/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2015 ZeroTier, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #ifndef SDK_LWIPSTACK_H #define SDK_LWIPSTACK_H #if defined (SDK_LWIP) #include "lwip/mem.h" #include "lwip/pbuf.h" #include "lwip/ip_addr.h" #include "lwip/netif.h" #include "lwip/init.h" #include "lwip/udp.h" #include "lwip/tcp.h" #include "lwip/priv/tcp_priv.h" #include "Mutex.hpp" #include "OSUtils.hpp" #include "debug.h" #include #include #include "tap.hpp" namespace ZeroTier { class NetconEthernetTap; struct Connection; void lwip_init_interface(NetconEthernetTap *tap, const InetAddress &ip); void lwip_loop(NetconEthernetTap *tap); void lwip_rx(NetconEthernetTap *tap, const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len); Connection *lwip_handleSocket(NetconEthernetTap *tap, PhySocket *sock, void **uptr, struct socket_st* socket_rpc); Connection * lwip_handleSocketProxy(NetconEthernetTap *tap, PhySocket *sock, int socket_type); void lwip_handleConnect(NetconEthernetTap *tap, PhySocket *sock, PhySocket *rpcSock, Connection *conn, struct connect_st* connect_rpc); int lwip_handleConnectProxy(NetconEthernetTap *tap, PhySocket *sock, struct sockaddr_in *rawAddr); void lwip_handleBind(NetconEthernetTap *tap, PhySocket *sock, PhySocket *rpcSock, void **uptr, struct bind_st *bind_rpc); void lwip_handleListen(NetconEthernetTap *tap, PhySocket *sock, PhySocket *rpcSock, void **uptr, struct listen_st *listen_rpc); void lwip_handleRead(NetconEthernetTap *tap, PhySocket *sock, void **uptr, bool lwip_invoked); void lwip_handleWrite(NetconEthernetTap *tap, Connection *conn); void lwip_handleClose(NetconEthernetTap *tap, PhySocket *sock, Connection *conn); err_t tapif_init(struct netif *netif); err_t low_level_output(struct netif *netif, struct pbuf *p); /* * Callback from LWIP for when data is available to be read from the network. * * Data is in the form of a linked list of struct pbufs, it is then recombined and * send to the client over the associated unix socket. * * @param associated service state object * @param allocated PCB * @param chain of pbufs * @param error code * @return ERR_OK if everything is ok, -1 otherwise * */ err_t nc_recved(void *arg, struct tcp_pcb *PCB, struct pbuf *p, err_t err); /* * Callback from LWIP for when a connection has been accepted and the PCB has been * put into an ACCEPT state. * * A socketpair is created, one end is kept and wrapped into a PhySocket object * for use in the main ZT I/O loop, and one end is sent to the client. The client * is then required to tell the service what new file descriptor it has allocated * for this connection. After the mapping is complete, the accepted socket can be * used. * * @param associated service state object * @param newly allocated PCB * @param error code * @return ERR_OK if everything is ok, -1 otherwise * * i := should be implemented in intercept lib * I := is implemented in intercept lib * X := is implemented in service * ? := required treatment Unknown * - := Not needed * * [ ] EAGAIN or EWOULDBLOCK - The socket is marked nonblocking and no connections are present * to be accepted. POSIX.1-2001 allows either error to be returned for * this case, and does not require these constants to have the same value, * so a portable application should check for both possibilities. * [I] EBADF - The descriptor is invalid. * [I] ECONNABORTED - A connection has been aborted. * [i] EFAULT - The addr argument is not in a writable part of the user address space. * [-] EINTR - The system call was interrupted by a signal that was caught before a valid connection arrived; see signal(7). * [I] EINVAL - Socket is not listening for connections, or addrlen is invalid (e.g., is negative). * [I] EINVAL - (accept4()) invalid value in flags. * [I] EMFILE - The per-process limit of open file descriptors has been reached. * [ ] ENFILE - The system limit on the total number of open files has been reached. * [ ] ENOBUFS, ENOMEM - Not enough free memory. This often means that the memory allocation is * limited by the socket buffer limits, not by the system memory. * [I] ENOTSOCK - The descriptor references a file, not a socket. * [I] EOPNOTSUPP - The referenced socket is not of type SOCK_STREAM. * [ ] EPROTO - Protocol error. * */ err_t nc_accept(void *arg, struct tcp_pcb *newPCB, err_t err); err_t nc_recved_proxy(void *arg, struct tcp_pcb *PCB, struct pbuf *p, err_t err); void nc_udp_recved(void * arg, struct udp_pcb * upcb, struct pbuf * p, ip_addr_t * addr, u16_t port); /* * Callback from LWIP when an internal error is associtated with the given (arg) * * Since the PCB related to this error might no longer exist, only its perviously * associated (arg) is provided to us. * * @param associated service state object * @param error code * */ void nc_err(void *arg, err_t err); /* * Callback from LWIP to do whatever work we might need to do. * * @param associated service state object * @param PCB we're polling on * @return ERR_OK if everything is ok, -1 otherwise * */ err_t nc_poll(void* arg, struct tcp_pcb *PCB); /* * Callback from LWIP to signal that 'len' bytes have successfully been sent. * As a result, we should put our socket back into a notify-on-readability state * since there is now room on the PCB buffer to write to. * * NOTE: This could be used to track the amount of data sent by a connection. * * @param associated service state object * @param relevant PCB * @param length of data sent * @return ERR_OK if everything is ok, -1 otherwise * */ err_t nc_sent(void *arg, struct tcp_pcb *PCB, u16_t len); /* * Callback from LWIP which sends a return value to the client to signal that * a connection was established for this PCB * * @param associated service state object * @param relevant PCB * @param error code * @return ERR_OK if everything is ok, -1 otherwise * */ err_t nc_connected(void *arg, struct tcp_pcb *PCB, err_t err); err_t nc_connected_proxy(void *arg, struct tcp_pcb *PCB, err_t err); } #ifdef D_GNU_SOURCE #define _GNU_SOURCE #endif struct tcp_pcb; #if defined(SDK_IPV4) #define NETIF_ADD_SIG struct netif *netif, ip_addr_t *ipaddr, ip_addr_t *netmask, ip_addr_t *gw, void *state, netif_init_fn init, netif_input_fn input #define ETHARP_OUTPUT_SIG struct netif *netif, struct pbuf *q, const ip4_addr_t *ipaddr #endif #if defined(SDK_IPV6) #define NETIF_ADD_SIG struct netif *netif, void *state, netif_init_fn init, netif_input_fn input #define ETHIP6_OUTPUT_SIG struct netif *netif, struct pbuf *q, const ip6_addr_t *ip6addr #define ETHARP_OUTPUT_SIG struct netif *netif, struct pbuf *q, const ip6_addr_t *ipaddr #define NETIF_IP6_ADDR_SET_STATE_SIG struct netif* netif, s8_t addr_idx, u8_t state #define NETIF_CREATE_IP6_LINKLOCAL_ADDRESS_SIG struct netif *netif, u8_t from_mac_48bit #endif // lwip General Stack API #define PBUF_FREE_SIG struct pbuf *p #define PBUF_ALLOC_SIG pbuf_layer layer, u16_t length, pbuf_type type #define LWIP_HTONS_SIG u16_t x #define LWIP_NTOHS_SIG u16_t x // lwIP UDP API #define UDP_NEW_SIG void #define UDP_CONNECT_SIG struct udp_pcb * pcb, ip_addr_t * ipaddr, u16_t port #define UDP_SEND_SIG struct udp_pcb * pcb, struct pbuf * p #define UDP_SENDTO_SIG struct udp_pcb *pcb, struct pbuf *p, ip_addr_t *dst_ip, u16_t dst_port #define UDP_RECV_SIG struct udp_pcb * pcb, void (* recv)(void * arg, struct udp_pcb * upcb, struct pbuf * p, ip_addr_t * addr, u16_t port), void * recv_arg #define UDP_RECVED_SIG struct udp_pcb * pcb, u16_t len #define UDP_BIND_SIG struct udp_pcb * pcb, const ip_addr_t * ipaddr, u16_t port #define UDP_REMOVE_SIG struct udp_pcb *pcb // lwIP TCP API #define TCP_WRITE_SIG struct tcp_pcb *pcb, const void *arg, u16_t len, u8_t apiflags #define TCP_SENT_SIG struct tcp_pcb * pcb, err_t (* sent)(void * arg, struct tcp_pcb * tpcb, u16_t len) #define TCP_NEW_SIG void #define TCP_RECV_SIG struct tcp_pcb * pcb, err_t (* recv)(void * arg, struct tcp_pcb * tpcb, struct pbuf * p, err_t err) #define TCP_RECVED_SIG struct tcp_pcb * pcb, u16_t len #define TCP_SNDBUF_SIG struct tcp_pcb * pcb #define TCP_CONNECT_SIG struct tcp_pcb * pcb, ip_addr_t * ipaddr, u16_t port, err_t (* connected)(void * arg, struct tcp_pcb * tpcb, err_t err) #define TCP_RECV_SIG struct tcp_pcb * pcb, err_t (* recv)(void * arg, struct tcp_pcb * tpcb, struct pbuf * p, err_t err) #define TCP_ERR_SIG struct tcp_pcb * pcb, void (* err)(void * arg, err_t err) #define TCP_POLL_SIG struct tcp_pcb * pcb, err_t (* poll)(void * arg, struct tcp_pcb * tpcb), u8_t interval #define TCP_ARG_SIG struct tcp_pcb * pcb, void * arg #define TCP_CLOSE_SIG struct tcp_pcb * pcb #define TCP_ABORT_SIG struct tcp_pcb * pcb #define TCP_OUTPUT_SIG struct tcp_pcb * pcb #define TCP_ACCEPT_SIG struct tcp_pcb * pcb, err_t (* accept)(void * arg, struct tcp_pcb * newpcb, err_t err) #define TCP_LISTEN_SIG struct tcp_pcb * pcb #define TCP_LISTEN_WITH_BACKLOG_SIG struct tcp_pcb * pcb, u8_t backlog #define TCP_BIND_SIG struct tcp_pcb * pcb, const ip_addr_t * ipaddr, u16_t port #define TCP_INPUT_SIG struct pbuf *p, struct netif *inp // lwIP network stack interfaces #define ETHERNET_INPUT_SIG struct pbuf *p, struct netif *netif #define IP_INPUT_SIG struct pbuf *p, struct netif *inp #define NETIF_SET_DEFAULT_SIG struct netif *netif #define NETIF_SET_UP_SIG struct netif *netif #define NETIF_POLL_SIG struct netif *netif //#define NETIF_SET_ADDR_SIG struct netif *netif, const ip4_addr_t *ipaddr, const ip4_addr_t *netmask, const ip4_addr_t *gw namespace ZeroTier { /** * Loads an instance of liblwip.so in a private memory arena * * This uses dlmopen() to load an instance of the LWIP stack into its * own private memory space. This is done to get around the stack's * lack of thread-safety or multi-instance support. The alternative * would be to massively refactor the stack so everything lives in a * state object instead of static memory space. */ class lwIP_stack { public: void *_libref; void close() { #if defined(__STATIC_STACK__) return; #elif defined(__DYNAMIC_STACK__) dlclose(_libref); #endif } #if defined(SDK_IPV4) err_t (*_etharp_output)(ETHARP_OUTPUT_SIG); #endif #if defined(SDK_IPV6) err_t (*_ethip6_output)(ETHIP6_OUTPUT_SIG); void (*_nd6_tmr)(void); void (*_netif_ip6_addr_set_state)(NETIF_IP6_ADDR_SET_STATE_SIG); void (*_netif_create_ip6_linklocal_address)(NETIF_CREATE_IP6_LINKLOCAL_ADDRESS_SIG); #endif void (*_netif_init)(void); // void (*_netif_set_addr)(NETIF_SET_ADDR_SIG); void (*_lwip_init)(); err_t (*_tcp_write)(TCP_WRITE_SIG); void (*_tcp_sent)(TCP_SENT_SIG); struct tcp_pcb * (*_tcp_new)(TCP_NEW_SIG); u16_t (*_tcp_sndbuf)(TCP_SNDBUF_SIG); err_t (*_tcp_connect)(TCP_CONNECT_SIG); struct udp_pcb * (*_udp_new)(UDP_NEW_SIG); err_t (*_udp_connect)(UDP_CONNECT_SIG); err_t (*_udp_send)(UDP_SEND_SIG); err_t (*_udp_sendto)(UDP_SENDTO_SIG); void (*_udp_recv)(UDP_RECV_SIG); void (*_udp_recved)(UDP_RECVED_SIG); err_t (*_udp_bind)(UDP_BIND_SIG); void (*_udp_remove)(UDP_REMOVE_SIG); void (*_tcp_recv)(TCP_RECV_SIG); void (*_tcp_recved)(TCP_RECVED_SIG); void (*_tcp_err)(TCP_ERR_SIG); void (*_tcp_poll)(TCP_POLL_SIG); void (*_tcp_arg)(TCP_ARG_SIG); err_t (*_tcp_close)(TCP_CLOSE_SIG); void (*_tcp_abort)(TCP_ABORT_SIG); err_t (*_tcp_output)(TCP_OUTPUT_SIG); void (*_tcp_accept)(TCP_ACCEPT_SIG); struct tcp_pcb * (*_tcp_listen)(TCP_LISTEN_SIG); struct tcp_pcb * (*_tcp_listen_with_backlog)(TCP_LISTEN_WITH_BACKLOG_SIG); err_t (*_tcp_bind)(TCP_BIND_SIG); void (*_etharp_tmr)(void); void (*_tcp_tmr)(void); u8_t (*_pbuf_free)(PBUF_FREE_SIG); struct pbuf * (*_pbuf_alloc)(PBUF_ALLOC_SIG); u16_t (*_lwip_htons)(LWIP_HTONS_SIG); u16_t (*_lwip_ntohs)(LWIP_NTOHS_SIG); err_t (*_ethernet_input)(ETHERNET_INPUT_SIG); void (*_tcp_input)(TCP_INPUT_SIG); err_t (*_ip_input)(IP_INPUT_SIG); void (*_netif_set_default)(NETIF_SET_DEFAULT_SIG); struct netif * (*_netif_add)(NETIF_ADD_SIG); void (*_netif_set_up)(NETIF_SET_UP_SIG); void (*_netif_poll)(NETIF_POLL_SIG); Mutex _lock; Mutex _lock_mem; lwIP_stack(const char* path) : _libref(NULL) { #if defined(__ANDROID__) || defined(__UNITY_3D__) #define __STATIC_STACK__ #elif defined(__linux__) #define __DYNAMIC_STACK__ // Dynamically load liblwip.so _libref = dlmopen(LM_ID_NEWLM, path, RTLD_NOW); #elif defined(__APPLE__) #include "TargetConditionals.h" #if TARGET_IPHONE_SIMULATOR || TARGET_OS_IPHONE #include "node/Mutex.hpp" #define __STATIC_STACK__ // iOS Simulator or iOS device // Do nothing, symbols are statically-linked #elif TARGET_OS_MAC && !defined(SDK_BUNDLED) #define __DYNAMIC_STACK__ // Dynamically load liblwip.so _libref = dlopen(path, RTLD_NOW); #else #define __STATIC_STACK__ #endif #endif #ifdef __STATIC_STACK__ // Set static references (for use in iOS) #if defined(SDK_IPV4) _etharp_output = (err_t(*)(ETHARP_OUTPUT_SIG))ðarp_output; #endif #if defined(SDK_IPV6) _nd6_tmr = (void(*)(void))&nd6_tmr; _netif_ip6_addr_set_state = (void(*)(NETIF_IP6_ADDR_SET_STATE_SIG))&netif_ip6_addr_set_state; _netif_create_ip6_linklocal_address = (void(*)(NETIF_CREATE_IP6_LINKLOCAL_ADDRESS_SIG))&netif_create_ip6_linklocal_address; _ethip6_output = (err_t(*)(ETHIP6_OUTPUT_SIG))ðip6_output; #endif _netif_init = (void(*)(void))&netif_init; _ethernet_input = (err_t(*)(ETHERNET_INPUT_SIG))ðernet_input; _lwip_init = (void(*)(void))&lwip_init; _tcp_write = (err_t(*)(TCP_WRITE_SIG))&tcp_write; _tcp_sent = (void(*)(TCP_SENT_SIG))&tcp_sent; _tcp_new = (struct tcp_pcb*(*)(TCP_NEW_SIG))&tcp_new; _udp_new = (struct udp_pcb*(*)(UDP_NEW_SIG))&udp_new; _udp_connect = (err_t(*)(UDP_CONNECT_SIG))&udp_connect; _udp_send = (err_t(*)(UDP_SEND_SIG))&udp_send; _udp_sendto = (err_t(*)(UDP_SENDTO_SIG))&udp_sendto; _udp_recv = (void(*)(UDP_RECV_SIG))&udp_recv; _udp_bind = (err_t(*)(UDP_BIND_SIG))&udp_bind; _udp_remove = (void(*)(UDP_REMOVE_SIG))&udp_remove; _tcp_connect = (err_t(*)(TCP_CONNECT_SIG))&tcp_connect; _tcp_recv = (void(*)(TCP_RECV_SIG))&tcp_recv; _tcp_recved = (void(*)(TCP_RECVED_SIG))&tcp_recved; _tcp_err = (void(*)(TCP_ERR_SIG))&tcp_err; _tcp_poll = (void(*)(TCP_POLL_SIG))&tcp_poll; _tcp_arg = (void(*)(TCP_ARG_SIG))&tcp_arg; _tcp_close = (err_t(*)(TCP_CLOSE_SIG))&tcp_close; _tcp_abort = (void(*)(TCP_ABORT_SIG))&tcp_abort; _tcp_output = (err_t(*)(TCP_OUTPUT_SIG))&tcp_output; _tcp_accept = (void(*)(TCP_ACCEPT_SIG))&tcp_accept; _tcp_listen_with_backlog = (struct tcp_pcb*(*)(TCP_LISTEN_WITH_BACKLOG_SIG))&tcp_listen_with_backlog; _tcp_bind = (err_t(*)(TCP_BIND_SIG))&tcp_bind; _etharp_tmr = (void(*)(void))ðarp_tmr; _tcp_tmr = (void(*)(void))&tcp_tmr; _pbuf_free = (u8_t(*)(PBUF_FREE_SIG))&pbuf_free; _pbuf_alloc = (struct pbuf*(*)(PBUF_ALLOC_SIG))&pbuf_alloc; _lwip_htons = (u16_t(*)(LWIP_HTONS_SIG))&lwip_htons; _lwip_ntohs = (u16_t(*)(LWIP_NTOHS_SIG))&lwip_ntohs; _tcp_input = (void(*)(TCP_INPUT_SIG))&tcp_input; _ip_input = (err_t(*)(IP_INPUT_SIG))&ip_input; _netif_set_default = (void(*)(NETIF_SET_DEFAULT_SIG))&netif_set_default; _netif_add = (struct netif*(*)(NETIF_ADD_SIG))&netif_add; _netif_set_up = (void(*)(NETIF_SET_UP_SIG))&netif_set_up; #endif #ifdef __DYNAMIC_STACK__ // Use dynamically-loaded symbols (for use in normal desktop applications) if(_libref == NULL) DEBUG_ERROR("dlerror(): %s", dlerror()); #if defined(SDK_IPV4) _etharp_output = (err_t(*)(ETHARP_OUTPUT_SIG))dlsym(_libref, "etharp_output"); #endif #if defined(SDK_IPV6) _nd6_tmr = (void(*)(void))dlsym(_libref, "nd6_tmr"); _netif_ip6_addr_set_state = (void(*)(NETIF_IP6_ADDR_SET_STATE_SIG))dlsym(_libref, "netif_ip6_addr_set_state"); _netif_create_ip6_linklocal_address = (void(*)(NETIF_CREATE_IP6_LINKLOCAL_ADDRESS_SIG))dlsym(_libref, "netif_create_ip6_linklocal_address"); _ethip6_output = (err_t(*)(ETHIP6_OUTPUT_SIG))dlsym(_libref, "ethip6_output"); #endif _netif_init = (void(*)(void))dlsym(_libref, "netif_init"); // _netif_set_addr = (void(*))(NETIF_SET_ADDR_SIG))dlsym(_libref, "netif_set_addr"); _ethernet_input = (err_t(*)(ETHERNET_INPUT_SIG))dlsym(_libref, "ethernet_input"); _lwip_init = (void(*)(void))dlsym(_libref, "lwip_init"); _tcp_write = (err_t(*)(TCP_WRITE_SIG))dlsym(_libref, "tcp_write"); _tcp_sent = (void(*)(TCP_SENT_SIG))dlsym(_libref, "tcp_sent"); _tcp_new = (struct tcp_pcb*(*)(TCP_NEW_SIG))dlsym(_libref, "tcp_new"); _udp_new = (struct udp_pcb*(*)(UDP_NEW_SIG))dlsym(_libref, "udp_new"); _udp_connect = (err_t(*)(UDP_CONNECT_SIG))dlsym(_libref, "udp_connect"); _udp_send = (err_t(*)(UDP_SEND_SIG))dlsym(_libref, "udp_send"); _udp_sendto = (err_t(*)(UDP_SENDTO_SIG))dlsym(_libref, "udp_sendto"); _udp_recv = (void(*)(UDP_RECV_SIG))dlsym(_libref, "udp_recv"); _udp_bind = (err_t(*)(UDP_BIND_SIG))dlsym(_libref, "udp_bind"); _udp_remove = (void(*)(UDP_REMOVE_SIG))dlsym(_libref, "udp_remove"); _tcp_sndbuf = (u16_t(*)(TCP_SNDBUF_SIG))dlsym(_libref, "tcp_sndbuf"); _tcp_connect = (err_t(*)(TCP_CONNECT_SIG))dlsym(_libref, "tcp_connect"); _tcp_recv = (void(*)(TCP_RECV_SIG))dlsym(_libref, "tcp_recv"); _tcp_recved = (void(*)(TCP_RECVED_SIG))dlsym(_libref, "tcp_recved"); _tcp_err = (void(*)(TCP_ERR_SIG))dlsym(_libref, "tcp_err"); _tcp_poll = (void(*)(TCP_POLL_SIG))dlsym(_libref, "tcp_poll"); _tcp_arg = (void(*)(TCP_ARG_SIG))dlsym(_libref, "tcp_arg"); _tcp_close = (err_t(*)(TCP_CLOSE_SIG))dlsym(_libref, "tcp_close"); _tcp_abort = (void(*)(TCP_ABORT_SIG))dlsym(_libref, "tcp_abort"); _tcp_output = (err_t(*)(TCP_OUTPUT_SIG))dlsym(_libref, "tcp_output"); _tcp_accept = (void(*)(TCP_ACCEPT_SIG))dlsym(_libref, "tcp_accept"); _tcp_listen = (struct tcp_pcb*(*)(TCP_LISTEN_SIG))dlsym(_libref, "tcp_listen"); _tcp_listen_with_backlog = (struct tcp_pcb*(*)(TCP_LISTEN_WITH_BACKLOG_SIG))dlsym(_libref, "tcp_listen_with_backlog"); _tcp_bind = (err_t(*)(TCP_BIND_SIG))dlsym(_libref, "tcp_bind"); _etharp_tmr = (void(*)(void))dlsym(_libref, "etharp_tmr"); _tcp_tmr = (void(*)(void))dlsym(_libref, "tcp_tmr"); _pbuf_free = (u8_t(*)(PBUF_FREE_SIG))dlsym(_libref, "pbuf_free"); _pbuf_alloc = (struct pbuf*(*)(PBUF_ALLOC_SIG))dlsym(_libref, "pbuf_alloc"); _lwip_htons = (u16_t(*)(LWIP_HTONS_SIG))dlsym(_libref, "lwip_htons"); _lwip_ntohs = (u16_t(*)(LWIP_NTOHS_SIG))dlsym(_libref, "lwip_ntohs"); _tcp_input = (void(*)(TCP_INPUT_SIG))dlsym(_libref, "tcp_input"); _ip_input = (err_t(*)(IP_INPUT_SIG))dlsym(_libref, "ip_input"); _netif_set_default = (void(*)(NETIF_SET_DEFAULT_SIG))dlsym(_libref, "netif_set_default"); _netif_add = (struct netif*(*)(NETIF_ADD_SIG))dlsym(_libref, "netif_add"); _netif_set_up = (void(*)(NETIF_SET_UP_SIG))dlsym(_libref, "netif_set_up"); #endif } ~lwIP_stack() { if (_libref) dlclose(_libref); } #if defined(SDK_IPV4) inline struct netif * __netif_add(NETIF_ADD_SIG) throw() { Mutex::Lock _l(_lock); return _netif_add(netif,ipaddr,netmask,gw,state,init,input); } #endif #if defined(SDK_IPV6) inline struct netif * __netif_add(NETIF_ADD_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _netif_add(netif,state,init,input); } inline void __nd6_tmr(void) throw() { /*DEBUG_STACK();*/ Mutex::Lock _l(_lock); _nd6_tmr(); } inline void __netif_ip6_addr_set_state(NETIF_IP6_ADDR_SET_STATE_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); _netif_ip6_addr_set_state(netif, addr_idx, state); } inline void __netif_create_ip6_linklocal_address(NETIF_CREATE_IP6_LINKLOCAL_ADDRESS_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); _netif_create_ip6_linklocal_address(netif, from_mac_48bit); } inline err_t __ethip6_output(ETHIP6_OUTPUT_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _ethip6_output(netif,q,ip6addr); } #endif inline void __netif_init(void) throw() { Mutex::Lock _l(_lock); _netif_init(); } // inline void __netif_set_addr(NETIF_SET_ADDR_SIG) throw() { Mutex::Lock _l(_lock); _netif_set_addr(netif, ipaddr, netmask, gw); } inline void __lwip_init() throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _lwip_init(); } inline err_t __tcp_write(TCP_WRITE_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _tcp_write(pcb,arg,len,apiflags); } inline void __tcp_sent(TCP_SENT_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _tcp_sent(pcb,sent); } inline struct tcp_pcb * __tcp_new(TCP_NEW_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _tcp_new(); } inline struct udp_pcb * __udp_new(UDP_NEW_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _udp_new(); } inline err_t __udp_connect(UDP_CONNECT_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _udp_connect(pcb,ipaddr,port); } inline err_t __udp_send(UDP_SEND_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _udp_send(pcb,p); } inline err_t __udp_sendto(UDP_SENDTO_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _udp_sendto(pcb,p,dst_ip,dst_port); } inline void __udp_recv(UDP_RECV_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _udp_recv(pcb,recv,recv_arg); } inline err_t __udp_bind(UDP_BIND_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _udp_bind(pcb,ipaddr,port); } inline void __udp_remove(UDP_REMOVE_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _udp_remove(pcb); } inline u16_t __tcp_sndbuf(TCP_SNDBUF_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _tcp_sndbuf(pcb); } inline err_t __tcp_connect(TCP_CONNECT_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _tcp_connect(pcb,ipaddr,port,connected); } inline void __tcp_recv(TCP_RECV_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _tcp_recv(pcb,recv); } inline void __tcp_recved(TCP_RECVED_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _tcp_recved(pcb,len); } inline void __tcp_err(TCP_ERR_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _tcp_err(pcb,err); } inline void __tcp_poll(TCP_POLL_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _tcp_poll(pcb,poll,interval); } inline void __tcp_arg(TCP_ARG_SIG) throw() { /*DEBUG_STACK();*/ Mutex::Lock _l(_lock); return _tcp_arg(pcb,arg); } inline err_t __tcp_close(TCP_CLOSE_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _tcp_close(pcb); } inline void __tcp_abort(TCP_ABORT_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _tcp_abort(pcb); } inline err_t __tcp_output(TCP_OUTPUT_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _tcp_output(pcb); } inline void __tcp_accept(TCP_ACCEPT_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _tcp_accept(pcb,accept); } inline struct tcp_pcb * __tcp_listen(TCP_LISTEN_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _tcp_listen(pcb); } inline struct tcp_pcb * __tcp_listen_with_backlog(TCP_LISTEN_WITH_BACKLOG_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _tcp_listen_with_backlog(pcb,backlog); } inline err_t __tcp_bind(TCP_BIND_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _tcp_bind(pcb,ipaddr,port); } inline void __etharp_tmr(void) throw() { /*DEBUG_STACK();*/ Mutex::Lock _l(_lock); return _etharp_tmr(); } inline void __tcp_tmr(void) throw() { /*DEBUG_STACK();*/ Mutex::Lock _l(_lock); return _tcp_tmr(); } inline u8_t __pbuf_free(PBUF_FREE_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _pbuf_free(p); } inline struct pbuf * __pbuf_alloc(PBUF_ALLOC_SIG) throw() { /*DEBUG_STACK();*/ Mutex::Lock _l(_lock_mem); return _pbuf_alloc(layer,length,type); } inline u16_t __lwip_htons(LWIP_HTONS_SIG) throw() { /*DEBUG_STACK();*/ Mutex::Lock _l(_lock); return _lwip_htons(x); } inline u16_t __lwip_ntohs(LWIP_NTOHS_SIG) throw() { /*DEBUG_STACK();*/ Mutex::Lock _l(_lock); return _lwip_ntohs(x); } //inline err_t __etharp_output(ETHARP_OUTPUT_SIG) throw() { Mutex::Lock _l(_lock); return _etharp_output(netif,q,ipaddr); } inline err_t __ethernet_input(ETHERNET_INPUT_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _ethernet_input(p,netif); } inline void __tcp_input(TCP_INPUT_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _tcp_input(p,inp); } inline err_t __ip_input(IP_INPUT_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _ip_input(p,inp); } inline void __netif_set_default(NETIF_SET_DEFAULT_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _netif_set_default(netif); } inline void __netif_set_up(NETIF_SET_UP_SIG) throw() { DEBUG_STACK(); Mutex::Lock _l(_lock); return _netif_set_up(netif); } }; } // namespace ZeroTier #endif #endif // SDK_LWIP