updated ZTO version

This commit is contained in:
Joseph Henry
2017-03-07 11:08:02 -08:00
parent ce42dd4815
commit 9016bc8385
132 changed files with 11902 additions and 10793 deletions

View File

@@ -64,37 +64,36 @@ Switch::Switch(const RuntimeEnvironment *renv) :
{
}
Switch::~Switch()
{
}
void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &fromAddr,const void *data,unsigned int len)
{
try {
const uint64_t now = RR->node->now();
SharedPtr<Path> path(RR->topology->getPath(localAddr,fromAddr));
path->received(now);
if (len == 13) {
/* LEGACY: before VERB_PUSH_DIRECT_PATHS, peers used broadcast
* announcements on the LAN to solve the 'same network problem.' We
* no longer send these, but we'll listen for them for a while to
* locate peers with versions <1.0.4. */
Address beaconAddr(reinterpret_cast<const char *>(data) + 8,5);
const Address beaconAddr(reinterpret_cast<const char *>(data) + 8,5);
if (beaconAddr == RR->identity.address())
return;
if (!RR->node->shouldUsePathForZeroTierTraffic(localAddr,fromAddr))
if (!RR->node->shouldUsePathForZeroTierTraffic(beaconAddr,localAddr,fromAddr))
return;
SharedPtr<Peer> peer(RR->topology->getPeer(beaconAddr));
const SharedPtr<Peer> peer(RR->topology->getPeer(beaconAddr));
if (peer) { // we'll only respond to beacons from known peers
if ((now - _lastBeaconResponse) >= 2500) { // limit rate of responses
_lastBeaconResponse = now;
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP);
outp.armor(peer->key(),true);
RR->node->putPacket(localAddr,fromAddr,outp.data(),outp.size());
outp.armor(peer->key(),true,path->nextOutgoingCounter());
path->send(RR,outp.data(),outp.size(),now);
}
}
} else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) { // min length check is important!
} else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) { // SECURITY: min length check is important since we do some C-style stuff below!
if (reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
// Handle fragment ----------------------------------------------------
@@ -102,25 +101,33 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
const Address destination(fragment.destination());
if (destination != RR->identity.address()) {
// Fragment is not for us, so try to relay it
#ifdef ZT_ENABLE_CLUSTER
const bool isClusterFrontplane = ((RR->cluster)&&(RR->cluster->isClusterPeerFrontplane(fromAddr)));
#else
const bool isClusterFrontplane = false;
#endif
if ( (!RR->topology->amRoot()) && (!path->trustEstablished(now)) && (!isClusterFrontplane) )
return;
if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
fragment.incrementHops();
// Note: we don't bother initiating NAT-t for fragments, since heads will set that off.
// It wouldn't hurt anything, just redundant and unnecessary.
SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
if ((!relayTo)||(!relayTo->send(fragment.data(),fragment.size(),now))) {
if ((!relayTo)||(!relayTo->sendDirect(fragment.data(),fragment.size(),now,false))) {
#ifdef ZT_ENABLE_CLUSTER
if (RR->cluster) {
RR->cluster->sendViaCluster(Address(),destination,fragment.data(),fragment.size(),false);
if ((RR->cluster)&&(!isClusterFrontplane)) {
RR->cluster->relayViaCluster(Address(),destination,fragment.data(),fragment.size(),false);
return;
}
#endif
// Don't know peer or no direct path -- so relay via root server
relayTo = RR->topology->getBestRoot();
// Don't know peer or no direct path -- so relay via someone upstream
relayTo = RR->topology->getUpstreamPeer();
if (relayTo)
relayTo->send(fragment.data(),fragment.size(),now);
relayTo->sendDirect(fragment.data(),fragment.size(),now,true);
}
} else {
TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
@@ -164,7 +171,7 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
for(unsigned int f=1;f<totalFragments;++f)
rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength());
if (rq->frag0.tryDecode(RR,false)) {
if (rq->frag0.tryDecode(RR)) {
rq->timestamp = 0; // packet decoded, free entry
} else {
rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something
@@ -178,60 +185,100 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
} else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) { // min length check is important!
// Handle packet head -------------------------------------------------
// See packet format in Packet.hpp to understand this
const uint64_t packetId = (
(((uint64_t)reinterpret_cast<const uint8_t *>(data)[0]) << 56) |
(((uint64_t)reinterpret_cast<const uint8_t *>(data)[1]) << 48) |
(((uint64_t)reinterpret_cast<const uint8_t *>(data)[2]) << 40) |
(((uint64_t)reinterpret_cast<const uint8_t *>(data)[3]) << 32) |
(((uint64_t)reinterpret_cast<const uint8_t *>(data)[4]) << 24) |
(((uint64_t)reinterpret_cast<const uint8_t *>(data)[5]) << 16) |
(((uint64_t)reinterpret_cast<const uint8_t *>(data)[6]) << 8) |
((uint64_t)reinterpret_cast<const uint8_t *>(data)[7])
);
const Address destination(reinterpret_cast<const uint8_t *>(data) + 8,ZT_ADDRESS_LENGTH);
const Address source(reinterpret_cast<const uint8_t *>(data) + 13,ZT_ADDRESS_LENGTH);
// Catch this and toss it -- it would never work, but it could happen if we somehow
// mistakenly guessed an address we're bound to as a destination for another peer.
if (source == RR->identity.address())
return;
//TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());
#ifdef ZT_ENABLE_CLUSTER
if ( (source == RR->identity.address()) && ((!RR->cluster)||(!RR->cluster->isClusterPeerFrontplane(fromAddr))) )
return;
#else
if (source == RR->identity.address())
return;
#endif
if (destination != RR->identity.address()) {
if ( (!RR->topology->amRoot()) && (!path->trustEstablished(now)) && (source != RR->identity.address()) )
return;
Packet packet(data,len);
// Packet is not for us, so try to relay it
if (packet.hops() < ZT_RELAY_MAX_HOPS) {
#ifdef ZT_ENABLE_CLUSTER
if (source != RR->identity.address()) // don't increment hops for cluster frontplane relays
packet.incrementHops();
#else
packet.incrementHops();
#endif
SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
if ((relayTo)&&((relayTo->send(packet.data(),packet.size(),now)))) {
Mutex::Lock _l(_lastUniteAttempt_m);
uint64_t &luts = _lastUniteAttempt[_LastUniteKey(source,destination)];
if ((now - luts) >= ZT_MIN_UNITE_INTERVAL) {
luts = now;
unite(source,destination);
if ((relayTo)&&(relayTo->sendDirect(packet.data(),packet.size(),now,false))) {
if ((source != RR->identity.address())&&(_shouldUnite(now,source,destination))) { // don't send RENDEZVOUS for cluster frontplane relays
const InetAddress *hintToSource = (InetAddress *)0;
const InetAddress *hintToDest = (InetAddress *)0;
InetAddress destV4,destV6;
InetAddress sourceV4,sourceV6;
relayTo->getRendezvousAddresses(now,destV4,destV6);
const SharedPtr<Peer> sourcePeer(RR->topology->getPeer(source));
if (sourcePeer) {
sourcePeer->getRendezvousAddresses(now,sourceV4,sourceV6);
if ((destV6)&&(sourceV6)) {
hintToSource = &destV6;
hintToDest = &sourceV6;
} else if ((destV4)&&(sourceV4)) {
hintToSource = &destV4;
hintToDest = &sourceV4;
}
if ((hintToSource)&&(hintToDest)) {
unsigned int alt = (unsigned int)RR->node->prng() & 1; // randomize which hint we send first for obscure NAT-t reasons
const unsigned int completed = alt + 2;
while (alt != completed) {
if ((alt & 1) == 0) {
Packet outp(source,RR->identity.address(),Packet::VERB_RENDEZVOUS);
outp.append((uint8_t)0);
destination.appendTo(outp);
outp.append((uint16_t)hintToSource->port());
if (hintToSource->ss_family == AF_INET6) {
outp.append((uint8_t)16);
outp.append(hintToSource->rawIpData(),16);
} else {
outp.append((uint8_t)4);
outp.append(hintToSource->rawIpData(),4);
}
send(outp,true);
} else {
Packet outp(destination,RR->identity.address(),Packet::VERB_RENDEZVOUS);
outp.append((uint8_t)0);
source.appendTo(outp);
outp.append((uint16_t)hintToDest->port());
if (hintToDest->ss_family == AF_INET6) {
outp.append((uint8_t)16);
outp.append(hintToDest->rawIpData(),16);
} else {
outp.append((uint8_t)4);
outp.append(hintToDest->rawIpData(),4);
}
send(outp,true);
}
++alt;
}
}
}
}
} else {
#ifdef ZT_ENABLE_CLUSTER
if (RR->cluster) {
bool shouldUnite;
{
Mutex::Lock _l(_lastUniteAttempt_m);
uint64_t &luts = _lastUniteAttempt[_LastUniteKey(source,destination)];
shouldUnite = ((now - luts) >= ZT_MIN_UNITE_INTERVAL);
if (shouldUnite)
luts = now;
}
RR->cluster->sendViaCluster(source,destination,packet.data(),packet.size(),shouldUnite);
if ((RR->cluster)&&(source != RR->identity.address())) {
RR->cluster->relayViaCluster(source,destination,packet.data(),packet.size(),_shouldUnite(now,source,destination));
return;
}
#endif
relayTo = RR->topology->getBestRoot(&source,1,true);
relayTo = RR->topology->getUpstreamPeer(&source,1,true);
if (relayTo)
relayTo->send(packet.data(),packet.size(),now);
relayTo->sendDirect(packet.data(),packet.size(),now,true);
}
} else {
TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet.source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
@@ -239,6 +286,17 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
} else if ((reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_IDX_FLAGS] & ZT_PROTO_FLAG_FRAGMENTED) != 0) {
// Packet is the head of a fragmented packet series
const uint64_t packetId = (
(((uint64_t)reinterpret_cast<const uint8_t *>(data)[0]) << 56) |
(((uint64_t)reinterpret_cast<const uint8_t *>(data)[1]) << 48) |
(((uint64_t)reinterpret_cast<const uint8_t *>(data)[2]) << 40) |
(((uint64_t)reinterpret_cast<const uint8_t *>(data)[3]) << 32) |
(((uint64_t)reinterpret_cast<const uint8_t *>(data)[4]) << 24) |
(((uint64_t)reinterpret_cast<const uint8_t *>(data)[5]) << 16) |
(((uint64_t)reinterpret_cast<const uint8_t *>(data)[6]) << 8) |
((uint64_t)reinterpret_cast<const uint8_t *>(data)[7])
);
Mutex::Lock _l(_rxQueue_m);
RXQueueEntry *const rq = _findRXQueueEntry(now,packetId);
@@ -248,7 +306,7 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
rq->timestamp = now;
rq->packetId = packetId;
rq->frag0.init(data,len,localAddr,fromAddr,now);
rq->frag0.init(data,len,path,now);
rq->totalFragments = 0;
rq->haveFragments = 1;
rq->complete = false;
@@ -259,24 +317,24 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
// We have all fragments -- assemble and process full Packet
//TRACE("packet %.16llx is complete, assembling and processing...",pid);
rq->frag0.init(data,len,localAddr,fromAddr,now);
rq->frag0.init(data,len,path,now);
for(unsigned int f=1;f<rq->totalFragments;++f)
rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength());
if (rq->frag0.tryDecode(RR,false)) {
if (rq->frag0.tryDecode(RR)) {
rq->timestamp = 0; // packet decoded, free entry
} else {
rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something
}
} else {
// Still waiting on more fragments, but keep the head
rq->frag0.init(data,len,localAddr,fromAddr,now);
rq->frag0.init(data,len,path,now);
}
} // else this is a duplicate head, ignore
} else {
// Packet is unfragmented, so just process it
IncomingPacket packet(data,len,localAddr,fromAddr,now);
if (!packet.tryDecode(RR,false)) {
IncomingPacket packet(data,len,path,now);
if (!packet.tryDecode(RR)) {
Mutex::Lock _l(_rxQueue_m);
RXQueueEntry *rq = &(_rxQueue[ZT_RX_QUEUE_SIZE - 1]);
unsigned long i = ZT_RX_QUEUE_SIZE - 1;
@@ -286,7 +344,7 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
rq = tmp;
}
rq->timestamp = now;
rq->packetId = packetId;
rq->packetId = packet.packetId();
rq->frag0 = packet;
rq->totalFragments = 1;
rq->haveFragments = 1;
@@ -309,29 +367,17 @@ void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,c
if (!network->hasConfig())
return;
// Sanity check -- bridge loop? OS problem?
if (to == network->mac())
return;
// Check to make sure this protocol is allowed on this network
if (!network->config().permitsEtherType(etherType)) {
TRACE("%.16llx: ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id());
return;
}
// Check if this packet is from someone other than the tap -- i.e. bridged in
bool fromBridged = false;
if (from != network->mac()) {
bool fromBridged;
if ((fromBridged = (from != network->mac()))) {
if (!network->config().permitsBridging(RR->identity.address())) {
TRACE("%.16llx: %s -> %s %s not forwarded, bridging disabled or this peer not a bridge",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
return;
}
fromBridged = true;
}
if (to.isMulticast()) {
// Destination is a multicast address (including broadcast)
MulticastGroup mg(to,0);
MulticastGroup multicastGroup(to,0);
if (to.isBroadcast()) {
if ( (etherType == ZT_ETHERTYPE_ARP) && (len >= 28) && ((((const uint8_t *)data)[2] == 0x08)&&(((const uint8_t *)data)[3] == 0x00)&&(((const uint8_t *)data)[4] == 6)&&(((const uint8_t *)data)[5] == 4)&&(((const uint8_t *)data)[7] == 0x01)) ) {
@@ -344,7 +390,7 @@ void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,c
* them into multicasts by stuffing the IP address being queried into
* the 32-bit ADI field. In practice this uses our multicast pub/sub
* system to implement a kind of extended/distributed ARP table. */
mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0));
multicastGroup = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0));
} else if (!network->config().enableBroadcast()) {
// Don't transmit broadcasts if this network doesn't want them
TRACE("%.16llx: dropped broadcast since ff:ff:ff:ff:ff:ff is not enabled",network->id());
@@ -434,68 +480,85 @@ void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,c
} // else no NDP emulation
}
// Check this after NDP emulation, since that has to be allowed in exactly this case
if (network->config().multicastLimit == 0) {
TRACE("%.16llx: dropped multicast: not allowed on network",network->id());
return;
}
/* Learn multicast groups for bridged-in hosts.
* Note that some OSes, most notably Linux, do this for you by learning
* multicast addresses on bridge interfaces and subscribing each slave.
* But in that case this does no harm, as the sets are just merged. */
if (fromBridged)
network->learnBridgedMulticastGroup(mg,RR->node->now());
network->learnBridgedMulticastGroup(multicastGroup,RR->node->now());
//TRACE("%.16llx: MULTICAST %s -> %s %s %u",network->id(),from.toString().c_str(),mg.toString().c_str(),etherTypeName(etherType),len);
//TRACE("%.16llx: MULTICAST %s -> %s %s %u",network->id(),from.toString().c_str(),multicastGroup.toString().c_str(),etherTypeName(etherType),len);
// First pass sets noTee to false, but noTee is set to true in OutboundMulticast to prevent duplicates.
if (!network->filterOutgoingPacket(false,RR->identity.address(),Address(),from,to,(const uint8_t *)data,len,etherType,vlanId)) {
TRACE("%.16llx: %s -> %s %s packet not sent: filterOutgoingPacket() returned false",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
return;
}
RR->mc->send(
((!network->config().isPublic())&&(network->config().com)) ? &(network->config().com) : (const CertificateOfMembership *)0,
network->config().multicastLimit,
RR->node->now(),
network->id(),
network->config().disableCompression(),
network->config().activeBridges(),
mg,
multicastGroup,
(fromBridged) ? from : MAC(),
etherType,
data,
len);
return;
}
if (to[0] == MAC::firstOctetForNetwork(network->id())) {
} else if (to == network->mac()) {
// Destination is this node, so just reinject it
RR->node->putFrame(network->id(),network->userPtr(),from,to,etherType,vlanId,data,len);
} else if (to[0] == MAC::firstOctetForNetwork(network->id())) {
// Destination is another ZeroTier peer on the same network
Address toZT(to.toAddress(network->id())); // since in-network MACs are derived from addresses and network IDs, we can reverse this
SharedPtr<Peer> toPeer(RR->topology->getPeer(toZT));
const bool includeCom = ( (network->config().isPrivate()) && (network->config().com) && ((!toPeer)||(toPeer->needsOurNetworkMembershipCertificate(network->id(),RR->node->now(),true))) );
if ((fromBridged)||(includeCom)) {
if (!network->filterOutgoingPacket(false,RR->identity.address(),toZT,from,to,(const uint8_t *)data,len,etherType,vlanId)) {
TRACE("%.16llx: %s -> %s %s packet not sent: filterOutgoingPacket() returned false",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
return;
}
if (fromBridged) {
Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME);
outp.append(network->id());
if (includeCom) {
outp.append((unsigned char)0x01); // 0x01 -- COM included
network->config().com.serialize(outp);
} else {
outp.append((unsigned char)0x00);
}
outp.append((unsigned char)0x00);
to.appendTo(outp);
from.appendTo(outp);
outp.append((uint16_t)etherType);
outp.append(data,len);
outp.compress();
send(outp,true,network->id());
if (!network->config().disableCompression())
outp.compress();
send(outp,true);
} else {
Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME);
outp.append(network->id());
outp.append((uint16_t)etherType);
outp.append(data,len);
outp.compress();
send(outp,true,network->id());
if (!network->config().disableCompression())
outp.compress();
send(outp,true);
}
//TRACE("%.16llx: UNICAST: %s -> %s etherType==%s(%.4x) vlanId==%u len==%u fromBridged==%d includeCom==%d",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),etherType,vlanId,len,(int)fromBridged,(int)includeCom);
return;
}
{
} else {
// Destination is bridged behind a remote peer
// We filter with a NULL destination ZeroTier address first. Filtrations
// for each ZT destination are also done below. This is the same rationale
// and design as for multicast.
if (!network->filterOutgoingPacket(false,RR->identity.address(),Address(),from,to,(const uint8_t *)data,len,etherType,vlanId)) {
TRACE("%.16llx: %s -> %s %s packet not sent: filterOutgoingPacket() returned false",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
return;
}
Address bridges[ZT_MAX_BRIDGE_SPAM];
unsigned int numBridges = 0;
@@ -529,117 +592,34 @@ void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,c
}
for(unsigned int b=0;b<numBridges;++b) {
SharedPtr<Peer> bridgePeer(RR->topology->getPeer(bridges[b]));
Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME);
outp.append(network->id());
if ( (network->config().isPrivate()) && (network->config().com) && ((!bridgePeer)||(bridgePeer->needsOurNetworkMembershipCertificate(network->id(),RR->node->now(),true))) ) {
outp.append((unsigned char)0x01); // 0x01 -- COM included
network->config().com.serialize(outp);
if (network->filterOutgoingPacket(true,RR->identity.address(),bridges[b],from,to,(const uint8_t *)data,len,etherType,vlanId)) {
Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME);
outp.append(network->id());
outp.append((uint8_t)0x00);
to.appendTo(outp);
from.appendTo(outp);
outp.append((uint16_t)etherType);
outp.append(data,len);
if (!network->config().disableCompression())
outp.compress();
send(outp,true);
} else {
outp.append((unsigned char)0);
TRACE("%.16llx: %s -> %s %s packet not sent: filterOutgoingPacket() returned false",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
}
to.appendTo(outp);
from.appendTo(outp);
outp.append((uint16_t)etherType);
outp.append(data,len);
outp.compress();
send(outp,true,network->id());
}
}
}
void Switch::send(const Packet &packet,bool encrypt,uint64_t nwid)
void Switch::send(Packet &packet,bool encrypt)
{
if (packet.destination() == RR->identity.address()) {
TRACE("BUG: caught attempt to send() to self, ignored");
return;
}
//TRACE(">> %s to %s (%u bytes, encrypt==%d, nwid==%.16llx)",Packet::verbString(packet.verb()),packet.destination().toString().c_str(),packet.size(),(int)encrypt,nwid);
if (!_trySend(packet,encrypt,nwid)) {
if (!_trySend(packet,encrypt)) {
Mutex::Lock _l(_txQueue_m);
_txQueue.push_back(TXQueueEntry(packet.destination(),RR->node->now(),packet,encrypt,nwid));
}
}
bool Switch::unite(const Address &p1,const Address &p2)
{
if ((p1 == RR->identity.address())||(p2 == RR->identity.address()))
return false;
SharedPtr<Peer> p1p = RR->topology->getPeer(p1);
if (!p1p)
return false;
SharedPtr<Peer> p2p = RR->topology->getPeer(p2);
if (!p2p)
return false;
const uint64_t now = RR->node->now();
std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now));
if ((!(cg.first))||(cg.first.ipScope() != cg.second.ipScope()))
return false;
TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
/* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
* P2 in randomized order in terms of which gets sent first. This is done
* since in a few cases NAT-t can be sensitive to slight timing differences
* in terms of when the two peers initiate. Normally this is accounted for
* by the nearly-simultaneous RENDEZVOUS kickoff from the relay, but
* given that relay are hosted on cloud providers this can in some
* cases have a few ms of latency between packet departures. By randomizing
* the order we make each attempted NAT-t favor one or the other going
* first, meaning if it doesn't succeed the first time it might the second
* and so forth. */
unsigned int alt = (unsigned int)RR->node->prng() & 1;
unsigned int completed = alt + 2;
while (alt != completed) {
if ((alt & 1) == 0) {
// Tell p1 where to find p2.
Packet outp(p1,RR->identity.address(),Packet::VERB_RENDEZVOUS);
outp.append((unsigned char)0);
p2.appendTo(outp);
outp.append((uint16_t)cg.first.port());
if (cg.first.isV6()) {
outp.append((unsigned char)16);
outp.append(cg.first.rawIpData(),16);
} else {
outp.append((unsigned char)4);
outp.append(cg.first.rawIpData(),4);
}
outp.armor(p1p->key(),true);
p1p->send(outp.data(),outp.size(),now);
} else {
// Tell p2 where to find p1.
Packet outp(p2,RR->identity.address(),Packet::VERB_RENDEZVOUS);
outp.append((unsigned char)0);
p1.appendTo(outp);
outp.append((uint16_t)cg.second.port());
if (cg.second.isV6()) {
outp.append((unsigned char)16);
outp.append(cg.second.rawIpData(),16);
} else {
outp.append((unsigned char)4);
outp.append(cg.second.rawIpData(),4);
}
outp.armor(p2p->key(),true);
p2p->send(outp.data(),outp.size(),now);
}
++alt; // counts up and also flips LSB
}
return true;
}
void Switch::rendezvous(const SharedPtr<Peer> &peer,const InetAddress &localAddr,const InetAddress &atAddr)
{
TRACE("sending NAT-t message to %s(%s)",peer->address().toString().c_str(),atAddr.toString().c_str());
const uint64_t now = RR->node->now();
peer->sendHELLO(localAddr,atAddr,now,2); // first attempt: send low-TTL packet to 'open' local NAT
{
Mutex::Lock _l(_contactQueue_m);
_contactQueue.push_back(ContactQueueEntry(peer,now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY,localAddr,atAddr));
_txQueue.push_back(TXQueueEntry(packet.destination(),RR->node->now(),packet,encrypt));
}
}
@@ -673,7 +653,7 @@ void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
while (i) {
RXQueueEntry *rq = &(_rxQueue[--i]);
if ((rq->timestamp)&&(rq->complete)) {
if (rq->frag0.tryDecode(RR,false))
if (rq->frag0.tryDecode(RR))
rq->timestamp = 0;
}
}
@@ -683,7 +663,7 @@ void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
Mutex::Lock _l(_txQueue_m);
for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
if (txi->dest == peer->address()) {
if (_trySend(txi->packet,txi->encrypt,txi->nwid))
if (_trySend(txi->packet,txi->encrypt))
_txQueue.erase(txi++);
else ++txi;
} else ++txi;
@@ -695,42 +675,6 @@ unsigned long Switch::doTimerTasks(uint64_t now)
{
unsigned long nextDelay = 0xffffffff; // ceiling delay, caller will cap to minimum
{ // Iterate through NAT traversal strategies for entries in contact queue
Mutex::Lock _l(_contactQueue_m);
for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
if (now >= qi->fireAtTime) {
if (!qi->peer->pushDirectPaths(qi->localAddr,qi->inaddr,now,true,false))
qi->peer->sendHELLO(qi->localAddr,qi->inaddr,now);
_contactQueue.erase(qi++);
continue;
/* Old symmetric NAT buster code, obsoleted by port prediction alg in SelfAwareness but left around for now in case we revert
if (qi->strategyIteration == 0) {
// First strategy: send packet directly to destination
qi->peer->sendHELLO(qi->localAddr,qi->inaddr,now);
} else if (qi->strategyIteration <= 3) {
// Strategies 1-3: try escalating ports for symmetric NATs that remap sequentially
InetAddress tmpaddr(qi->inaddr);
int p = (int)qi->inaddr.port() + qi->strategyIteration;
if (p > 65535)
p -= 64511;
tmpaddr.setPort((unsigned int)p);
qi->peer->sendHELLO(qi->localAddr,tmpaddr,now);
} else {
// All strategies tried, expire entry
_contactQueue.erase(qi++);
continue;
}
++qi->strategyIteration;
qi->fireAtTime = now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY;
nextDelay = std::min(nextDelay,(unsigned long)ZT_NAT_T_TACTICAL_ESCALATION_DELAY);
*/
} else {
nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
}
++qi; // if qi was erased, loop will have continued before here
}
}
{ // Retry outstanding WHOIS requests
Mutex::Lock _l(_outstandingWhoisRequests_m);
Hashtable< Address,WhoisRequest >::Iterator i(_outstandingWhoisRequests);
@@ -758,7 +702,7 @@ unsigned long Switch::doTimerTasks(uint64_t now)
{ // Time out TX queue packets that never got WHOIS lookups or other info.
Mutex::Lock _l(_txQueue_m);
for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
if (_trySend(txi->packet,txi->encrypt,txi->nwid))
if (_trySend(txi->packet,txi->encrypt))
_txQueue.erase(txi++);
else if ((now - txi->creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
TRACE("TX %s -> %s timed out",txi->packet.source().toString().c_str(),txi->packet.destination().toString().c_str());
@@ -781,106 +725,149 @@ unsigned long Switch::doTimerTasks(uint64_t now)
return nextDelay;
}
Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
bool Switch::_shouldUnite(const uint64_t now,const Address &source,const Address &destination)
{
SharedPtr<Peer> root(RR->topology->getBestRoot(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
if (root) {
Packet outp(root->address(),RR->identity.address(),Packet::VERB_WHOIS);
addr.appendTo(outp);
outp.armor(root->key(),true);
if (root->send(outp.data(),outp.size(),RR->node->now()))
return root->address();
}
return Address();
}
bool Switch::_trySend(const Packet &packet,bool encrypt,uint64_t nwid)
{
SharedPtr<Peer> peer(RR->topology->getPeer(packet.destination()));
if (peer) {
const uint64_t now = RR->node->now();
SharedPtr<Network> network;
if (nwid) {
network = RR->node->network(nwid);
if ((!network)||(!network->hasConfig()))
return false; // we probably just left this network, let its packets die
}
Path *viaPath = peer->getBestPath(now);
SharedPtr<Peer> relay;
if (!viaPath) {
if (network) {
unsigned int bestq = ~((unsigned int)0); // max unsigned int since quality is lower==better
unsigned int ptr = 0;
for(;;) {
const Address raddr(network->config().nextRelay(ptr));
if (raddr) {
SharedPtr<Peer> rp(RR->topology->getPeer(raddr));
if (rp) {
const unsigned int q = rp->relayQuality(now);
if (q < bestq) {
bestq = q;
rp.swap(relay);
}
}
} else break;
}
}
if (!relay)
relay = RR->topology->getBestRoot();
if ( (!relay) || (!(viaPath = relay->getBestPath(now))) )
return false;
}
// viaPath will not be null if we make it here
// Push possible direct paths to us if we are relaying
if (relay) {
peer->pushDirectPaths(viaPath->localAddress(),viaPath->address(),now,false,( (network)&&(network->isAllowed(peer)) ));
viaPath->sent(now);
}
Packet tmp(packet);
unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
tmp.setFragmented(chunkSize < tmp.size());
const uint64_t trustedPathId = RR->topology->getOutboundPathTrust(viaPath->address());
if (trustedPathId) {
tmp.setTrusted(trustedPathId);
} else {
tmp.armor(peer->key(),encrypt);
}
if (viaPath->send(RR,tmp.data(),chunkSize,now)) {
if (chunkSize < tmp.size()) {
// Too big for one packet, fragment the rest
unsigned int fragStart = chunkSize;
unsigned int remaining = tmp.size() - chunkSize;
unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
++fragsRemaining;
unsigned int totalFragments = fragsRemaining + 1;
for(unsigned int fno=1;fno<totalFragments;++fno) {
chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
Packet::Fragment frag(tmp,fragStart,chunkSize,fno,totalFragments);
viaPath->send(RR,frag.data(),frag.size(),now);
fragStart += chunkSize;
remaining -= chunkSize;
}
}
return true;
}
} else {
requestWhois(packet.destination());
Mutex::Lock _l(_lastUniteAttempt_m);
uint64_t &ts = _lastUniteAttempt[_LastUniteKey(source,destination)];
if ((now - ts) >= ZT_MIN_UNITE_INTERVAL) {
ts = now;
return true;
}
return false;
}
Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
{
SharedPtr<Peer> upstream(RR->topology->getUpstreamPeer(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
if (upstream) {
Packet outp(upstream->address(),RR->identity.address(),Packet::VERB_WHOIS);
addr.appendTo(outp);
RR->node->expectReplyTo(outp.packetId());
send(outp,true);
}
return Address();
}
bool Switch::_trySend(Packet &packet,bool encrypt)
{
SharedPtr<Path> viaPath;
const uint64_t now = RR->node->now();
const Address destination(packet.destination());
#ifdef ZT_ENABLE_CLUSTER
uint64_t clusterMostRecentTs = 0;
int clusterMostRecentMemberId = -1;
uint8_t clusterPeerSecret[ZT_PEER_SECRET_KEY_LENGTH];
if (RR->cluster)
clusterMostRecentMemberId = RR->cluster->checkSendViaCluster(destination,clusterMostRecentTs,clusterPeerSecret);
#endif
const SharedPtr<Peer> peer(RR->topology->getPeer(destination));
if (peer) {
/* First get the best path, and if it's dead (and this is not a root)
* we attempt to re-activate that path but this packet will flow
* upstream. If the path comes back alive, it will be used in the future.
* For roots we don't do the alive check since roots are not required
* to send heartbeats "down" and because we have to at least try to
* go somewhere. */
viaPath = peer->getBestPath(now,false);
if ( (viaPath) && (!viaPath->alive(now)) && (!RR->topology->isUpstream(peer->identity())) ) {
#ifdef ZT_ENABLE_CLUSTER
if ((clusterMostRecentMemberId < 0)||(viaPath->lastIn() > clusterMostRecentTs)) {
#endif
if ((now - viaPath->lastOut()) > std::max((now - viaPath->lastIn()) * 4,(uint64_t)ZT_PATH_MIN_REACTIVATE_INTERVAL)) {
peer->attemptToContactAt(viaPath->localAddress(),viaPath->address(),now,false,viaPath->nextOutgoingCounter());
viaPath->sent(now);
}
#ifdef ZT_ENABLE_CLUSTER
}
#endif
viaPath.zero();
}
#ifdef ZT_ENABLE_CLUSTER
if (clusterMostRecentMemberId >= 0) {
if ((viaPath)&&(viaPath->lastIn() < clusterMostRecentTs))
viaPath.zero();
} else if (!viaPath) {
#else
if (!viaPath) {
#endif
peer->tryMemorizedPath(now); // periodically attempt memorized or statically defined paths, if any are known
const SharedPtr<Peer> relay(RR->topology->getUpstreamPeer());
if ( (!relay) || (!(viaPath = relay->getBestPath(now,false))) ) {
if (!(viaPath = peer->getBestPath(now,true)))
return false;
}
#ifdef ZT_ENABLE_CLUSTER
}
#else
}
#endif
} else {
#ifdef ZT_ENABLE_CLUSTER
if (clusterMostRecentMemberId < 0) {
#else
requestWhois(destination);
return false; // if we are not in cluster mode, there is no way we can send without knowing the peer directly
#endif
#ifdef ZT_ENABLE_CLUSTER
}
#endif
}
unsigned int chunkSize = std::min(packet.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
packet.setFragmented(chunkSize < packet.size());
#ifdef ZT_ENABLE_CLUSTER
const uint64_t trustedPathId = (viaPath) ? RR->topology->getOutboundPathTrust(viaPath->address()) : 0;
if (trustedPathId) {
packet.setTrusted(trustedPathId);
} else {
packet.armor((clusterMostRecentMemberId >= 0) ? clusterPeerSecret : peer->key(),encrypt,(viaPath) ? viaPath->nextOutgoingCounter() : 0);
}
#else
const uint64_t trustedPathId = RR->topology->getOutboundPathTrust(viaPath->address());
if (trustedPathId) {
packet.setTrusted(trustedPathId);
} else {
packet.armor(peer->key(),encrypt,viaPath->nextOutgoingCounter());
}
#endif
#ifdef ZT_ENABLE_CLUSTER
if ( ((viaPath)&&(viaPath->send(RR,packet.data(),chunkSize,now))) || ((clusterMostRecentMemberId >= 0)&&(RR->cluster->sendViaCluster(clusterMostRecentMemberId,destination,packet.data(),chunkSize))) ) {
#else
if (viaPath->send(RR,packet.data(),chunkSize,now)) {
#endif
if (chunkSize < packet.size()) {
// Too big for one packet, fragment the rest
unsigned int fragStart = chunkSize;
unsigned int remaining = packet.size() - chunkSize;
unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
++fragsRemaining;
const unsigned int totalFragments = fragsRemaining + 1;
for(unsigned int fno=1;fno<totalFragments;++fno) {
chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
Packet::Fragment frag(packet,fragStart,chunkSize,fno,totalFragments);
#ifdef ZT_ENABLE_CLUSTER
if (viaPath)
viaPath->send(RR,frag.data(),frag.size(),now);
else if (clusterMostRecentMemberId >= 0)
RR->cluster->sendViaCluster(clusterMostRecentMemberId,destination,frag.data(),frag.size());
#else
viaPath->send(RR,frag.data(),frag.size(),now);
#endif
fragStart += chunkSize;
remaining -= chunkSize;
}
}
}
return true;
}
} // namespace ZeroTier