/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2024-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ /** * @file * * Virtual ethernet tap device and combined network stack driver */ #include "MAC.hpp" #include "Mutex.hpp" #include "InetAddress.hpp" #include "MulticastGroup.hpp" #include "lwip/netif.h" #include "lwip/etharp.h" #include "lwip/sys.h" #include "lwip/ethip6.h" #include "lwip/tcpip.h" #include "netif/ethernet.h" #ifdef LWIP_STATS #include "lwip/stats.h" #endif #include "VirtualTap.hpp" #include "ZeroTierSockets.h" #include "Events.hpp" #include "Debug.hpp" #if defined(__WINDOWS__) #include #include "Synchapi.h" #endif #define ZTS_TAP_THREAD_POLLING_INTERVAL 50 #define LWIP_DRIVER_LOOP_INTERVAL 250 namespace ZeroTier { extern void _enqueueEvent(int16_t eventCode, void *arg = NULL); /** * A virtual tap device. The ZeroTier core service creates one of these for each * virtual network joined. It will be destroyed upon leave(). */ VirtualTap::VirtualTap( const char *homePath, const MAC &mac, unsigned int mtu, unsigned int metric, uint64_t nwid, const char *friendlyName, void (*handler)(void *,void*,uint64_t,const MAC &,const MAC &, unsigned int,unsigned int,const void *,unsigned int), void *arg) : _handler(handler), _homePath(homePath), _arg(arg), _initialized(false), _enabled(true), _run(true), _mac(mac), _mtu(mtu), _nwid(nwid), _unixListenSocket((PhySocket *)0), _phy(this,false,true) { memset(vtap_full_name, 0, sizeof(vtap_full_name)); snprintf(vtap_full_name, sizeof(vtap_full_name), "libzt%llx", (unsigned long long)_nwid); _dev = vtap_full_name; #ifndef __WINDOWS__ ::pipe(_shutdownSignalPipe); #endif // Start virtual tap thread and stack I/O loops _thread = Thread::start(this); } VirtualTap::~VirtualTap() { struct zts_network_details *nd = new zts_network_details; nd->nwid = _nwid; _enqueueEvent(ZTS_EVENT_NETWORK_DOWN, (void*)nd); _run = false; #ifndef __WINDOWS__ ::write(_shutdownSignalPipe[1],"\0",1); #endif _phy.whack(); _lwip_remove_netif(netif4); netif4 = NULL; _lwip_remove_netif(netif6); netif6 = NULL; Thread::join(_thread); #ifndef __WINDOWS__ ::close(_shutdownSignalPipe[0]); ::close(_shutdownSignalPipe[1]); #endif } void VirtualTap::lastConfigUpdate(uint64_t lastConfigUpdateTime) { _lastConfigUpdateTime = lastConfigUpdateTime; } void VirtualTap::setEnabled(bool en) { _enabled = en; } bool VirtualTap::enabled() const { return _enabled; } bool VirtualTap::hasIpv4Addr() { Mutex::Lock _l(_ips_m); std::vector::iterator it(_ips.begin()); while (it != _ips.end()) { if ((*it).isV4()) { return true; } it++; } return false; } bool VirtualTap::hasIpv6Addr() { Mutex::Lock _l(_ips_m); std::vector::iterator it(_ips.begin()); while (it != _ips.end()) { if ((*it).isV6()) { return true; } it++; } return false; } bool VirtualTap::addIp(const InetAddress &ip) { char ipbuf[128]; //ip.toString(ipbuf); //DEBUG_INFO("addr=%s", ipbuf); /* Limit address assignments to one per type. This limitation can be removed if some changes are made in the netif driver. */ if (ip.isV4() && hasIpv4Addr()) { ip.toString(ipbuf); DEBUG_INFO("failed to add IP (%s), only one per type per netif allowed\n", ipbuf); return false; } if (ip.isV6() && hasIpv6Addr()) { ip.toString(ipbuf); DEBUG_INFO("failed to add IP (%s), only one per type per netif allowed\n", ipbuf); return false; } Mutex::Lock _l(_ips_m); if (_ips.size() >= ZT_MAX_ZT_ASSIGNED_ADDRESSES) { return false; } if (std::find(_ips.begin(),_ips.end(),ip) == _ips.end()) { _lwip_init_interface((void*)this, ip); // TODO: Add ZTS_EVENT_ADDR_NEW ? _ips.push_back(ip); // Send callback message struct zts_addr_details *ad = new zts_addr_details; ad->nwid = _nwid; if (ip.isV4()) { struct sockaddr_in *in4 = (struct sockaddr_in*)&(ad->addr); memcpy(&(in4->sin_addr.s_addr), ip.rawIpData(), 4); _enqueueEvent(ZTS_EVENT_ADDR_ADDED_IP4, (void*)ad); } if (ip.isV6()) { struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&(ad->addr); memcpy(&(in6->sin6_addr.s6_addr), ip.rawIpData(), 16); _enqueueEvent(ZTS_EVENT_ADDR_ADDED_IP6, (void*)ad); } std::sort(_ips.begin(),_ips.end()); } return true; } bool VirtualTap::removeIp(const InetAddress &ip) { Mutex::Lock _l(_ips_m); std::vector::iterator i(std::find(_ips.begin(),_ips.end(),ip)); if (std::find(_ips.begin(),_ips.end(),ip) != _ips.end()) { struct zts_addr_details *ad = new zts_addr_details; ad->nwid = _nwid; if (ip.isV4()) { struct sockaddr_in *in4 = (struct sockaddr_in*)&(ad->addr); memcpy(&(in4->sin_addr.s_addr), ip.rawIpData(), 4); _enqueueEvent(ZTS_EVENT_ADDR_REMOVED_IP4, (void*)ad); // FIXME: De-register from network stack } if (ip.isV6()) { // FIXME: De-register from network stack struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&(ad->addr); memcpy(&(in6->sin6_addr.s6_addr), ip.rawIpData(), 16); _enqueueEvent(ZTS_EVENT_ADDR_REMOVED_IP6, (void*)ad); } _ips.erase(i); } return true; } std::vector VirtualTap::ips() const { Mutex::Lock _l(_ips_m); return _ips; } void VirtualTap::put(const MAC &from,const MAC &to,unsigned int etherType, const void *data,unsigned int len) { if (len && _enabled) { _lwip_eth_rx(this, from, to, etherType, data, len); } } std::string VirtualTap::deviceName() const { return _dev; } void VirtualTap::setFriendlyName(const char *friendlyName) { DEBUG_INFO("%s", friendlyName); } void VirtualTap::scanMulticastGroups(std::vector &added, std::vector &removed) { std::vector newGroups; Mutex::Lock _l(_multicastGroups_m); // TODO: get multicast subscriptions std::vector allIps(ips()); for (std::vector::iterator ip(allIps.begin());ip!=allIps.end();++ip) newGroups.push_back(MulticastGroup::deriveMulticastGroupForAddressResolution(*ip)); std::sort(newGroups.begin(),newGroups.end()); std::unique(newGroups.begin(),newGroups.end()); for (std::vector::iterator m(newGroups.begin());m!=newGroups.end();++m) { if (!std::binary_search(_multicastGroups.begin(),_multicastGroups.end(),*m)) added.push_back(*m); } for (std::vector::iterator m(_multicastGroups.begin());m!=_multicastGroups.end();++m) { if (!std::binary_search(newGroups.begin(),newGroups.end(),*m)) removed.push_back(*m); } _multicastGroups.swap(newGroups); } void VirtualTap::setMtu(unsigned int mtu) { _mtu = mtu; } void VirtualTap::threadMain() throw() { fd_set readfds,nullfds; struct timeval tv; tv.tv_sec = 0; tv.tv_usec = 0; FD_ZERO(&readfds); FD_ZERO(&nullfds); int nfds = (int)std::max(_shutdownSignalPipe[0],0) + 1; #if defined(__linux__) pthread_setname_np(pthread_self(), vtap_full_name); #endif #if defined(__APPLE__) pthread_setname_np(vtap_full_name); #endif while (true) { FD_SET(_shutdownSignalPipe[0],&readfds); select(nfds,&readfds,&nullfds,&nullfds,&tv); // writes to shutdown pipe terminate thread if (FD_ISSET(_shutdownSignalPipe[0],&readfds)) { break; } #if defined(__WINDOWS__) Sleep(ZTS_TAP_THREAD_POLLING_INTERVAL); #else struct timespec sleepValue = {0}; sleepValue.tv_nsec = ZTS_TAP_THREAD_POLLING_INTERVAL * 500000; nanosleep(&sleepValue, NULL); #endif } } void VirtualTap::phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *local_address, const struct sockaddr *from,void *data,unsigned long len) {} void VirtualTap::phyOnTcpConnect(PhySocket *sock,void **uptr,bool success) {} void VirtualTap::phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN, const struct sockaddr *from) {} void VirtualTap::phyOnTcpClose(PhySocket *sock,void **uptr) {} void VirtualTap::phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len) {} void VirtualTap::phyOnTcpWritable(PhySocket *sock,void **uptr) {} void VirtualTap::phyOnUnixClose(PhySocket *sock,void **uptr) {} ////////////////////////////////////////////////////////////////////////////// // Netif driver code for lwIP network stack // ////////////////////////////////////////////////////////////////////////////// bool _has_exited = false; // Used to generate enumerated lwIP interface names int netifCount = 0; // Lock to guard access to network stack state changes Mutex stackLock; // Callback for when the TCPIP thread has been successfully started static void _tcpip_init_done(void *arg) { sys_sem_t *sem; sem = (sys_sem_t *)arg; _setState(ZTS_STATE_STACK_RUNNING); _enqueueEvent(ZTS_EVENT_STACK_UP); sys_sem_signal(sem); } static void _main_lwip_driver_loop(void *arg) { #if defined(__linux__) pthread_setname_np(pthread_self(), ZTS_LWIP_DRIVER_THREAD_NAME); #endif #if defined(__APPLE__) pthread_setname_np(ZTS_LWIP_DRIVER_THREAD_NAME); #endif sys_sem_t sem; LWIP_UNUSED_ARG(arg); if (sys_sem_new(&sem, 0) != ERR_OK) { DEBUG_ERROR("failed to create semaphore"); } tcpip_init(_tcpip_init_done, &sem); sys_sem_wait(&sem); // Main loop while(_getState(ZTS_STATE_STACK_RUNNING)) { zts_delay_ms(LWIP_DRIVER_LOOP_INTERVAL); } _has_exited = true; _enqueueEvent(ZTS_EVENT_STACK_DOWN); } bool _lwip_is_up() { Mutex::Lock _l(stackLock); return _getState(ZTS_STATE_STACK_RUNNING); } bool _lwip_has_previously_shutdown() { Mutex::Lock _l(stackLock); return _has_exited; } void _lwip_driver_init() { if (_lwip_is_up()) { return; } if (_lwip_has_previously_shutdown()) { return; } Mutex::Lock _l(stackLock); #if defined(__WINDOWS__) sys_init(); // Required for win32 init of critical sections #endif sys_thread_new(ZTS_LWIP_DRIVER_THREAD_NAME, _main_lwip_driver_loop, NULL, DEFAULT_THREAD_STACKSIZE, DEFAULT_THREAD_PRIO); } void _lwip_driver_shutdown() { if (_lwip_has_previously_shutdown()) { return; } Mutex::Lock _l(stackLock); // Set flag to stop sending frames into the core _clrState(ZTS_STATE_STACK_RUNNING); // Wait until the main lwIP thread has exited while (!_has_exited) { zts_delay_ms(LWIP_DRIVER_LOOP_INTERVAL); } /* if (tcpip_shutdown() == ERR_OK) { sys_timeouts_free(); } */ } void _lwip_remove_netif(void *netif) { if (!netif) { return; } struct netif *n = (struct netif*)netif; LOCK_TCPIP_CORE(); netif_remove(n); netif_set_down(n); netif_set_link_down(n); UNLOCK_TCPIP_CORE(); } err_t _lwip_eth_tx(struct netif *n, struct pbuf *p) { if (!n) { return ERR_IF; } struct pbuf *q; char buf[ZT_MAX_MTU+32]; char *bufptr; int totalLength = 0; VirtualTap *tap = (VirtualTap*)n->state; bufptr = buf; for (q = p; q != NULL; q = q->next) { memcpy(bufptr, q->payload, q->len); bufptr += q->len; totalLength += q->len; } struct eth_hdr *ethhdr; ethhdr = (struct eth_hdr *)buf; MAC src_mac; MAC dest_mac; src_mac.setTo(ethhdr->src.addr, 6); dest_mac.setTo(ethhdr->dest.addr, 6); char *data = buf + sizeof(struct eth_hdr); int len = totalLength - sizeof(struct eth_hdr); int proto = Utils::ntoh((uint16_t)ethhdr->type); tap->_handler(tap->_arg, NULL, tap->_nwid, src_mac, dest_mac, proto, 0, data, len); if (ZT_MSG_TRANSFER == true) { char flagbuf[32]; memset(&flagbuf, 0, 32); char macBuf[ZTS_MAC_ADDRSTRLEN], nodeBuf[16]; snprintf(macBuf, ZTS_MAC_ADDRSTRLEN, "%02x:%02x:%02x:%02x:%02x:%02x", ethhdr->dest.addr[0], ethhdr->dest.addr[1], ethhdr->dest.addr[2], ethhdr->dest.addr[3], ethhdr->dest.addr[4], ethhdr->dest.addr[5]); MAC mac; mac.setTo(ethhdr->dest.addr, 6); mac.toAddress(tap->_nwid).toString(nodeBuf); /* DEBUG_TRANS("len=%5d dst=%s [%s TX <-- %s] ethertype=0x%04x %s", totalLength, macBuf, nodeBuf, tap->nodeId().c_str(), Utils::ntoh(ethhdr->type), flagbuf); */ } return ERR_OK; } void _lwip_eth_rx(VirtualTap *tap, const MAC &from, const MAC &to, unsigned int etherType, const void *data, unsigned int len) { #ifdef LWIP_STATS stats_display(); #endif if (!_getState(ZTS_STATE_STACK_RUNNING)) { return; } struct pbuf *p,*q; struct eth_hdr ethhdr; from.copyTo(ethhdr.src.addr, 6); to.copyTo(ethhdr.dest.addr, 6); ethhdr.type = Utils::hton((uint16_t)etherType); if (ZT_MSG_TRANSFER == true) { char flagbuf[32]; memset(&flagbuf, 0, 32); char macBuf[ZTS_MAC_ADDRSTRLEN], nodeBuf[16]; snprintf(macBuf, ZTS_MAC_ADDRSTRLEN, "%02x:%02x:%02x:%02x:%02x:%02x", ethhdr.dest.addr[0], ethhdr.dest.addr[1], ethhdr.dest.addr[2], ethhdr.dest.addr[3], ethhdr.dest.addr[4], ethhdr.dest.addr[5]); MAC mac; mac.setTo(ethhdr.src.addr, 6); mac.toAddress(tap->_nwid).toString(nodeBuf); /* DEBUG_TRANS("len=%5d dst=%s [%s RX --> %s] ethertype=0x%04x %s", len, macBuf, nodeBuf, tap->nodeId().c_str(), Utils::ntoh(ethhdr.type), flagbuf); */ } p = pbuf_alloc(PBUF_RAW, (uint16_t)len+sizeof(struct eth_hdr), PBUF_RAM); if (!p) { DEBUG_ERROR("dropped packet: unable to allocate memory for pbuf"); return; } // First pbuf gets ethernet header at start q = p; if (q->len < sizeof(ethhdr)) { pbuf_free(p); p = NULL; DEBUG_ERROR("dropped packet: first pbuf smaller than ethernet header"); return; } // Copy frame data into pbuf const char *dataptr = reinterpret_cast(data); memcpy(q->payload,ðhdr,sizeof(ethhdr)); int remainingPayloadSpace = q->len - sizeof(ethhdr); memcpy((char*)q->payload + sizeof(ethhdr),dataptr,remainingPayloadSpace); dataptr += remainingPayloadSpace; // Remaining pbufs (if any) get rest of data while ((q = q->next)) { memcpy(q->payload,dataptr,q->len); dataptr += q->len; } // Feed packet into stack int err; if (Utils::ntoh(ethhdr.type) == 0x800 || Utils::ntoh(ethhdr.type) == 0x806) { if ((err = ((struct netif *)tap->netif4)->input(p, (struct netif *)tap->netif4)) != ERR_OK) { DEBUG_ERROR("packet input error (%d)", err); pbuf_free(p); } } if (Utils::ntoh(ethhdr.type) == 0x86DD) { if ((err = ((struct netif *)tap->netif6)->input(p, (struct netif *)tap->netif6)) != ERR_OK) { DEBUG_ERROR("packet input error (%d)", err); pbuf_free(p); } } } /* static void print_netif_info(struct netif *n) { DEBUG_INFO("n=%p, %c%c, %d, o=%p, o6=%p, mc=%x:%x:%x:%x:%x:%x, hwln=%d, st=%p, flgs=%d\n", n, n->name[0], n->name[1], n->mtu, n->output, n->output_ip6, n->hwaddr[0], n->hwaddr[1], n->hwaddr[2], n->hwaddr[3], n->hwaddr[4], n->hwaddr[5], n->hwaddr_len, n->state, n->flags ); } */ bool _lwip_is_netif_up(void *n) { if (!n) { return false; } LOCK_TCPIP_CORE(); bool result = netif_is_up((struct netif*)n); UNLOCK_TCPIP_CORE(); return result; } /** * Called when a netif is removed (ZTS_EVENT_NETIF_INTERFACE_REMOVED) */ #if LWIP_NETIF_REMOVE_CALLBACK static void _netif_remove_callback(struct netif *n) { // Called from core, no need to lock if (!n || !n->state) { return; } VirtualTap *tap = (VirtualTap *)n->state; uint64_t mac = 0; memcpy(&mac, n->hwaddr, n->hwaddr_len); struct zts_netif_details *ifd = new zts_netif_details; ifd->nwid = tap->_nwid; memcpy(&(ifd->mac), n->hwaddr, n->hwaddr_len); ifd->mac = lwip_htonl(ifd->mac) >> 16; _enqueueEvent(ZTS_EVENT_NETIF_REMOVED, (void*)ifd); } #endif /** * Called when a link is brought up or down (ZTS_EVENT_NETIF_LINK_UP, ZTS_EVENT_NETIF_LINK_DOWN) */ #if LWIP_NETIF_LINK_CALLBACK static void _netif_link_callback(struct netif *n) { // Called from core, no need to lock if (!n || !n->state) { return; } VirtualTap *tap = (VirtualTap *)n->state; uint64_t mac = 0; memcpy(&mac, n->hwaddr, n->hwaddr_len); if (n->flags & NETIF_FLAG_LINK_UP) { struct zts_netif_details *ifd = new zts_netif_details; ifd->nwid = tap->_nwid; memcpy(&(ifd->mac), n->hwaddr, n->hwaddr_len); ifd->mac = lwip_htonl(ifd->mac) >> 16; _enqueueEvent(ZTS_EVENT_NETIF_LINK_UP, (void*)ifd); } if (n->flags & NETIF_FLAG_LINK_UP) { struct zts_netif_details *ifd = new zts_netif_details; ifd->nwid = tap->_nwid; memcpy(&(ifd->mac), n->hwaddr, n->hwaddr_len); ifd->mac = lwip_htonl(ifd->mac) >> 16; _enqueueEvent(ZTS_EVENT_NETIF_LINK_DOWN, (void*)ifd); } } #endif void _lwip_set_callbacks(struct netif *n) { if (!n) { return; } #if LWIP_NETIF_STATUS_CALLBACK // Not currently used netif_set_status_callback(n, netif_status_callback); #endif #if LWIP_NETIF_REMOVE_CALLBACK netif_set_remove_callback(n, netif_remove_callback); #endif #if LWIP_NETIF_LINK_CALLBACK netif_set_link_callback(n, netif_link_callback); #endif } static struct zts_netif_details *_lwip_prepare_netif_status_msg(struct netif *n) { if (!n || !n->state) { return NULL; } VirtualTap *tap = (VirtualTap*)(n->state); struct zts_netif_details *ifd = new zts_netif_details; ifd->nwid = tap->_nwid; ifd->mtu = n->mtu; memcpy(&(ifd->mac), n->hwaddr, n->hwaddr_len); ifd->mac = htonll(ifd->mac) >> 16; return ifd; } static err_t _netif_init4(struct netif *n) { if (!n || !n->state) { return ERR_IF; } // Called from netif code, no need to lock VirtualTap *tap = (VirtualTap*)(n->state); n->hwaddr_len = 6; n->name[0] = '4'; n->name[1] = 'a'+netifCount; n->linkoutput = _lwip_eth_tx; n->output = etharp_output; n->mtu = std::min(LWIP_MTU,(int)tap->_mtu); n->flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_ETHERNET | NETIF_FLAG_IGMP | NETIF_FLAG_MLD6 | NETIF_FLAG_LINK_UP | NETIF_FLAG_UP; n->hwaddr_len = sizeof(n->hwaddr); tap->_mac.copyTo(n->hwaddr, n->hwaddr_len); return ERR_OK; } static err_t _netif_init6(struct netif *n) { if (!n || !n->state) { return ERR_IF; } n->hwaddr_len = sizeof(n->hwaddr); VirtualTap *tap = (VirtualTap*)(n->state); tap->_mac.copyTo(n->hwaddr, n->hwaddr_len); // Called from netif code, no need to lock n->hwaddr_len = 6; n->name[0] = '6'; n->name[1] = 'a'+netifCount; n->linkoutput = _lwip_eth_tx; n->output_ip6 = ethip6_output; n->mtu = std::min(LWIP_MTU,(int)tap->_mtu); n->flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_ETHERNET | NETIF_FLAG_IGMP | NETIF_FLAG_MLD6 | NETIF_FLAG_LINK_UP | NETIF_FLAG_UP; return ERR_OK; } void _lwip_init_interface(void *tapref, const InetAddress &ip) { char ipbuf[INET6_ADDRSTRLEN]; char macbuf[ZTS_MAC_ADDRSTRLEN]; VirtualTap *vtap = (VirtualTap*)tapref; struct netif *n = NULL; bool isNewNetif = false; if (ip.isV4()) { if (vtap->netif4) { n = (struct netif*)vtap->netif4; } else { n = new struct netif; isNewNetif = true; netifCount++; } char nmbuf[INET6_ADDRSTRLEN]; static ip4_addr_t ip4, netmask, gw; IP4_ADDR(&gw,127,0,0,1); ip4.addr = *((u32_t *)ip.rawIpData()); netmask.addr = *((u32_t *)ip.netmask().rawIpData()); LOCK_TCPIP_CORE(); netif_add(n, &ip4, &netmask, &gw, (void*)vtap, _netif_init4, tcpip_input); vtap->netif4 = (void*)n; _enqueueEvent(ZTS_EVENT_NETIF_UP, (void*)_lwip_prepare_netif_status_msg(n)); UNLOCK_TCPIP_CORE(); snprintf(macbuf, ZTS_MAC_ADDRSTRLEN, "%02x:%02x:%02x:%02x:%02x:%02x", n->hwaddr[0], n->hwaddr[1], n->hwaddr[2], n->hwaddr[3], n->hwaddr[4], n->hwaddr[5]); DEBUG_INFO("initialized netif=%p as [mac=%s, addr=%s, nm=%s, tap=%p]",n, macbuf, ip.toString(ipbuf), ip.netmask().toString(nmbuf), vtap); } if (ip.isV6()) { if (vtap->netif6) { n = (struct netif*)vtap->netif6; } else { n = new struct netif; isNewNetif = true; netifCount++; } static ip6_addr_t ip6; memcpy(&(ip6.addr), ip.rawIpData(), sizeof(ip6.addr)); LOCK_TCPIP_CORE(); if (isNewNetif) { vtap->netif6 = (void*)n; netif_add(n, NULL, NULL, NULL, (void*)vtap, _netif_init6, ethernet_input); n->ip6_autoconfig_enabled = 1; vtap->_mac.copyTo(n->hwaddr, n->hwaddr_len); netif_create_ip6_linklocal_address(n, 1); netif_set_link_up(n); netif_set_up(n); netif_set_default(n); } netif_add_ip6_address(n,&ip6,NULL); n->output_ip6 = ethip6_output; UNLOCK_TCPIP_CORE(); _enqueueEvent(ZTS_EVENT_NETIF_UP, (void*)_lwip_prepare_netif_status_msg(n)); snprintf(macbuf, ZTS_MAC_ADDRSTRLEN, "%02x:%02x:%02x:%02x:%02x:%02x", n->hwaddr[0], n->hwaddr[1], n->hwaddr[2], n->hwaddr[3], n->hwaddr[4], n->hwaddr[5]); DEBUG_INFO("initialized netif=%p as [mac=%s, addr=%s, tap=%p]", n, macbuf, ip.toString(ipbuf), vtap); } } } // namespace ZeroTier