_addr_t ba; IP6_ADDR2(&ba, 0xfd56,0x5799,0xd8f6,0x1238,0x8c99,0x9322,0x30ce,0x418a); if((err = lwipstack->__tcp_connect(conn->TCP_pcb,&ba,port,nc_connected)) < 0) { if(err == ERR_ISCONN) { sendReturnValue(rpcSock, -1, EISCONN); // Already in connected state return; } if(err == ERR_USE) { sendReturnValue(rpcSock, -1, EADDRINUSE); // Already in use return; } if(err == ERR_VAL) { sendReturnValue(rpcSock, -1, EINVAL); // Invalid ipaddress parameter return; } if(err == ERR_RTE) { sendReturnValue(rpcSock, -1, ENETUNREACH); // No route to host return; } if(err == ERR_BUF) { sendReturnValue(rpcSock, -1, EAGAIN); // No more ports available return; } if(err == ERR_MEM) { sendReturnValue(rpcSock, -1, EAGAIN); // TODO: Doesn't describe the problem well, but closest match return; } // We should only return a value if failure happens immediately // Otherwise, we still need to wait for a callback from lwIP. // - This is because an ERR_OK from tcp_connect() only verifies // that the SYN packet was enqueued onto the stack properly, // that's it! // - Most instances of a retval for a connect() should happen // in the nc_connect() and nc_err() callbacks! DEBUG_ERROR(" unable to connect"); sendReturnValue(rpcSock, -1, EAGAIN); } // Everything seems to be ok, but we don't have enough info to retval conn->listening=true; conn->rpcSock=rpcSock; // used for return value from lwip CB } else { DEBUG_ERROR(" could not locate PCB based on application-provided fd"); sendReturnValue(rpcSock, -1, EBADF); } #endif } void NetconEthernetTap::handleWrite(Connection *conn) { DEBUG_EXTRA("conn=%p", (void*)&conn); // picoTCP #if defined(SDK_PICOTCP) pico_handleWrite(conn); #endif // lwIP #if defined(SDK_LWIP) if(!conn || (!conn->TCP_pcb && !conn->UDP_pcb)) { DEBUG_ERROR(" invalid connection"); return; } if(conn->type == SOCK_DGRAM) { if(!conn->UDP_pcb) { DEBUG_ERROR(" invalid UDP_pcb, type=SOCK_DGRAM"); return; } // TODO: Packet re-assembly hasn't yet been tested with lwIP so UDP packets are limited to MTU-sized chunks int udp_trans_len = conn->txsz < ZT_UDP_DEFAULT_PAYLOAD_MTU ? conn->txsz : ZT_UDP_DEFAULT_PAYLOAD_MTU; DEBUG_EXTRA(" allocating pbuf chain of size=%d for UDP packet, txsz=%d", udp_trans_len, conn->txsz); struct pbuf * pb = lwipstack->__pbuf_alloc(PBUF_TRANSPORT, udp_trans_len, PBUF_POOL); if(!pb){ DEBUG_ERROR(" unable to allocate new pbuf of size=%d", conn->txsz); return; } memcpy(pb->payload, conn->txbuf, udp_trans_len); int err = lwipstack->__udp_send(conn->UDP_pcb, pb); if(err == ERR_MEM) { DEBUG_ERROR(" error sending packet. out of memory"); } else if(err == ERR_RTE) { DEBUG_ERROR(" could not find route to destinations address"); } else if(err != ERR_OK) { DEBUG_ERROR(" error sending packet - %d", err); } else { // Success int buf_remaining = (conn->txsz)-udp_trans_len; if(buf_remaining) memmove(&conn->txbuf, (conn->txbuf+udp_trans_len), buf_remaining); conn->txsz -= udp_trans_len; #if DEBUG_LEVEL >= MSG_TRANSFER struct sockaddr_in * addr_in2 = (struct sockaddr_in *)conn->peer_addr; int port = lwipstack->__lwip_ntohs(addr_in2->sin_port); int ip = addr_in2->sin_addr.s_addr; unsigned char d[4]; d[0] = ip & 0xFF; d[1] = (ip >> 8) & 0xFF; d[2] = (ip >> 16) & 0xFF; d[3] = (ip >> 24) & 0xFF; DEBUG_TRANS("[UDP TX] ---> :: {TX: ------, RX: ------, sock=%p} :: %d bytes (dest_addr=%d.%d.%d.%d:%d)", (void*)conn->sock, udp_trans_len, d[0], d[1], d[2], d[3], port); #endif } lwipstack->__pbuf_free(pb); return; } else if(conn->type == SOCK_STREAM) { if(!conn->TCP_pcb) { DEBUG_ERROR(" invalid TCP_pcb, type=SOCK_STREAM"); return; } // How much we are currently allowed to write to the connection int sndbuf = conn->TCP_pcb->snd_buf; int err, sz, r; if(!sndbuf) { // PCB send buffer is full, turn off readability notifications for the // corresponding PhySocket until nc_sent() is called and confirms that there is // now space on the buffer if(!conn->probation) { DEBUG_ERROR(" LWIP stack is full, sndbuf == 0"); _phy.setNotifyReadable(conn->sock, false); conn->probation = true; } return; } if(conn->txsz <= 0) return; // Nothing to write if(!conn->listening) lwipstack->__tcp_output(conn->TCP_pcb); if(conn->sock) { r = conn->txsz < sndbuf ? conn->txsz : sndbuf; // Writes data pulled from the client's socket buffer to LWIP. This merely sends the // data to LWIP to be enqueued and eventually sent to the network. if(r > 0) { err = lwipstack->__tcp_write(conn->TCP_pcb, &conn->txbuf, r, TCP_WRITE_FLAG_COPY); lwipstack->__tcp_output(conn->TCP_pcb); if(err != ERR_OK) { DEBUG_ERROR(" error while writing to PCB, err=%d", err); if(err == -1) DEBUG_ERROR("out of memory"); return; } else { // adjust buffer sz = (conn->txsz)-r; if(sz) memmove(&conn->txbuf, (conn->txbuf+r), sz); conn->txsz -= r; int max = conn->type == SOCK_STREAM ? DEFAULT_TCP_TX_BUF_SZ : DEFAULT_UDP_TX_BUF_SZ; DEBUG_TRANS("[TCP TX] ---> :: {TX: %.3f%%, RX: %.3f%%, sock=%p} :: %d bytes", (float)conn->txsz / (float)max, (float)conn->rxsz / max, (void*)&conn->sock, r); return; } } } } #endif } } // namespace ZeroTier