/* * ZeroTier SDK - Network Virtualization Everywhere * Copyright (C) 2011-2017 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * You can be released from the requirements of the license by purchasing * a commercial license. Buying such a license is mandatory as soon as you * develop commercial closed-source software that incorporates or links * directly against ZeroTier software without disclosing the source code * of your own application. */ #include #include "pico_eth.h" #include "pico_stack.h" #include "pico_ipv4.h" #include "pico_icmp4.h" #include "pico_dev_tap.h" #include "pico_protocol.h" #include "pico_socket.h" #include "pico_device.h" #include "pico_ipv6.h" #include "libzt.h" #include "Utilities.hpp" #include "SocketTap.hpp" #include "picoTCP.hpp" #include "RingBuffer.hpp" #include "Utils.hpp" #include "OSUtils.hpp" #include "Mutex.hpp" #include "Constants.hpp" #include "Phy.hpp" extern "C" int pico_stack_init(void); extern "C" void pico_stack_tick(void); int pico_ipv4_to_string(PICO_IPV4_TO_STRING_SIG); extern "C" int pico_ipv4_link_add(PICO_IPV4_LINK_ADD_SIG); extern "C" int pico_device_init(PICO_DEVICE_INIT_SIG); extern "C" int pico_string_to_ipv4(PICO_STRING_TO_IPV4_SIG); extern "C" int pico_string_to_ipv6(PICO_STRING_TO_IPV6_SIG); extern "C" int pico_socket_recvfrom(PICO_SOCKET_RECVFROM_SIG); extern "C" struct pico_socket * pico_socket_open(PICO_SOCKET_OPEN_SIG); extern "C" int pico_socket_connect(PICO_SOCKET_CONNECT_SIG); extern "C" int pico_socket_listen(PICO_SOCKET_LISTEN_SIG); extern "C" int pico_socket_write(PICO_SOCKET_WRITE_SIG); extern "C" int pico_socket_close(PICO_SOCKET_CLOSE_SIG); extern "C" struct pico_ipv6_link * pico_ipv6_link_add(PICO_IPV6_LINK_ADD_SIG); /* int pico_stack_recv(PICO_STACK_RECV_SIG); int pico_icmp4_ping(PICO_ICMP4_PING_SIG); int pico_socket_setoption(PICO_SOCKET_SETOPTION_SIG); uint32_t pico_timer_add(PICO_TIMER_ADD_SIG); int pico_socket_send(PICO_SOCKET_SEND_SIG); int pico_socket_sendto(PICO_SOCKET_SENDTO_SIG); int pico_socket_recv(PICO_SOCKET_RECV_SIG); int pico_socket_bind(PICO_SOCKET_BIND_SIG); int pico_socket_read(PICO_SOCKET_READ_SIG); int pico_socket_shutdown(PICO_SOCKET_SHUTDOWN_SIG); struct pico_socket * pico_socket_accept(PICO_SOCKET_ACCEPT_SIG); */ namespace ZeroTier { struct pico_device picodev; bool picoTCP::pico_init_interface(SocketTap *tap, const InetAddress &ip) { if (std::find(tap->_ips.begin(),tap->_ips.end(),ip) == tap->_ips.end()) { tap->_ips.push_back(ip); std::sort(tap->_ips.begin(),tap->_ips.end()); if(!tap->picodev_initialized) { picodev.send = pico_eth_send; // tx picodev.poll = pico_eth_poll; // rx picodev.mtu = tap->_mtu; picodev.tap = tap; uint8_t mac[PICO_SIZE_ETH]; tap->_mac.copyTo(mac, PICO_SIZE_ETH); if(pico_device_init(&picodev, "pz", mac) != 0) { DEBUG_ERROR("dev init failed"); handle_general_failure(); return false; } tap->picodev_initialized = true; } if(ip.isV4()) { struct pico_ip4 ipaddr, netmask; ipaddr.addr = *((uint32_t *)ip.rawIpData()); netmask.addr = *((uint32_t *)ip.netmask().rawIpData()); pico_ipv4_link_add(&picodev, ipaddr, netmask); DEBUG_INFO("addr = %s", ip.toString().c_str()); return true; } if(ip.isV6()) { char ipv6_str[INET6_ADDRSTRLEN], nm_str[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, ip.rawIpData(), ipv6_str, INET6_ADDRSTRLEN); inet_ntop(AF_INET6, ip.netmask().rawIpData(), nm_str, INET6_ADDRSTRLEN); struct pico_ip6 ipaddr, netmask; pico_string_to_ipv6(ipv6_str, ipaddr.addr); pico_string_to_ipv6(nm_str, netmask.addr); pico_ipv6_link_add(&picodev, ipaddr, netmask); DEBUG_INFO("addr6 = %s", ipv6_str); return true; } } return false; } void picoTCP::pico_loop(SocketTap *tap) { while(tap->_run) { tap->_phy.poll(ZT_PHY_POLL_INTERVAL); pico_stack_tick(); //tap->Housekeeping(); } } // from stack socket to app socket void picoTCP::pico_cb_tcp_read(ZeroTier::SocketTap *tap, struct pico_socket *s) { Connection *conn = (Connection*)((ConnectionPair*)(s->priv))->conn; Mutex::Lock _l(conn->_rx_m); if(!conn || !tap) { DEBUG_ERROR("invalid tap or conn"); handle_general_failure(); return; } int r, n; uint16_t port = 0; union { struct pico_ip4 ip4; struct pico_ip6 ip6; } peer; do { n = 0; //DEBUG_INFO("RXbuf->count() = %d", conn->RXbuf->count()); int avail = ZT_TCP_RX_BUF_SZ - conn->RXbuf->count(); if(avail) { r = pico_socket_recvfrom(s, conn->RXbuf->get_buf(), ZT_STACK_SOCKET_RD_MAX, (void *)&peer.ip4.addr, &port); conn->tot += r; if (r > 0) { conn->RXbuf->produce(r); //DEBUG_INFO("RXbuf->count() = %d", conn->RXbuf->count()); n = tap->_phy.streamSend(conn->sock, conn->RXbuf->get_buf(), r); if(n>0) conn->RXbuf->consume(n); //DEBUG_INFO("pico_recv = %d, streamSend = %d, rxsz = %d, tot = %d", r, n, conn->RXbuf->count(), conn->tot); //DEBUG_TRANS("[ TCP RX <- STACK] :: conn = %p, len = %d", conn, n); } if(conn->RXbuf->count() == 0) { tap->_phy.setNotifyWritable(conn->sock, false); } else { tap->_phy.setNotifyWritable(conn->sock, true); } } else { //tap->_phy.setNotifyWritable(conn->sock, false); DEBUG_ERROR("not enough space left on I/O RX buffer for pico_socket(%p)", s); handle_general_failure(); } } while(r > 0); } // from stack socket to app socket void picoTCP::pico_cb_udp_read(SocketTap *tap, struct pico_socket *s) { /* DEBUG_INFO(); Connection *conn = (Connection*)((ConnectionPair*)(s->priv))->conn; Mutex::Lock _l(conn->_rx_m); if(conn) { uint16_t port = 0; union { struct pico_ip4 ip4; struct pico_ip6 ip6; } peer; char tmpbuf[ZT_SDK_MTU]; unsigned char *addr_pos, *sz_pos, *payload_pos; struct sockaddr_in addr_in; addr_in.sin_addr.s_addr = peer.ip4.addr; addr_in.sin_port = port; // RX int r = pico_socket_recvfrom(s, tmpbuf, ZT_SDK_MTU, (void *)&peer.ip4.addr, &port); //DEBUG_FLOW(" [ RXBUF <- STACK] Receiving (%d) from stack, copying to receving buffer", r); if(conn->rxsz == ZT_UDP_RX_BUF_SZ) { // if UDP buffer full //DEBUG_FLOW(" [ RXBUF <- STACK] UDP RX buffer full. Discarding oldest payload segment"); memmove(conn->rxbuf, conn->rxbuf + ZT_SDK_MTU, ZT_UDP_RX_BUF_SZ - ZT_SDK_MTU); addr_pos = conn->rxbuf + (ZT_UDP_RX_BUF_SZ - ZT_SDK_MTU); // TODO: sz_pos = addr_pos + sizeof(struct sockaddr_storage); conn->rxsz -= ZT_SDK_MTU; } else { addr_pos = conn->rxbuf + conn->rxsz; // where we'll prepend the size of the address sz_pos = addr_pos + sizeof(struct sockaddr_storage); } payload_pos = addr_pos + sizeof(struct sockaddr_storage) + sizeof(r); memcpy(addr_pos, &addr_in, sizeof(struct sockaddr_storage)); memcpy(payload_pos, tmpbuf, r); // write payload to app's socket // Adjust buffer size if(r) { conn->rxsz += ZT_SDK_MTU; memcpy(sz_pos, &r, sizeof(r)); } if (r < 0) { DEBUG_ERROR("unable to read from picosock=%p", s); handle_general_failure(); } tap->_rx_buf_m.unlock(); if(r) tap->phyOnUnixWritable(conn->sock, NULL, true); //DEBUG_EXTRA(" Copied onto rxbuf (%d) from stack socket", r); return; } */ } void picoTCP::pico_cb_tcp_write(SocketTap *tap, struct pico_socket *s) { Connection *conn = (Connection*)((ConnectionPair*)(s->priv))->conn; Mutex::Lock _l(conn->_tx_m); if(!conn) { DEBUG_ERROR("invalid connection"); handle_general_failure(); return; } int txsz = conn->TXbuf->count(); if(txsz <= 0) return; //DEBUG_INFO("TXbuf->count() = %d", conn->TXbuf->count()); int r, max_write_len = std::min(std::min(txsz, ZT_SDK_MTU),ZT_STACK_SOCKET_WR_MAX); if((r = pico_socket_write(conn->picosock, conn->TXbuf->get_buf(), max_write_len)) < 0) { DEBUG_ERROR("unable to write to picosock=%p, r=%d", conn->picosock, r); handle_general_failure(); return; } if(conn->socket_type == SOCK_STREAM) { //DEBUG_TRANS("[ TCP TX -> STACK] :: conn = %p, len = %d", conn, r); } if(conn->socket_type == SOCK_DGRAM) { //DEBUG_TRANS("[ UDP TX -> STACK] :: conn = %p, len = %d", conn, r); } if(r == 0) { // This is a peciliarity of the picoTCP network stack, if we receive no error code, and the size of // the byte stream written is 0, this is an indication that the buffer for this pico_socket is too small // DEBUG_ERROR("pico_socket buffer is too small (adjust ZT_STACK_SOCKET_TX_SZ, ZT_STACK_SOCKET_RX_SZ)"); // handle_general_failure(); } if(r>0) conn->TXbuf->consume(r); } void picoTCP::pico_cb_socket_activity(uint16_t ev, struct pico_socket *s) { if(!(SocketTap*)((ConnectionPair*)(s->priv))) return; SocketTap *tap = (SocketTap*)((ConnectionPair*)(s->priv))->tap; Connection *conn = (Connection*)((ConnectionPair*)(s->priv))->conn; if(!tap || !conn) { DEBUG_ERROR("invalid tap or conn"); handle_general_failure(); return; } int err = 0; if(!conn) { DEBUG_ERROR("invalid connection"); handle_general_failure(); return; } // PICO_SOCK_EV_CONN - triggered when connection is established (TCP only). This event is // received either after a successful call to pico socket connect to indicate that the connection // has been established, or on a listening socket, indicating that a call to pico socket accept // may now be issued in order to accept the incoming connection from a remote host. if (ev & PICO_SOCK_EV_CONN) { if(conn->state == ZT_SOCK_STATE_LISTENING) { Mutex::Lock _l(tap->_tcpconns_m); uint32_t peer; uint16_t port; struct pico_socket *client_psock = pico_socket_accept(s, &peer, &port); if(!client_psock) { DEBUG_ERROR("pico_err=%s, picosock=%p", beautify_pico_error(pico_err), s); return; } // Create a new Connection and add it to the queue, // some time in the future a call to zts_multiplex_accept() will pick up // this new connection, add it to the connection list and return its // Connection->sock to the application Connection *newConn = new Connection(); newConn->socket_type = SOCK_STREAM; newConn->picosock = client_psock; newConn->tap = tap; newConn->picosock->priv = new ConnectionPair(tap,newConn); tap->_Connections.push_back(newConn); conn->_AcceptedConnections.push(newConn); int value = 1; pico_socket_setoption(newConn->picosock, PICO_TCP_NODELAY, &value); if(ZT_SOCK_BEHAVIOR_LINGER) { int linger_time_ms = ZT_SOCK_BEHAVIOR_LINGER_TIME; int t_err = 0; if((t_err = pico_socket_setoption(newConn->picosock, PICO_SOCKET_OPT_LINGER, &linger_time_ms)) < 0) DEBUG_ERROR("unable to set LINGER size, err = %d, pico_err = %d, app_fd=%d, sdk_fd=%d", t_err, pico_err, conn->app_fd, conn->sdk_fd); } /* linger_time_ms = 0; if((t_err = pico_socket_getoption(newConn->picosock, PICO_SOCKET_OPT_LINGER, &linger_time_ms)) < 0) DEBUG_ERROR("unable to set LINGER size, err = %d, pico_err = %d", t_err, pico_err); DEBUG_TEST("getting linger = %d", linger_time_ms); */ // For I/O loop participation and referencing the PhySocket's parent Connection in callbacks newConn->sock = tap->_phy.wrapSocket(newConn->sdk_fd, newConn); //DEBUG_ERROR("sock->fd = %d", tap->_phy.getDescriptor(newConn->sock)); } if(conn->state != ZT_SOCK_STATE_LISTENING) { // set state so socket multiplexer logic will pick this up conn->state = ZT_SOCK_STATE_UNHANDLED_CONNECTED; } } // PICO_SOCK_EV_FIN - triggered when the socket is closed. No further communication is // possible from this point on the socket. if (ev & PICO_SOCK_EV_FIN) { //DEBUG_EXTRA("PICO_SOCK_EV_FIN (socket closed), picosock=%p, conn=%p, app_fd=%d, sdk_fd=%d", s, conn, conn->app_fd, conn->sdk_fd); conn->closure_ts = std::time(nullptr); } // PICO_SOCK_EV_ERR - triggered when an error occurs. if (ev & PICO_SOCK_EV_ERR) { if(pico_err == PICO_ERR_ECONNRESET) { DEBUG_ERROR("PICO_ERR_ECONNRESET"); conn->state = PICO_ERR_ECONNRESET; } DEBUG_ERROR("PICO_SOCK_EV_ERR, err=%s, picosock=%p, app_fd=%d, sdk_fd=%d", beautify_pico_error(pico_err), s, conn->app_fd, conn->sdk_fd); } // PICO_SOCK_EV_CLOSE - triggered when a FIN segment is received (TCP only). This event // indicates that the oher endpont has closed the connection, so the local TCP layer is only // allowed to send new data until a local shutdown or close is initiated. PicoTCP is able to // keep the connection half-open (only for sending) after the FIN packet has been received, // allowing new data to be sent in the TCP CLOSE WAIT state. if (ev & PICO_SOCK_EV_CLOSE) { err = pico_socket_close(s); //DEBUG_INFO("PICO_SOCK_EV_CLOSE (socket closure) err = %d, picosock=%p, conn=%p, app_fd=%d, sdk_fd=%d", err, s, conn, conn->app_fd, conn->sdk_fd); conn->closure_ts = std::time(nullptr); return; } // PICO_SOCK_EV_RD - triggered when new data arrives on the socket. A new receive action // can be taken by the socket owner because this event indicates there is new data to receive. if (ev & PICO_SOCK_EV_RD) { if(conn->socket_type==SOCK_STREAM) pico_cb_tcp_read(tap, s); if(conn->socket_type==SOCK_DGRAM) pico_cb_udp_read(tap, s); } // PICO_SOCK_EV_WR - triggered when ready to write to the socket. Issuing a write/send call // will now succeed if the buffer has enough space to allocate new outstanding data if (ev & PICO_SOCK_EV_WR) { pico_cb_tcp_write(tap, s); } } int pico_eth_send(struct pico_device *dev, void *buf, int len) { //DEBUG_INFO("len = %d", len); SocketTap *tap = (SocketTap*)(dev->tap); if(!tap) { DEBUG_ERROR("invalid dev->tap"); handle_general_failure(); return ZT_ERR_GENERAL_FAILURE; } struct pico_eth_hdr *ethhdr; ethhdr = (struct pico_eth_hdr *)buf; MAC src_mac; MAC dest_mac; src_mac.setTo(ethhdr->saddr, 6); dest_mac.setTo(ethhdr->daddr, 6); tap->_handler(tap->_arg,NULL,tap->_nwid,src_mac,dest_mac, Utils::ntoh((uint16_t)ethhdr->proto),0, ((char*)buf) + sizeof(struct pico_eth_hdr),len - sizeof(struct pico_eth_hdr)); return len; } // receive frames from zerotier virtual wire and copy them to a guarded buffer awaiting placement into network stack void picoTCP::pico_rx(SocketTap *tap, const MAC &from,const MAC &to,unsigned int etherType, const void *data,unsigned int len) { DEBUG_INFO("len = %d", len); if(!tap) { DEBUG_ERROR("invalid tap"); handle_general_failure(); return; } // Since picoTCP only allows the reception of frames from within the polling function, we // must enqueue each frame into a memory structure shared by both threads. This structure will Mutex::Lock _l(tap->_pico_frame_rxbuf_m); // assemble new eth header struct pico_eth_hdr ethhdr; from.copyTo(ethhdr.saddr, 6); to.copyTo(ethhdr.daddr, 6); ethhdr.proto = Utils::hton((uint16_t)etherType); int newlen = len + sizeof(int) + sizeof(struct pico_eth_hdr); int mylen; // FIXME while(newlen > (MAX_PICO_FRAME_RX_BUF_SZ-tap->pico_frame_rxbuf_tot) && ethhdr.proto == 56710) { mylen = 0; memset(tap->pico_frame_rxbuf,0,MAX_PICO_FRAME_RX_BUF_SZ); tap->pico_frame_rxbuf_tot=0; } memcpy(tap->pico_frame_rxbuf + tap->pico_frame_rxbuf_tot, &newlen, sizeof(newlen)); // size of frame + meta memcpy(tap->pico_frame_rxbuf + tap->pico_frame_rxbuf_tot + sizeof(newlen), ðhdr, sizeof(ethhdr)); // new eth header memcpy(tap->pico_frame_rxbuf + tap->pico_frame_rxbuf_tot + sizeof(newlen) + sizeof(ethhdr), data, len); // frame data tap->pico_frame_rxbuf_tot += newlen; //DEBUG_FLOW("[ ZWIRE -> FBUF ] Move FRAME(sz=%d) into FBUF(sz=%d), data_len=%d", newlen, tap->pico_frame_rxbuf_tot, len); } // feed frames on the guarded RX buffer (from zerotier virtual wire) into the network stack int pico_eth_poll(struct pico_device *dev, int loop_score) { SocketTap *tap = (SocketTap*)(dev->tap); if(!tap) { DEBUG_ERROR("invalid dev->tap"); handle_general_failure(); return ZT_ERR_GENERAL_FAILURE; } // FIXME: The copy logic and/or buffer structure should be reworked for better performance after the BETA // SocketTap *tap = (SocketTap*)netif->state; Mutex::Lock _l(tap->_pico_frame_rxbuf_m); unsigned char frame[ZT_SDK_MTU]; int len; int err = 0; while (tap->pico_frame_rxbuf_tot > 0 && loop_score > 0) { //DEBUG_FLOW(" [ FBUF -> STACK] Frame buffer SZ=%d", tap->pico_frame_rxbuf_tot); memset(frame, 0, sizeof(frame)); len = 0; memcpy(&len, tap->pico_frame_rxbuf, sizeof(len)); // get frame len if(len >= 0) { //DEBUG_FLOW(" [ FBUF -> STACK] Moving FRAME of size (%d) from FBUF(sz=%d) into stack",len, tap->pico_frame_rxbuf_tot-len); memcpy(frame, tap->pico_frame_rxbuf + sizeof(len), len-(sizeof(len)) ); // get frame data memmove(tap->pico_frame_rxbuf, tap->pico_frame_rxbuf + len, MAX_PICO_FRAME_RX_BUF_SZ-len); // shift buffer err = pico_stack_recv(dev, (uint8_t*)frame, (len-sizeof(len))); //DEBUG_INFO("recv = %d", err); tap->pico_frame_rxbuf_tot-=len; } else { DEBUG_ERROR("Invalid frame size (%d). Exiting.",len); handle_general_failure(); } loop_score--; } return loop_score; } int picoTCP::pico_Socket(struct pico_socket **p, int socket_family, int socket_type, int protocol) { int err = 0; if(pico_ntimers() >= PICO_MAX_TIMERS) { DEBUG_ERROR("cannot create additional socket, see PICO_MAX_TIMERS. current = %d", pico_ntimers()); errno = EMFILE; err = -1; } else { int protocol_version = 0; struct pico_socket *psock; if(socket_family == AF_INET) protocol_version = PICO_PROTO_IPV4; if(socket_family == AF_INET6) protocol_version = PICO_PROTO_IPV6; if(socket_type == SOCK_DGRAM) { DEBUG_ERROR("SOCK_DGRAM"); psock = pico_socket_open( protocol_version, PICO_PROTO_UDP, &ZeroTier::picoTCP::pico_cb_socket_activity); if(psock) { // configure size of UDP SND/RCV buffers // TODO } } if(socket_type == SOCK_STREAM) { psock = pico_socket_open( protocol_version, PICO_PROTO_TCP, &ZeroTier::picoTCP::pico_cb_socket_activity); if(psock) { // configure size of TCP SND/RCV buffers int tx_buf_sz = ZT_STACK_TCP_SOCKET_TX_SZ; int rx_buf_sz = ZT_STACK_TCP_SOCKET_RX_SZ; int t_err = 0; int value = 1; pico_socket_setoption(psock, PICO_TCP_NODELAY, &value); if((t_err = pico_socket_setoption(psock, PICO_SOCKET_OPT_SNDBUF, &tx_buf_sz)) < 0) DEBUG_ERROR("unable to set SNDBUF size, err = %d, pico_err = %d", t_err, pico_err); if((t_err = pico_socket_setoption(psock, PICO_SOCKET_OPT_RCVBUF, &rx_buf_sz)) < 0) DEBUG_ERROR("unable to set RCVBUF size, err = %d, pico_err = %d", t_err, pico_err); if(ZT_SOCK_BEHAVIOR_LINGER) { int linger_time_ms = ZT_SOCK_BEHAVIOR_LINGER_TIME; if((t_err = pico_socket_setoption(psock, PICO_SOCKET_OPT_LINGER, &linger_time_ms)) < 0) DEBUG_ERROR("unable to set LINGER, err = %d, pico_err = %d", t_err, pico_err); } } } *p = psock; } return err; } int picoTCP::pico_Connect(Connection *conn, int fd, const struct sockaddr *addr, socklen_t addrlen) { if(!conn || !conn->picosock) { DEBUG_ERROR("invalid conn or conn->picosock"); handle_general_failure(); return ZT_ERR_GENERAL_FAILURE; } int err = 0; if(conn->socket_family == AF_INET) { struct pico_ip4 zaddr; memset(&zaddr, 0, sizeof (struct pico_ip4)); struct sockaddr_in *in4 = (struct sockaddr_in*)addr; char ipv4_str[INET_ADDRSTRLEN]; inet_ntop(AF_INET, (const void *)&in4->sin_addr.s_addr, ipv4_str, INET_ADDRSTRLEN); uint32_t ipval = 0; pico_string_to_ipv4(ipv4_str, &ipval); zaddr.addr = ipval; err = pico_socket_connect(conn->picosock, &zaddr, in4->sin_port); } if(conn->socket_family == AF_INET6) { struct pico_ip6 zaddr; struct sockaddr_in6 *in6 = (struct sockaddr_in6*)addr; char ipv6_str[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, &(in6->sin6_addr), ipv6_str, INET6_ADDRSTRLEN); pico_string_to_ipv6(ipv6_str, zaddr.addr); err = pico_socket_connect(conn->picosock, &zaddr, in6->sin6_port); } memcpy(&(conn->peer_addr), &addr, sizeof(struct sockaddr_storage)); if(err == PICO_ERR_EPROTONOSUPPORT) DEBUG_ERROR("PICO_ERR_EPROTONOSUPPORT"); if(err == PICO_ERR_EINVAL) DEBUG_ERROR("PICO_ERR_EINVAL"); if(err == PICO_ERR_EHOSTUNREACH) DEBUG_ERROR("PICO_ERR_EHOSTUNREACH"); return err; } int picoTCP::pico_Bind(Connection *conn, int fd, const struct sockaddr *addr, socklen_t addrlen) { //DEBUG_INFO(); if(!conn || !conn->picosock) { DEBUG_ERROR("invalid conn or conn->picosock"); handle_general_failure(); return ZT_ERR_GENERAL_FAILURE; } int err = 0; if(conn->socket_family == AF_INET) { struct pico_ip4 zaddr; uint32_t tempaddr; memset(&zaddr, 0, sizeof (struct pico_ip4)); struct sockaddr_in *in4 = (struct sockaddr_in*)addr; char ipv4_str[INET_ADDRSTRLEN]; inet_ntop(AF_INET, (const void *)&in4->sin_addr.s_addr, ipv4_str, INET_ADDRSTRLEN); pico_string_to_ipv4(ipv4_str, &tempaddr); zaddr.addr = tempaddr; //DEBUG_EXTRA("addr=%s:%d", ipv4_str, Utils::ntoh(in4->sin_port)); err = pico_socket_bind(conn->picosock, &zaddr, (uint16_t *)&(in4->sin_port)); } if(conn->socket_family == AF_INET6) { struct pico_ip6 pip6; struct sockaddr_in6 *in6 = (struct sockaddr_in6*)addr; char ipv6_str[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, &(in6->sin6_addr), ipv6_str, INET6_ADDRSTRLEN); // TODO: This isn't proper pico_string_to_ipv6("::", pip6.addr); //DEBUG_EXTRA("addr=%s:%d", ipv6_str, Utils::ntoh(in6->sin6_port)); err = pico_socket_bind(conn->picosock, &pip6, (uint16_t *)&(in6->sin6_port)); } if(err < 0) { if(pico_err < 0) DEBUG_ERROR("pico_err = %d", pico_err); DEBUG_ERROR("unable to bind pico_socket(%p), err=%d", (conn->picosock), err); if(err == PICO_ERR_EINVAL) { DEBUG_ERROR("PICO_ERR_EINVAL - invalid argument"); errno = EINVAL; return -1; } if(err == PICO_ERR_ENOMEM) { DEBUG_ERROR("PICO_ERR_ENOMEM - not enough space"); errno = ENOMEM; return -1; } if(err == PICO_ERR_ENXIO) { DEBUG_ERROR("PICO_ERR_ENXIO - no such device or address"); errno = ENXIO; return -1; } } return err; } int picoTCP::pico_Listen(Connection *conn, int fd, int backlog) { //DEBUG_INFO(); if(!conn || !conn->picosock) { DEBUG_ERROR("invalid conn or conn->picosock"); handle_general_failure(); return ZT_ERR_GENERAL_FAILURE; } int err = 0; if((err = pico_socket_listen(conn->picosock, backlog)) < 0) { if(err == PICO_ERR_EINVAL) { DEBUG_ERROR("PICO_ERR_EINVAL"); errno = EINVAL; return -1; } if(err == PICO_ERR_EISCONN) { DEBUG_ERROR("PICO_ERR_EISCONN"); errno = EISCONN; return -1; } } conn->state = ZT_SOCK_STATE_LISTENING; return ZT_ERR_OK; } Connection* picoTCP::pico_Accept(Connection *conn) { if(!conn) { DEBUG_ERROR("invalid conn"); handle_general_failure(); return NULL; } // Retreive first of queued Connections from parent connection Connection *new_conn = NULL; if(conn->_AcceptedConnections.size()) { new_conn = conn->_AcceptedConnections.front(); conn->_AcceptedConnections.pop(); } return new_conn; } void picoTCP::pico_Read(SocketTap *tap, PhySocket *sock, Connection* conn, bool stack_invoked) { DEBUG_INFO(); //exit(0); /* if(!conn || !tap || !conn) { DEBUG_ERROR("invalid tap, sock, or conn"); handle_general_failure(); return; } //DEBUG_INFO(); if(!stack_invoked) { // The stack thread writes to RXBUF as well tap->_tcpconns_m.lock(); tap->_rx_buf_m.lock(); } int tot = 0, n = -1, write_attempts = 0; if(conn && conn->rxsz) { //DEBUG_INFO("conn = %p", conn); // if(conn->socket_type==SOCK_DGRAM) { // Try to write ZT_SDK_MTU-sized chunk to app socket while(tot < ZT_SDK_MTU) { write_attempts++; n = tap->_phy.streamSend(conn->sock, (conn->rxbuf)+tot, ZT_SDK_MTU); tot += n; //DEBUG_FLOW("[ ZTSOCK <- RXBUF] wrote = %d, errno=%d", n, errno); // If socket is unavailable, attempt to write N times before giving up if(errno==35) { if(write_attempts == 1024) { n = ZT_SDK_MTU; // say we wrote it, even though we didn't (drop packet) tot = ZT_SDK_MTU; } } } int payload_sz, addr_sz_offset = sizeof(struct sockaddr_storage); memcpy(&payload_sz, conn->rxbuf + addr_sz_offset, sizeof(int)); struct sockaddr_storage addr; memcpy(&addr, conn->rxbuf, addr_sz_offset); // adjust buffer if(conn->rxsz-n > 0) { // If more remains on buffer memcpy(conn->rxbuf, conn->rxbuf+ZT_SDK_MTU, conn->rxsz - ZT_SDK_MTU); } conn->rxsz -= ZT_SDK_MTU; } // if(conn->socket_type==SOCK_STREAM) { //DEBUG_INFO("writing to conn->sock = %p, conn->sdk_fd=%d, conn->app_fd=%d", conn->sock, conn->sdk_fd, conn->app_fd); n = tap->_phy.streamSend(conn->sock, conn->rxbuf, conn->rxsz); // FIXME: Revisit the idea of writing directly to the app socketpair instead of using Phy I/O // n = write(conn->sdk_fd, conn->rxbuf, conn->rxsz); if(conn->rxsz-n > 0) // If more remains on buffer memcpy(conn->rxbuf, conn->rxbuf+n, conn->rxsz - n); conn->rxsz -= n; } // Notify ZT I/O loop that it has new buffer contents if(n) { if(conn->socket_type==SOCK_STREAM) { //#if DEBUG_LEVEL >= MSG_TRANSFER // DEBUG_TRANS("[ TCP RX <- STACK] :: conn = %p, len = %d", conn, n); //#endif } if(conn->rxsz == 0) { tap->_phy.setNotifyWritable(sock, false); } else { tap->_phy.setNotifyWritable(sock, true); } } else { tap->_phy.setNotifyWritable(sock, false); } } if(!stack_invoked) { tap->_tcpconns_m.unlock(); tap->_rx_buf_m.unlock(); } // DEBUG_FLOW("[ ZTSOCK <- RXBUF] Emitted (%d) from RXBUF(%d) to socket", tot, conn->rxsz); */ } void picoTCP::pico_Write(Connection *conn, void *data, ssize_t len) { // TODO: Add RingBuffer overflow checks //DEBUG_INFO("conn=%p, len = %d", conn, len); Mutex::Lock _l(conn->_tx_m); if(len <= 0) { DEBUG_ERROR("invalid write length (len=%d)", len); handle_general_failure(); return; } if(conn->picosock->state & PICO_SOCKET_STATE_CLOSED){ DEBUG_ERROR("socket is CLOSED, this write() will fail"); return; } if(!conn) { DEBUG_ERROR("invalid connection (len=%d)", len); handle_general_failure(); return; } int original_txsz = conn->TXbuf->count(); if(original_txsz + len >= ZT_TCP_TX_BUF_SZ) { DEBUG_ERROR("txsz = %d, len = %d", original_txsz, len); DEBUG_ERROR("TX buffer is too small, try increasing ZT_TCP_TX_BUF_SZ in libzt.h"); exit(0); } int buf_w = conn->TXbuf->write((const unsigned char*)data, len); if (buf_w != len) { // because we checked ZT_TCP_TX_BUF_SZ above, this should not happen DEBUG_ERROR("TX wrote only %d but expected to write %d", buf_w, len); exit(0); } //DEBUG_INFO("TXbuf->count() = %d", conn->TXbuf->count()); int txsz = conn->TXbuf->count(); //if(original_txsz > 0) // return; // don't write here, we already have stuff in the queue, a callback will handle it int r, max_write_len = std::min(std::min(txsz, ZT_SDK_MTU),ZT_STACK_SOCKET_WR_MAX); //int buf_r = conn->TXbuf->read(conn->tmptxbuf, max_write_len); if((r = pico_socket_write(conn->picosock, conn->TXbuf->get_buf(), max_write_len)) < 0) { DEBUG_ERROR("unable to write to picosock=%p, r=%d", conn->picosock, r); return; } if(conn->socket_type == SOCK_STREAM) { //DEBUG_TRANS("[ TCP TX -> STACK] :: conn = %p, len = %d", conn, r); } if(conn->socket_type == SOCK_DGRAM) { //DEBUG_TRANS("[ UDP TX -> STACK] :: conn = %p, len = %d", conn, r); } if(r>0) conn->TXbuf->consume(r); } int picoTCP::pico_Close(Connection *conn) { DEBUG_INFO("conn = %p, picosock=%p, fd = %d", conn, conn->picosock, conn->app_fd); if(!conn || !conn->picosock) return ZT_ERR_GENERAL_FAILURE; int err = 0; Mutex::Lock _l(conn->tap->_tcpconns_m); if(conn->closure_ts != -1) // it was closed at some point in the past, it'll work itself out return ZT_ERR_OK; if((err = pico_socket_close(conn->picosock)) < 0) { errno = pico_err; DEBUG_ERROR("error closing pico_socket(%p)", (void*)(conn->picosock)); } return err; } char *picoTCP::beautify_pico_error(int err) { if(err== 0) return (char*)"PICO_ERR_NOERR"; if(err== 1) return (char*)"PICO_ERR_EPERM"; if(err== 2) return (char*)"PICO_ERR_ENOENT"; // ... if(err== 4) return (char*)"PICO_ERR_EINTR"; if(err== 5) return (char*)"PICO_ERR_EIO"; if(err== 6) return (char*)"PICO_ERR_ENXIO"; // ... if(err== 11) return (char*)"PICO_ERR_EAGAIN"; if(err== 12) return (char*)"PICO_ERR_ENOMEM"; if(err== 13) return (char*)"PICO_ERR_EACCESS"; if(err== 14) return (char*)"PICO_ERR_EFAULT"; // ... if(err== 16) return (char*)"PICO_ERR_EBUSY"; if(err== 17) return (char*)"PICO_ERR_EEXIST"; // ... if(err== 22) return (char*)"PICO_ERR_EINVAL"; // ... if(err== 64) return (char*)"PICO_ERR_ENONET"; // ... if(err== 71) return (char*)"PICO_ERR_EPROTO"; // ... if(err== 92) return (char*)"PICO_ERR_ENOPROTOOPT"; if(err== 93) return (char*)"PICO_ERR_EPROTONOSUPPORT"; // ... if(err== 95) return (char*)"PICO_ERR_EOPNOTSUPP"; if(err== 98) return (char*)"PICO_ERR_EADDRINUSE"; if(err== 99) return (char*)"PICO_ERR_EADDRNOTAVAIL"; if(err==100) return (char*)"PICO_ERR_ENETDOWN"; if(err==101) return (char*)"PICO_ERR_ENETUNREACH"; // ... if(err==104) return (char*)"PICO_ERR_ECONNRESET"; // ... if(err==106) return (char*)"PICO_ERR_EISCONN"; if(err==107) return (char*)"PICO_ERR_ENOTCONN"; if(err==108) return (char*)"PICO_ERR_ESHUTDOWN"; // ... if(err==110) return (char*)"PICO_ERR_ETIMEDOUT"; if(err==111) return (char*)"PICO_ERR_ECONNREFUSED"; if(err==112) return (char*)"PICO_ERR_EHOSTDOWN"; if(err==113) return (char*)"PICO_ERR_EHOSTUNREACH"; return (char*)"UNKNOWN_ERROR"; } /* #define PICO_SOCKET_STATE_UNDEFINED 0x0000u #define PICO_SOCKET_STATE_SHUT_LOCAL 0x0001u #define PICO_SOCKET_STATE_SHUT_REMOTE 0x0002u #define PICO_SOCKET_STATE_BOUND 0x0004u #define PICO_SOCKET_STATE_CONNECTED 0x0008u #define PICO_SOCKET_STATE_CLOSING 0x0010u #define PICO_SOCKET_STATE_CLOSED 0x0020u # define PICO_SOCKET_STATE_TCP 0xFF00u # define PICO_SOCKET_STATE_TCP_UNDEF 0x00FFu # define PICO_SOCKET_STATE_TCP_CLOSED 0x0100u # define PICO_SOCKET_STATE_TCP_LISTEN 0x0200u # define PICO_SOCKET_STATE_TCP_SYN_SENT 0x0300u # define PICO_SOCKET_STATE_TCP_SYN_RECV 0x0400u # define PICO_SOCKET_STATE_TCP_ESTABLISHED 0x0500u # define PICO_SOCKET_STATE_TCP_CLOSE_WAIT 0x0600u # define PICO_SOCKET_STATE_TCP_LAST_ACK 0x0700u # define PICO_SOCKET_STATE_TCP_FIN_WAIT1 0x0800u # define PICO_SOCKET_STATE_TCP_FIN_WAIT2 0x0900u # define PICO_SOCKET_STATE_TCP_CLOSING 0x0a00u # define PICO_SOCKET_STATE_TCP_TIME_WAIT 0x0b00u # define PICO_SOCKET_STATE_TCP_ARRAYSIZ 0x0cu */ char *picoTCP::beautify_pico_state(int state) { static char state_str[512]; char *str_ptr = state_str; if(state & PICO_SOCKET_STATE_UNDEFINED) { sprintf(str_ptr, "UNDEFINED "); str_ptr += strlen("UNDEFINED "); } if(state & PICO_SOCKET_STATE_SHUT_LOCAL) { sprintf(str_ptr, "SHUT_LOCAL "); str_ptr += strlen("SHUT_LOCAL "); } if(state & PICO_SOCKET_STATE_SHUT_REMOTE) { sprintf(str_ptr, "SHUT_REMOTE "); str_ptr += strlen("SHUT_REMOTE "); } if(state & PICO_SOCKET_STATE_BOUND) { sprintf(str_ptr, "BOUND "); str_ptr += strlen("BOUND "); } if(state & PICO_SOCKET_STATE_CONNECTED) { sprintf(str_ptr, "CONNECTED "); str_ptr += strlen("CONNECTED "); } if(state & PICO_SOCKET_STATE_CLOSING) { sprintf(str_ptr, "CLOSING "); str_ptr += strlen("CLOSING "); } if(state & PICO_SOCKET_STATE_CLOSED) { sprintf(str_ptr, "CLOSED "); str_ptr += strlen("CLOSED "); } if(state & PICO_SOCKET_STATE_TCP) { sprintf(str_ptr, "TCP "); str_ptr += strlen("TCP "); } if(state & PICO_SOCKET_STATE_TCP_UNDEF) { sprintf(str_ptr, "TCP_UNDEF "); str_ptr += strlen("TCP_UNDEF "); } if(state & PICO_SOCKET_STATE_TCP_CLOSED) { sprintf(str_ptr, "TCP_CLOSED "); str_ptr += strlen("TCP_CLOSED "); } if(state & PICO_SOCKET_STATE_TCP_LISTEN) { sprintf(str_ptr, "TCP_LISTEN "); str_ptr += strlen("TCP_LISTEN "); } if(state & PICO_SOCKET_STATE_TCP_SYN_SENT) { sprintf(str_ptr, "TCP_SYN_SENT "); str_ptr += strlen("TCP_SYN_SENT "); } if(state & PICO_SOCKET_STATE_TCP_SYN_RECV) { sprintf(str_ptr, "TCP_SYN_RECV "); str_ptr += strlen("TCP_SYN_RECV "); } if(state & PICO_SOCKET_STATE_TCP_ESTABLISHED) { sprintf(str_ptr, "TCP_ESTABLISHED "); str_ptr += strlen("TCP_ESTABLISHED "); } if(state & PICO_SOCKET_STATE_TCP_CLOSE_WAIT) { sprintf(str_ptr, "TCP_CLOSE_WAIT "); str_ptr += strlen("TCP_CLOSE_WAIT "); } if(state & PICO_SOCKET_STATE_TCP_LAST_ACK) { sprintf(str_ptr, "TCP_LAST_ACK "); str_ptr += strlen("TCP_LAST_ACK "); } if(state & PICO_SOCKET_STATE_TCP_FIN_WAIT1) { sprintf(str_ptr, "TCP_FIN_WAIT1 "); str_ptr += strlen("TCP_FIN_WAIT1 "); } if(state & PICO_SOCKET_STATE_TCP_FIN_WAIT2) { sprintf(str_ptr, "TCP_FIN_WAIT2 "); str_ptr += strlen("TCP_FIN_WAIT2 "); } if(state & PICO_SOCKET_STATE_TCP_CLOSING) { sprintf(str_ptr, "TCP_CLOSING "); str_ptr += strlen("TCP_CLOSING "); } if(state & PICO_SOCKET_STATE_TCP_TIME_WAIT) { sprintf(str_ptr, "TCP_TIME_WAIT "); str_ptr += strlen("TCP_TIME_WAIT "); } if(state & PICO_SOCKET_STATE_TCP_ARRAYSIZ) { sprintf(str_ptr, "TCP_ARRAYSIZ "); str_ptr += strlen("TCP_ARRAYSIZ "); } return (char*)state_str; } }