/* * ZeroTier SDK - Network Virtualization Everywhere * Copyright (C) 2011-2017 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * You can be released from the requirements of the license by purchasing * a commercial license. Buying such a license is mandatory as soon as you * develop commercial closed-source software that incorporates or links * directly against ZeroTier software without disclosing the source code * of your own application. */ /** * @file * * Misc utilities */ #include "InetAddress.hpp" #include "Debug.hpp" #include "Utilities.h" #if defined(__MINGW32__) int inet_pton4(const char *src, void *dst) { uint8_t tmp[NS_INADDRSZ], *tp; int saw_digit = 0; int octets = 0; *(tp = tmp) = 0; int ch; while ((ch = *src++) != '\0') { if (ch >= '0' && ch <= '9') { uint32_t n = *tp * 10 + (ch - '0'); if (saw_digit && *tp == 0) return 0; if (n > 255) return 0; *tp = n; if (!saw_digit) { if (++octets > 4) return 0; saw_digit = 1; } } else if (ch == '.' && saw_digit) { if (octets == 4) return 0; *++tp = 0; saw_digit = 0; } else return 0; } if (octets < 4) return 0; memcpy(dst, tmp, NS_INADDRSZ); return 1; } int inet_pton6(const char *src, void *dst) { static const char xdigits[] = "0123456789abcdef"; uint8_t tmp[NS_IN6ADDRSZ]; uint8_t *tp = (uint8_t*) memset(tmp, '\0', NS_IN6ADDRSZ); uint8_t *endp = tp + NS_IN6ADDRSZ; uint8_t *colonp = NULL; /* Leading :: requires some special handling. */ if (*src == ':') { if (*++src != ':') return 0; } const char *curtok = src; int saw_xdigit = 0; uint32_t val = 0; int ch; while ((ch = tolower(*src++)) != '\0') { const char *pch = strchr(xdigits, ch); if (pch != NULL) { val <<= 4; val |= (pch - xdigits); if (val > 0xffff) return 0; saw_xdigit = 1; continue; } if (ch == ':') { curtok = src; if (!saw_xdigit) { if (colonp) return 0; colonp = tp; continue; } else if (*src == '\0') { return 0; } if (tp + NS_INT16SZ > endp) return 0; *tp++ = (uint8_t) (val >> 8) & 0xff; *tp++ = (uint8_t) val & 0xff; saw_xdigit = 0; val = 0; continue; } if (ch == '.' && ((tp + NS_INADDRSZ) <= endp) && inet_pton4(curtok, (char*) tp) > 0) { tp += NS_INADDRSZ; saw_xdigit = 0; break; /* '\0' was seen by inet_pton4(). */ } return 0; } if (saw_xdigit) { if (tp + NS_INT16SZ > endp) return 0; *tp++ = (uint8_t) (val >> 8) & 0xff; *tp++ = (uint8_t) val & 0xff; } if (colonp != NULL) { /* * Since some memmove()'s erroneously fail to handle * overlapping regions, we'll do the shift by hand. */ const int n = tp - colonp; if (tp == endp) return 0; for (int i = 1; i <= n; i++) { endp[-i] = colonp[n - i]; colonp[n - i] = 0; } tp = endp; } if (tp != endp) return 0; memcpy(dst, tmp, NS_IN6ADDRSZ); return 1; } int inet_pton(int af, const char *src, void *dst) { switch (af) { case AF_INET: return inet_pton4(src, dst); case AF_INET6: return inet_pton6(src, dst); default: return -1; } } #endif char *beautify_eth_proto_nums(int proto) { if (proto == 0x0800) return (char*)"IPv4"; if (proto == 0x0806) return (char*)"ARP"; if (proto == 0x0842) return (char*)"Wake-on-LAN"; if (proto == 0x22F3) return (char*)"IETF TRILL Protocol"; if (proto == 0x22EA) return (char*)"Stream Reservation Protocol"; if (proto == 0x6003) return (char*)"DECnet Phase IV"; if (proto == 0x8035) return (char*)"Reverse Address Resolution Protocol"; if (proto == 0x809B) return (char*)"AppleTalk (Ethertalk)"; if (proto == 0x80F3) return (char*)"AppleTalk Address Resolution Protocol (AARP)"; if (proto == 0x8100) return (char*)"VLAN-tagged frame (IEEE 802.1Q) and Shortest Path Bridging IEEE 802.1aq with NNI compatibility"; if (proto == 0x8137) return (char*)"IPX"; if (proto == 0x8204) return (char*)"QNX Qnet"; if (proto == 0x86DD) return (char*)"IPv6"; if (proto == 0x8808) return (char*)"Ethernet flow control"; if (proto == 0x8809) return (char*)"Ethernet Slow Protocols"; if (proto == 0x8819) return (char*)"CobraNet"; if (proto == 0x8847) return (char*)"MPLS unicast"; if (proto == 0x8848) return (char*)"MPLS multicast"; if (proto == 0x8863) return (char*)"PPPoE Discovery Stage"; if (proto == 0x8864) return (char*)"PPPoE Session Stage"; if (proto == 0x886D) return (char*)"Intel Advanced Networking Services"; if (proto == 0x8870) return (char*)"Jumbo Frames (Obsoleted draft-ietf-isis-ext-eth-01)"; if (proto == 0x887B) return (char*)"HomePlug 1.0 MME"; if (proto == 0x888E) return (char*)"EAP over LAN (IEEE 802.1X)"; if (proto == 0x8892) return (char*)"PROFINET Protocol"; if (proto == 0x889A) return (char*)"HyperSCSI (SCSI over Ethernet)"; if (proto == 0x88A2) return (char*)"ATA over Ethernet"; if (proto == 0x88A4) return (char*)"EtherCAT Protocol"; if (proto == 0x88A8) return (char*)"Provider Bridging (IEEE 802.1ad) & Shortest Path Bridging IEEE 802.1aq"; if (proto == 0x88AB) return (char*)"Ethernet Powerlink[citation needed]"; if (proto == 0x88B8) return (char*)"GOOSE (Generic Object Oriented Substation event)"; if (proto == 0x88B9) return (char*)"GSE (Generic Substation Events) Management Services"; if (proto == 0x88BA) return (char*)"SV (Sampled Value Transmission)"; if (proto == 0x88CC) return (char*)"Link Layer Discovery Protocol (LLDP)"; if (proto == 0x88CD) return (char*)"SERCOS III"; if (proto == 0x88DC) return (char*)"WSMP, WAVE Short Message Protocol"; if (proto == 0x88E1) return (char*)"HomePlug AV MME[citation needed]"; if (proto == 0x88E3) return (char*)"Media Redundancy Protocol (IEC62439-2)"; if (proto == 0x88E5) return (char*)"MAC security (IEEE 802.1AE)"; if (proto == 0x88E7) return (char*)"Provider Backbone Bridges (PBB) (IEEE 802.1ah)"; if (proto == 0x88F7) return (char*)"Precision Time Protocol (PTP) over Ethernet (IEEE 1588)"; if (proto == 0x88FB) return (char*)"Parallel Redundancy Protocol (PRP)"; if (proto == 0x8902) return (char*)"IEEE 802.1ag Connectivity Fault Management (CFM) Protocol / ITU-T Recommendation Y.1731 (OAM)"; if (proto == 0x8906) return (char*)"Fibre Channel over Ethernet (FCoE)"; if (proto == 0x8914) return (char*)"FCoE Initialization Protocol"; if (proto == 0x8915) return (char*)"RDMA over Converged Ethernet (RoCE)"; if (proto == 0x891D) return (char*)"TTEthernet Protocol Control Frame (TTE)"; if (proto == 0x892F) return (char*)"High-availability Seamless Redundancy (HSR)"; if (proto == 0x9000) return (char*)"Ethernet Configuration Testing Protocol"; if (proto == 0x9100) return (char*)"VLAN-tagged (IEEE 802.1Q) frame with double tagging"; return (char*)"UNKNOWN"; } bool ipv6_in_subnet(ZeroTier::InetAddress *subnet, ZeroTier::InetAddress *addr) { ZeroTier::InetAddress r(addr); ZeroTier::InetAddress b(subnet); const unsigned int bits = subnet->netmaskBits(); switch(r.ss_family) { case AF_INET: reinterpret_cast(&r)->sin_addr.s_addr &= ZeroTier::Utils::hton((uint32_t)(0xffffffff << (32 - bits))); break; case AF_INET6: { uint64_t nm[2]; uint64_t nm2[2]; memcpy(nm,reinterpret_cast(&r)->sin6_addr.s6_addr,16); memcpy(nm2,reinterpret_cast(&b)->sin6_addr.s6_addr,16); nm[0] &= ZeroTier::Utils::hton((uint64_t)((bits >= 64) ? 0xffffffffffffffffULL : (0xffffffffffffffffULL << (64 - bits)))); nm[1] &= ZeroTier::Utils::hton((uint64_t)((bits <= 64) ? 0ULL : (0xffffffffffffffffULL << (128 - bits)))); nm2[0] &= ZeroTier::Utils::hton((uint64_t)((bits >= 64) ? 0xffffffffffffffffULL : (0xffffffffffffffffULL << (64 - bits)))); nm2[1] &= ZeroTier::Utils::hton((uint64_t)((bits <= 64) ? 0ULL : (0xffffffffffffffffULL << (128 - bits)))); memcpy(reinterpret_cast(&r)->sin6_addr.s6_addr,nm,16); memcpy(reinterpret_cast(&b)->sin6_addr.s6_addr,nm2,16); } break; } char b0[64], b1[64]; memset(b0, 0, 64); memset(b1, 0, 64); return !strcmp(r.toIpString(b0), b.toIpString(b1)); } /* void sockaddr2inet(int socket_family, const struct sockaddr *addr, ZeroTier::InetAddress *inet) { char ipstr[INET6_ADDRSTRLEN]; memset(ipstr, 0, INET6_ADDRSTRLEN); if (socket_family == AF_INET) { inet_ntop(AF_INET, (const void *)&((struct sockaddr_in *)addr)->sin_addr.s_addr, ipstr, INET_ADDRSTRLEN); inet->fromString(ipstr); } if (socket_family == AF_INET6) { inet_ntop(AF_INET6, (const void *)&((struct sockaddr_in6 *)addr)->sin6_addr.s6_addr, ipstr, INET6_ADDRSTRLEN); char addrstr[64]; sprintf(addrstr, "%s", ipstr); inet->fromString(addrstr); } } */ void mac2str(char *macbuf, int len, unsigned char* addr) { snprintf(macbuf, len, "%02x:%02x:%02x:%02x:%02x:%02x", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]); } /** * Convert from standard IPV6 address structure to an lwIP native structure */ /* inline void in6_to_ip6(ip6_addr_t *ba, struct sockaddr_in6 *in6) { uint8_t *ip = &(in6->sin6_addr).s6_addr[0]; IP6_ADDR2(ba, (((ip[ 0] & 0xffff) << 8) | ((ip[ 1]) & 0xffff)), (((ip[ 2] & 0xffff) << 8) | ((ip[ 3]) & 0xffff)), (((ip[ 4] & 0xffff) << 8) | ((ip[ 5]) & 0xffff)), (((ip[ 6] & 0xffff) << 8) | ((ip[ 7]) & 0xffff)), (((ip[ 8] & 0xffff) << 8) | ((ip[ 9]) & 0xffff)), (((ip[10] & 0xffff) << 8) | ((ip[11]) & 0xffff)), (((ip[12] & 0xffff) << 8) | ((ip[13]) & 0xffff)), (((ip[14] & 0xffff) << 8) | ((ip[15]) & 0xffff)) ); } */