/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2015 ZeroTier, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include #include #include #include #include #include #include #include #include #include "SocketTap.hpp" #include "ZeroTierSDK.h" #include "RPC.h" #include "picoTCP.hpp" #include "Utils.hpp" #include "OSUtils.hpp" #include "Constants.hpp" #include "Phy.hpp" namespace ZeroTier { // Ignore these void SocketTap::phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *local_address, const struct sockaddr *from,void *data,unsigned long len) {} void SocketTap::phyOnTcpConnect(PhySocket *sock,void **uptr,bool success) {} void SocketTap::phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN, const struct sockaddr *from) {} void SocketTap::phyOnTcpClose(PhySocket *sock,void **uptr) {} void SocketTap::phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len) {} void SocketTap::phyOnTcpWritable(PhySocket *sock,void **uptr, bool stack_invoked) {} int SocketTap::sendReturnValue(int fd, int retval, int _errno) { //DEBUG_INFO("fd=%d, retval=%d, errno=%d", fd, retval, _errno); int sz = sizeof(char) + sizeof(retval) + sizeof(errno); char retmsg[sz]; memset(&retmsg, 0, sizeof(retmsg)); retmsg[0]=RPC_RETVAL; memcpy(&retmsg[1], &retval, sizeof(retval)); memcpy(&retmsg[1]+sizeof(retval), &_errno, sizeof(_errno)); return write(fd, &retmsg, sz); } // Unpacks the buffer from an RPC command void SocketTap::unloadRPC(void *data, pid_t &pid, pid_t &tid, char (timestamp[RPC_TIMESTAMP_SZ]), char (CANARY[sizeof(uint64_t)]), char &cmd, void* &payload) { unsigned char *buf = (unsigned char*)data; memcpy(&pid, &buf[IDX_PID], sizeof(pid_t)); memcpy(&tid, &buf[IDX_TID], sizeof(pid_t)); memcpy(timestamp, &buf[IDX_TIME], RPC_TIMESTAMP_SZ); memcpy(&cmd, &buf[IDX_PAYLOAD], sizeof(char)); memcpy(CANARY, &buf[IDX_PAYLOAD+1], CANARY_SZ); } /*------------------------------------------------------------------------------ -------------------------------- Tap Service ---------------------------------- ------------------------------------------------------------------------------*/ SocketTap::SocketTap( const char *homePath, const MAC &mac, unsigned int mtu, unsigned int metric, uint64_t nwid, const char *friendlyName, void (*handler)(void *,void*,uint64_t,const MAC &,const MAC &, unsigned int,unsigned int,const void *,unsigned int), void *arg) : _homePath(homePath), _mac(mac), _mtu(mtu), _nwid(nwid), _handler(handler), _arg(arg), _phy(this,false,true), _unixListenSocket((PhySocket *)0), _enabled(true), _run(true) { char sockPath[4096]; Utils::snprintf(sockPath,sizeof(sockPath),"%s%s" ZT_SDK_RPC_DIR_PREFIX "/%.16llx", homePath,ZT_PATH_SEPARATOR_S,_nwid,ZT_PATH_SEPARATOR_S,(unsigned long long)nwid); _dev = sockPath; _unixListenSocket = _phy.unixListen(sockPath,(void *)this); chmod(sockPath, 0777); // make the RPC socket available to all users if (!_unixListenSocket) DEBUG_ERROR("unable to bind to: rpc = %s", sockPath); else DEBUG_INFO("rpc = %s", sockPath); char ver[6]; zts_core_version(ver); DEBUG_INFO("zts_core_version = %s", ver); zts_sdk_version(ver); DEBUG_INFO("zts_sdk_version = %s", ver); char id[11]; zts_get_device_id(id); DEBUG_INFO("id = %s", id); _thread = Thread::start(this); } SocketTap::~SocketTap() { _run = false; _phy.whack(); Thread::join(_thread); _phy.close(_unixListenSocket,false); } void SocketTap::setEnabled(bool en) { _enabled = en; } bool SocketTap::enabled() const { return _enabled; } bool SocketTap::addIp(const InetAddress &ip) { picotap = this; picostack->pico_init_interface(this, ip); _ips.push_back(ip); return true; } bool SocketTap::removeIp(const InetAddress &ip) { Mutex::Lock _l(_ips_m); std::vector::iterator i(std::find(_ips.begin(),_ips.end(),ip)); if (i == _ips.end()) return false; _ips.erase(i); if (ip.isV4()) { // FIXME: De-register from network stacks } return true; } std::vector SocketTap::ips() const { Mutex::Lock _l(_ips_m); return _ips; } void SocketTap::put(const MAC &from,const MAC &to,unsigned int etherType, const void *data,unsigned int len) { // RX packet picostack->pico_rx(this, from,to,etherType,data,len); } std::string SocketTap::deviceName() const { return _dev; } void SocketTap::setFriendlyName(const char *friendlyName) { DEBUG_INFO(); } void SocketTap::scanMulticastGroups(std::vector &added, std::vector &removed) { std::vector newGroups; Mutex::Lock _l(_multicastGroups_m); // TODO: get multicast subscriptions from network stack std::vector allIps(ips()); for(std::vector::iterator ip(allIps.begin());ip!=allIps.end();++ip) newGroups.push_back(MulticastGroup::deriveMulticastGroupForAddressResolution(*ip)); std::sort(newGroups.begin(),newGroups.end()); std::unique(newGroups.begin(),newGroups.end()); for(std::vector::iterator m(newGroups.begin());m!=newGroups.end();++m) { if (!std::binary_search(_multicastGroups.begin(),_multicastGroups.end(),*m)) added.push_back(*m); } for(std::vector::iterator m(_multicastGroups.begin());m!=_multicastGroups.end();++m) { if (!std::binary_search(newGroups.begin(),newGroups.end(),*m)) removed.push_back(*m); } _multicastGroups.swap(newGroups); } void SocketTap::threadMain() throw() { picostack->pico_loop(this); } Connection *SocketTap::getConnection(PhySocket *sock) { for(size_t i=0;i<_Connections.size();++i) { if(_Connections[i]->sock == sock) return _Connections[i]; } return NULL; } Connection *SocketTap::getConnection(struct pico_socket *sock) { for(size_t i=0;i<_Connections.size();++i) { if(_Connections[i]->picosock == sock) return _Connections[i]; } return NULL; } void SocketTap::closeConnection(PhySocket *sock) { Mutex::Lock _l(_close_m); // Here we assume _tcpconns_m is already locked by caller if(!sock) { DEBUG_EXTRA("invalid PhySocket"); return; } picostack->pico_handleClose(sock); Connection *conn = getConnection(sock); if(!conn) return; for(size_t i=0;i<_Connections.size();++i) { if(_Connections[i] == conn){ _Connections.erase(_Connections.begin() + i); delete conn; break; } } if(!sock) return; close(_phy.getDescriptor(sock)); _phy.close(sock, false); } void SocketTap::phyOnUnixClose(PhySocket *sock,void **uptr) { //Mutex::Lock _l(_tcpconns_m); //closeConnection(sock); // FIXME: } void SocketTap::handleRead(PhySocket *sock,void **uptr,bool stack_invoked) { picostack->pico_handleRead(sock, uptr, stack_invoked); } void SocketTap::phyOnUnixWritable(PhySocket *sock,void **uptr,bool stack_invoked) { handleRead(sock,uptr,stack_invoked); } void SocketTap::phyOnUnixData(PhySocket *sock, void **uptr, void *data, ssize_t len) { //DEBUG_INFO("physock=%p, len=%d", sock, (int)len); uint64_t CANARY_num; pid_t pid, tid; ssize_t wlen = len; char tmpbuf[SDK_MTU]; char cmd, timestamp[20], CANARY[CANARY_SZ], padding[] = {PADDING}; void *payload; unsigned char *buf = (unsigned char*)data; std::pair sockdata; PhySocket *rpcSock; bool foundJob = false, detected_rpc = false; Connection *conn; // RPC char phrase[RPC_PHRASE_SZ]; memset(phrase, 0, RPC_PHRASE_SZ); if(len == BUF_SZ) { memcpy(phrase, buf, RPC_PHRASE_SZ); if(strcmp(phrase, RPC_PHRASE) == 0) detected_rpc = true; } if(detected_rpc) { unloadRPC(data, pid, tid, timestamp, CANARY, cmd, payload); memcpy(&CANARY_num, CANARY, CANARY_SZ); // DEBUG_EXTRA(" RPC: physock=%p, (pid=%d, tid=%d, timestamp=%s, cmd=%d)", sock, pid, tid, timestamp, cmd); if(cmd == RPC_SOCKET) { // DEBUG_INFO("RPC_SOCKET, physock=%p", sock); // Create new stack socket and associate it with this sock struct socket_st socket_rpc; memcpy(&socket_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct socket_st)); Connection * new_conn; if((new_conn = handleSocket(sock, uptr, &socket_rpc))) { new_conn->pid = pid; // Merely kept to look up application path/names later, not strictly necessary } } else { memcpy(&tmpbuf,data,len); jobmap[CANARY_num] = std::pair(sock, tmpbuf); } write(_phy.getDescriptor(sock), "z", 1); // RPC ACK byte to maintain order } // STREAM else { int data_start = -1, data_end = -1, canary_pos = -1, padding_pos = -1; // Look for padding std::string padding_pattern(padding, padding+PADDING_SZ); std::string buffer(buf, buf + len); padding_pos = buffer.find(padding_pattern); canary_pos = padding_pos-CANARY_SZ; // Grab token, next we'll use it to look up an RPC job if(canary_pos > -1) { memcpy(&CANARY_num, buf+canary_pos, CANARY_SZ); if(CANARY_num != 0) { // Find job sockdata = jobmap[CANARY_num]; if(!sockdata.first) { return; } else foundJob = true; } } conn = getConnection(sock); if(!conn) return; if(padding_pos == -1) { // [DATA] memcpy(&conn->txbuf[conn->txsz], buf, wlen); } else { // Padding found, implies a canary is present // [CANARY] if(len == CANARY_SZ+PADDING_SZ && canary_pos == 0) { wlen = 0; // Nothing to write } else { // [CANARY] + [DATA] if(len > CANARY_SZ+PADDING_SZ && canary_pos == 0) { wlen = len - CANARY_SZ+PADDING_SZ; data_start = padding_pos+PADDING_SZ; memcpy((&conn->txbuf)+conn->txsz, buf+data_start, wlen); } // [DATA] + [CANARY] if(len > CANARY_SZ+PADDING_SZ && canary_pos > 0 && canary_pos == len - CANARY_SZ+PADDING_SZ) { wlen = len - CANARY_SZ+PADDING_SZ; data_start = 0; memcpy((&conn->txbuf)+conn->txsz, buf+data_start, wlen); } // [DATA] + [CANARY] + [DATA] if(len > CANARY_SZ+PADDING_SZ && canary_pos > 0 && len > (canary_pos + CANARY_SZ+PADDING_SZ)) { wlen = len - CANARY_SZ+PADDING_SZ; data_start = 0; data_end = padding_pos-CANARY_SZ; memcpy((&conn->txbuf)+conn->txsz, buf+data_start, (data_end-data_start)+1); memcpy((&conn->txbuf)+conn->txsz, buf+(padding_pos+PADDING_SZ), len-(canary_pos+CANARY_SZ+PADDING_SZ)); } } } // Write data from stream if(wlen) { conn->txsz += wlen; handleWrite(conn); } } // Process RPC if we have a corresponding jobmap entry if(foundJob) { rpcSock = sockdata.first; buf = (unsigned char*)sockdata.second; unloadRPC(buf, pid, tid, timestamp, CANARY, cmd, payload); //DEBUG_ERROR(" RPC: physock=%p, (pid=%d, tid=%d, timestamp=%s, cmd=%d)", sock, pid, tid, timestamp, cmd); switch(cmd) { case RPC_BIND: //DEBUG_INFO("RPC_BIND, physock=%p", sock); struct bind_st bind_rpc; memcpy(&bind_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct bind_st)); handleBind(sock, rpcSock, uptr, &bind_rpc); break; case RPC_LISTEN: //DEBUG_INFO("RPC_LISTEN, physock=%p", sock); struct listen_st listen_rpc; memcpy(&listen_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct listen_st)); handleListen(sock, rpcSock, uptr, &listen_rpc); break; case RPC_GETSOCKNAME: //DEBUG_INFO("RPC_GETSOCKNAME, physock=%p", sock); struct getsockname_st getsockname_rpc; memcpy(&getsockname_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct getsockname_st)); handleGetsockname(sock, rpcSock, uptr, &getsockname_rpc); break; case RPC_GETPEERNAME: //DEBUG_INFO("RPC_GETPEERNAME, physock=%p", sock); struct getsockname_st getpeername_rpc; memcpy(&getpeername_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct getsockname_st)); handleGetpeername(sock, rpcSock, uptr, &getpeername_rpc); break; case RPC_CONNECT: //DEBUG_INFO("RPC_CONNECT, physock=%p", sock); struct connect_st connect_rpc; memcpy(&connect_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct connect_st)); handleConnect(sock, rpcSock, conn, &connect_rpc); jobmap.erase(CANARY_num); return; // Keep open RPC, we'll use it once in nc_connected to send retval default: return; break; } Mutex::Lock _l(_tcpconns_m); closeConnection(sockdata.first); // close RPC after sending retval, no longer needed jobmap.erase(CANARY_num); } } /*------------------------------------------------------------------------------ ----------------------------- RPC Handler functions ---------------------------- ------------------------------------------------------------------------------*/ void SocketTap::handleGetsockname(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct getsockname_st *getsockname_rpc) { Mutex::Lock _l(_tcpconns_m); Connection *conn = getConnection(sock); if(conn->local_addr == NULL){ DEBUG_EXTRA("no address info available. is it bound?"); struct sockaddr_storage storage; memset(&storage, 0, sizeof(struct sockaddr_storage)); write(_phy.getDescriptor(rpcSock), NULL, sizeof(struct sockaddr_storage)); return; } write(_phy.getDescriptor(rpcSock), conn->local_addr, sizeof(struct sockaddr_storage)); } void SocketTap::handleGetpeername(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct getsockname_st *getsockname_rpc) { Mutex::Lock _l(_tcpconns_m); Connection *conn = getConnection(sock); if(conn->peer_addr == NULL){ DEBUG_EXTRA("no peer address info available. is it connected?"); struct sockaddr_storage storage; memset(&storage, 0, sizeof(struct sockaddr_storage)); write(_phy.getDescriptor(rpcSock), NULL, sizeof(struct sockaddr_storage)); return; } write(_phy.getDescriptor(rpcSock), conn->peer_addr, sizeof(struct sockaddr_storage)); } Connection * SocketTap::handleSocket(PhySocket *sock, void **uptr, struct socket_st* socket_rpc) { return picostack->pico_handleSocket(sock, uptr, socket_rpc); } void SocketTap::handleConnect(PhySocket *sock, PhySocket *rpcSock, Connection *conn, struct connect_st* connect_rpc) { Mutex::Lock _l(_tcpconns_m); picostack->pico_handleConnect(sock, rpcSock, conn, connect_rpc); } void SocketTap::handleBind(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct bind_st *bind_rpc) { Mutex::Lock _l(_tcpconns_m); if(!_ips.size()) { DEBUG_ERROR("cannot bind yet. ZT address hasn't been provided"); sendReturnValue(_phy.getDescriptor(rpcSock), -1, ENOMEM); return; } picostack->pico_handleBind(sock,rpcSock,uptr,bind_rpc); } void SocketTap::handleListen(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct listen_st *listen_rpc) { Mutex::Lock _l(_tcpconns_m); picostack->pico_handleListen(sock, rpcSock, uptr, listen_rpc); } // Write to the network stack (and thus out onto the network) void SocketTap::handleWrite(Connection *conn) { picostack->pico_handleWrite(conn); } } // namespace ZeroTier