split stack driver sections

This commit is contained in:
Joseph Henry
2016-11-01 15:38:09 -07:00
parent af705f40fe
commit 564531042d
19 changed files with 2142 additions and 1937 deletions

View File

@@ -0,0 +1,568 @@
/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2015 ZeroTier, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#if defined(SDK_PICOTCP)
#include "tap.hpp"
#include "picotcp.hpp"
#include "pico_stack.h"
#include "pico_ipv4.h"
#include "pico_icmp4.h"
#include "pico_dev_tap.h"
#include "pico_protocol.h"
#include "pico_socket.h"
namespace ZeroTier {
// Reference to the tap interface
// This is needed due to the fact that there's a lot going on in the tap interface
// that needs to be updated on each of the network stack's callbacks and not every
// network stack provides a mechanism for storing a reference to the tap.
//
// In future releases this will be replaced with a new structure of static pointers that
// will make it easier to maintain multiple active tap interfaces
NetconEthernetTap *picotap;
struct pico_device picodev;
int pico_eth_send(struct pico_device *dev, void *buf, int len);
int pico_eth_poll(struct pico_device *dev, int loop_score);
// Initialize network stack's interfaces and assign addresses
void pico_init_interface(NetconEthernetTap *tap, const InetAddress &ip)
{
picoTCP_stack *stack = tap->picostack;
DEBUG_INFO();
if (std::find(picotap->_ips.begin(),picotap->_ips.end(),ip) == picotap->_ips.end()) {
picotap->_ips.push_back(ip);
std::sort(picotap->_ips.begin(),picotap->_ips.end());
#if defined(SDK_IPV4)
if(ip.isV4())
{
struct pico_ip4 ipaddr, netmask;
ipaddr.addr = *((u32_t *)ip.rawIpData());
netmask.addr = *((u32_t *)ip.netmask().rawIpData());
uint8_t mac[PICO_SIZE_ETH];
picotap->_mac.copyTo(mac, PICO_SIZE_ETH);
DEBUG_ATTN("mac = %s", picotap->_mac.toString().c_str());
picodev.send = pico_eth_send; // tx
picodev.poll = pico_eth_poll; // rx
picodev.mtu = picotap->_mtu;
if( 0 != stack->__pico_device_init(&(picodev), "p0", mac)) {
DEBUG_ERROR("device init failed");
return;
}
stack->__pico_ipv4_link_add(&(picodev), ipaddr, netmask);
// DEBUG_INFO("device initialized as ipv4_addr = %s", ipv4_str);
// picostack->__pico_icmp4_ping("10.8.8.1", 20, 1000, 10000, 64, cb_ping);
}
#elif defined(SDK_IPV6)
if(ip.isV6())
{
struct pico_ip6 ipaddr, netmask;
char ipv6_str[INET6_ADDRSTRLEN], nm_str[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, ip.rawIpData(), ipv6_str, INET6_ADDRSTRLEN);
inet_ntop(AF_INET6, ip.netmask().rawIpData(), nm_str, INET6_ADDRSTRLEN);
stack->__pico_string_to_ipv6(ipv6_str, ipaddr.addr);
stack->__pico_string_to_ipv6(nm_str, netmask.addr);
stack->__pico_ipv6_link_add(&(picodev), ipaddr, netmask);
picodev.send = pico_eth_send; // tx
picodev.poll = pico_eth_poll; // rx
uint8_t mac[PICO_SIZE_ETH];
picotap->_mac.copyTo(mac, PICO_SIZE_ETH);
DEBUG_ATTN("mac = %s", picotap->_mac.toString().c_str());
if( 0 != stack->__pico_device_init(&(picodev), "p0", mac)) {
DEBUG_ERROR("device init failed");
return;
}
DEBUG_ATTN("device initialized as ipv6_addr = %s", ipv6_str);
}
#endif
}
}
// I/O thread loop
void pico_loop(NetconEthernetTap *tap)
{
DEBUG_INFO();
while(tap->_run)
{
tap->_phy.poll((unsigned long)std::min(500,1000));
usleep(1000);
tap->picostack->__pico_stack_tick();
}
}
// RX packets from network onto internal buffer
// Also notifies the tap service that data can be read, buffer will be emptied by pico_handleRead()
void pico_cb_tcp_read(NetconEthernetTap *tap, struct pico_socket *s)
{
// TODO: Verify
DEBUG_INFO();
Connection *conn = tap->getConnection(s);
if(conn) {
int r;
do {
//int avail = DEFAULT_TCP_RX_BUF_SZ - conn->rxsz;
//if(avail) {
r = tap->picostack->__pico_socket_read(s, conn->rxbuf + (conn->rxsz), ZT_MAX_MTU);
tap->_phy.setNotifyWritable(conn->sock, true);
DEBUG_INFO("read=%d", r);
if (r > 0) {
conn->rxsz += r;
}
//}
if (r < 0) {
exit(5);
}
}
while(r > 0);
return;
}
DEBUG_ERROR("invalid connection");
}
// TX packets from internal buffer to network
void pico_cb_tcp_write(NetconEthernetTap *tap, struct pico_socket *s)
{
Connection *conn = tap->getConnection(s);
if(!conn)
DEBUG_ERROR("invalid connection");
if(!conn->txsz)
return;
DEBUG_INFO("txsz=%d bytes ready to be written", conn->txsz);
// Only called from a locked context, no need to lock anything
if(conn->txsz > 0) {
int r = conn->txsz < ZT_MAX_MTU ? conn->txsz : ZT_MAX_MTU;
if((r = tap->picostack->__pico_socket_write(s, &conn->txbuf, r)) < 0) {
DEBUG_ERROR("unable to write to pico_socket=%p", (void*)s);
return;
}
int sz = (conn->txsz)-r;
if(sz)
memmove(&conn->txbuf, (conn->txbuf+r), sz);
conn->txsz -= r;
int max = conn->type == SOCK_STREAM ? DEFAULT_TCP_TX_BUF_SZ : DEFAULT_UDP_TX_BUF_SZ;
DEBUG_TRANS("[TCP TX] ---> :: {TX: %.3f%%, RX: %.3f%%, sock=%p} :: %d bytes",
(float)conn->txsz / (float)max, (float)conn->rxsz / max, (void*)&conn->sock, r);
return;
}
}
// Main callback for TCP connections
void pico_cb_tcp(uint16_t ev, struct pico_socket *s)
{
Mutex::Lock _l(picotap->_tcpconns_m);
Connection *conn = picotap->getConnection(s);
if(!conn) {
DEBUG_ERROR("invalid connection");
}
if (ev & PICO_SOCK_EV_RD) {
pico_cb_tcp_read(picotap, s);
}
// Accept connection (analogous to lwip_nc_accept)
if (ev & PICO_SOCK_EV_CONN) {
DEBUG_INFO("connection established with server, sock=%p", (void*)(conn->picosock));
uint32_t peer;
uint16_t port;
struct pico_socket *client = picotap->picostack->__pico_socket_accept(s, &peer, &port);
if(!client) {
DEBUG_ERROR("there was an error accepting the connection, sock=%p", (void*)(conn->picosock));
}
ZT_PHY_SOCKFD_TYPE fds[2];
if(socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) {
if(errno < 0) {
// FIXME: Return a value to the client
//picotap->sendReturnValue(conn, -1, errno);
DEBUG_ERROR("unable to create socketpair");
return;
}
}
Connection *newTcpConn = new Connection();
picotap->_Connections.push_back(newTcpConn);
newTcpConn->type = SOCK_STREAM;
newTcpConn->sock = picotap->_phy.wrapSocket(fds[0], newTcpConn);
newTcpConn->picosock = client;
int fd = picotap->_phy.getDescriptor(conn->sock);
if(sock_fd_write(fd, fds[1]) < 0) {
DEBUG_ERROR("error sending new fd to client application");
}
}
if (ev & PICO_SOCK_EV_FIN) {
DEBUG_INFO("socket closed. Exit normally.");
//picotap->__pico_timer_add(2000, compare_results, NULL);
}
if (ev & PICO_SOCK_EV_ERR) {
DEBUG_INFO("socket error received" /*, strerror(pico_err)*/);
//exit(1);
}
if (ev & PICO_SOCK_EV_CLOSE) {
DEBUG_INFO("socket received close from peer - Wrong case if not all client data sent!");
picotap->picostack->__pico_socket_close(s);
picotap->closeConnection(conn);
return;
}
if (ev & PICO_SOCK_EV_WR) {
pico_cb_tcp_write(picotap, s);
}
}
// Called when an incoming ping is received
/*
static void pico_cb_ping(struct pico_icmp4_stats *s)
{
DEBUG_INFO();
char host[30];
picotap->picostack->__pico_ipv4_to_string(host, s->dst.addr);
if (s->err == 0) {
printf("%lu bytes from %s: icmp_req=%lu ttl=%lu time=%lu ms\n", s->size,
host, s->seq, s->ttl, (long unsigned int)s->time);
} else {
printf("PING %lu to %s: Error %d\n", s->seq, host, s->err);
}
}
*/
// Sends data to the tap device (in our case, the ZeroTier service)
int pico_eth_send(struct pico_device *dev, void *buf, int len)
{
DEBUG_INFO("len=%d", len);
struct eth_hdr *ethhdr;
ethhdr = (struct eth_hdr *)buf;
MAC src_mac;
MAC dest_mac;
src_mac.setTo(ethhdr->src.addr, 6);
dest_mac.setTo(ethhdr->dest.addr, 6);
picotap->_handler(picotap->_arg,picotap->_nwid,src_mac,dest_mac,
Utils::ntoh((uint16_t)ethhdr->type),0, ((char*)buf) + sizeof(struct eth_hdr),len - sizeof(struct eth_hdr));
return len;
}
// Receives data from the tap device and encapsulates it into a ZeroTier ethernet frame and places it in a locked memory buffer
void pico_rx(NetconEthernetTap *tap, const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len)
{
// DEBUG_INFO();
// Since picoTCP only allows the reception of frames from within the polling function, we
// must enqueue each frame into a memory structure shared by both threads. This structure will
Mutex::Lock _l(tap->_pico_frame_rxbuf_m);
if(len > ((1024 * 1024) - tap->pico_frame_rxbuf_tot)) {
DEBUG_ERROR("dropping packet (len = %d) - not enough space left on RX frame buffer", len);
return;
}
//if(len != memcpy(pico_frame_rxbuf, data, len)) {
// DEBUG_ERROR("dropping packet (len = %d) - unable to copy contents of frame to RX frame buffer", len);
// return;
//}
// assemble new eth header
struct eth_hdr ethhdr;
from.copyTo(ethhdr.src.addr, 6);
to.copyTo(ethhdr.dest.addr, 6);
ethhdr.type = Utils::hton((uint16_t)etherType);
int newlen = len+sizeof(struct eth_hdr);
//
memcpy(tap->pico_frame_rxbuf + tap->pico_frame_rxbuf_tot, &newlen, sizeof(newlen)); // size of frame
memcpy(tap->pico_frame_rxbuf + tap->pico_frame_rxbuf_tot + sizeof(newlen), &ethhdr, sizeof(ethhdr)); // new eth header
memcpy(tap->pico_frame_rxbuf + tap->pico_frame_rxbuf_tot + sizeof(newlen) + sizeof(ethhdr), data, len); // frame data
tap->pico_frame_rxbuf_tot += len + sizeof(len) + sizeof(ethhdr);
// DEBUG_INFO("RX frame buffer %3f full", (float)pico_frame_rxbuf_tot / (float)(1024 * 1024));
DEBUG_INFO("len=%d", len);
}
// Is called periodically by the stack, this removes data from the locked memory buffer and feeds it into the stack.
// A maximum of 'loop_score' frames can be processed in each call
int pico_eth_poll(struct pico_device *dev, int loop_score)
{
// DEBUG_EXTRA();
// OPTIMIZATION: The copy logic and/or buffer structure should be reworked for better performance after the BETA
// NetconEthernetTap *tap = (NetconEthernetTap*)netif->state;
Mutex::Lock _l(picotap->_pico_frame_rxbuf_m);
unsigned char frame[ZT_MAX_MTU];
uint32_t len;
while (picotap->pico_frame_rxbuf_tot > 0) {
memset(frame, 0, sizeof(frame));
len = 0;
memcpy(&len, picotap->pico_frame_rxbuf, sizeof(len)); // get frame len
memcpy(frame, picotap->pico_frame_rxbuf + sizeof(len), len); // get frame data
memmove(picotap->pico_frame_rxbuf, picotap->pico_frame_rxbuf + sizeof(len) + len, ZT_MAX_MTU-(sizeof(len) + len));
picotap->picostack->__pico_stack_recv(dev, (uint8_t*)frame, len);
picotap->pico_frame_rxbuf_tot-=(sizeof(len) + len);
// DEBUG_EXTRA("RX frame buffer %3f full", (float)(picotap->pico_frame_rxbuf_tot) / (float)(MAX_PICO_FRAME_RX_BUF_SZ));
loop_score--;
}
return loop_score;
}
// Creates a new pico_socket and Connection object to represent a new connection to be.
Connection *pico_handleSocket(PhySocket *sock, void **uptr, struct socket_st* socket_rpc)
{
DEBUG_INFO();
struct pico_socket * psock;
#if defined(SDK_IPV4)
psock = picotap->picostack->__pico_socket_open(PICO_PROTO_IPV4, PICO_PROTO_TCP, &pico_cb_tcp);
#elif defined(SDK_IPV6)
psock = picotap->picostack->__pico_socket_open(PICO_PROTO_IPV6, PICO_PROTO_TCP, &pico_cb_tcp);
#endif
if(psock) {
DEBUG_ATTN("psock = %p", (void*)psock);
Connection * newConn = new Connection();
*uptr = newConn;
newConn->type = socket_rpc->socket_type;
newConn->sock = sock;
newConn->local_addr = NULL;
newConn->peer_addr = NULL;
newConn->picosock = psock;
picotap->_Connections.push_back(newConn);
return newConn;
}
else {
DEBUG_ERROR("failed to create pico_socket");
}
return NULL;
}
// Writes data from the I/O buffer to the network stack
void pico_handleWrite(Connection *conn)
{
DEBUG_INFO();
if(!conn || !conn->picosock) {
DEBUG_ERROR(" invalid connection");
return;
}
int r, max_write_len = conn->txsz < ZT_MAX_MTU ? conn->txsz : ZT_MAX_MTU;
if((r = picotap->picostack->__pico_socket_write(conn->picosock, &conn->txbuf, max_write_len)) < 0) {
DEBUG_ERROR("unable to write to pico_socket(%p)", (void*)&(conn->picosock));
return;
}
/*
if(pico_err == PICO_ERR_EINVAL)
DEBUG_ERROR("PICO_ERR_EINVAL - invalid argument");
if(pico_err == PICO_ERR_EIO)
DEBUG_ERROR("PICO_ERR_EIO - input/output error");
if(pico_err == PICO_ERR_ENOTCONN)
DEBUG_ERROR("PICO_ERR_ENOTCONN - the socket is not connected");
if(pico_err == PICO_ERR_ESHUTDOWN)
DEBUG_ERROR("PICO_ERR_ESHUTDOWN - cannot send after transport endpoint shutdown");
if(pico_err == PICO_ERR_EADDRNOTAVAIL)
DEBUG_ERROR("PICO_ERR_EADDRNOTAVAIL - address not available");
if(pico_err == PICO_ERR_EHOSTUNREACH)
DEBUG_ERROR("PICO_ERR_EHOSTUNREACH - host is unreachable");
if(pico_err == PICO_ERR_ENOMEM)
DEBUG_ERROR("PICO_ERR_ENOMEM - not enough space");
if(pico_err == PICO_ERR_EAGAIN)
DEBUG_ERROR("PICO_ERR_EAGAIN - resource temporarily unavailable");
*/
// adjust buffer
int sz = (conn->txsz)-r;
if(sz)
memmove(&conn->txbuf, (conn->txbuf+r), sz);
conn->txsz -= r;
int max = conn->type == SOCK_STREAM ? DEFAULT_TCP_TX_BUF_SZ : DEFAULT_UDP_TX_BUF_SZ;
DEBUG_TRANS("[TCP TX] ---> :: {TX: %.3f%%, RX: %.3f%%, sock=%p} :: %d bytes",
(float)conn->txsz / (float)max, (float)conn->rxsz / max, (void*)&conn->sock, r);
}
// Instructs the stack to connect to a remote host
void pico_handleConnect(PhySocket *sock, PhySocket *rpcSock, Connection *conn, struct connect_st* connect_rpc)
{
DEBUG_INFO();
if(conn->picosock) {
struct sockaddr_in *addr = (struct sockaddr_in *) &connect_rpc->addr;
int ret;
// TODO: Rewrite this
#if defined(SDK_IPV4)
struct pico_ip4 zaddr;
struct sockaddr_in *in4 = (struct sockaddr_in*)&connect_rpc->addr;
char ipv4_str[INET_ADDRSTRLEN];
inet_ntop(AF_INET, &(in4->sin_addr), ipv4_str, INET_ADDRSTRLEN);
picotap->picostack->__pico_string_to_ipv4(ipv4_str, &(zaddr.addr));
DEBUG_ATTN("addr=%s:%d", ipv4_str, addr->sin_port);
ret = picotap->picostack->__pico_socket_connect(conn->picosock, &zaddr, addr->sin_port);
#elif defined(SDK_IPV6) // "fd56:5799:d8f6:1238:8c99:9322:30ce:418a"
struct pico_ip6 zaddr;
struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&connect_rpc->addr;
char ipv6_str[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &(in6->sin6_addr), ipv6_str, INET6_ADDRSTRLEN);
picotap->picostack->__pico_string_to_ipv6(ipv6_str, zaddr.addr);
DEBUG_ATTN("addr=%s:%d", ipv6_str, addr->sin_port);
ret = picotap->picostack->__pico_socket_connect(conn->picosock, &zaddr, addr->sin_port);
#endif
if(ret == PICO_ERR_EPROTONOSUPPORT) {
DEBUG_ERROR("PICO_ERR_EPROTONOSUPPORT");
}
if(ret == PICO_ERR_EINVAL) {
DEBUG_ERROR("PICO_ERR_EINVAL");
}
if(ret == PICO_ERR_EHOSTUNREACH) {
DEBUG_ERROR("PICO_ERR_EHOSTUNREACH");
}
picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), 0, ERR_OK);
}
}
// Instructs the stack to bind to a given address
void pico_handleBind(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct bind_st *bind_rpc)
{
DEBUG_INFO();
Connection *conn = picotap->getConnection(sock);
if(!sock) {
DEBUG_ERROR("invalid connection");
return;
}
struct sockaddr_in *addr = (struct sockaddr_in *) &bind_rpc->addr;
int ret;
// TODO: Rewrite this
#if defined(SDK_IPV4)
struct pico_ip4 zaddr;
struct sockaddr_in *in4 = (struct sockaddr_in*)&bind_rpc->addr;
char ipv4_str[INET_ADDRSTRLEN];
inet_ntop(AF_INET, &(in4->sin_addr), ipv4_str, INET_ADDRSTRLEN);
picotap->picostack->__pico_string_to_ipv4(ipv4_str, &(zaddr.addr));
DEBUG_ATTN("addr=%s", ipv4_str/*, ntohs((uint16_t*)&(addr->sin_port))*/);
ret = picotap->picostack->__pico_socket_bind(conn->picosock, &zaddr, (uint16_t*)&(addr->sin_port));
#elif defined(SDK_IPV6)
struct pico_ip6 zaddr;
struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&bind_rpc->addr;
char ipv6_str[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &(in6->sin6_addr), ipv6_str, INET6_ADDRSTRLEN);
picotap->picostack->__pico_string_to_ipv6(ipv6_str, zaddr.addr);
DEBUG_ATTN("addr=%s", ipv6_str/*, ntohs((uint16_t*)&(addr->sin_port))*/);
ret = picotap->picostack->__pico_socket_bind(conn->picosock, &zaddr, (uint16_t*)&(addr->sin_port));
#endif
if(ret < 0) {
DEBUG_ERROR("unable to bind pico_socket(%p)", (void*)(conn->picosock));
if(ret == PICO_ERR_EINVAL) {
DEBUG_ERROR("PICO_ERR_EINVAL - invalid argument");
picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), -1, EINVAL);
}
if(ret == PICO_ERR_ENOMEM) {
DEBUG_ERROR("PICO_ERR_ENOMEM - not enough space");
picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), -1, ENOMEM);
}
if(ret == PICO_ERR_ENXIO) {
DEBUG_ERROR("PICO_ERR_ENXIO - no such device or address");
picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), -1, ENXIO);
}
}
picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), ERR_OK, ERR_OK); // success
}
// Puts a pico_socket into a listening state to receive incoming connection requests
void pico_handleListen(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct listen_st *listen_rpc)
{
Connection *conn = picotap->getConnection(sock);
DEBUG_ATTN("conn = %p", (void*)conn);
if(!sock || !conn) {
DEBUG_ERROR("invalid connection");
return;
}
int ret, backlog = 1;
if((ret = picotap->picostack->__pico_socket_listen(conn->picosock, backlog)) < 0)
{
if(ret == PICO_ERR_EINVAL) {
DEBUG_ERROR("PICO_ERR_EINVAL - invalid argument");
picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), -1, EINVAL);
}
if(ret == PICO_ERR_EISCONN) {
DEBUG_ERROR("PICO_ERR_EISCONN - socket is connected");
picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), -1, EISCONN);
}
}
picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), ERR_OK, ERR_OK); // success
}
// Feeds data into the client socket from the I/O buffer associated with the connection
void pico_handleRead(PhySocket *sock,void **uptr,bool lwip_invoked)
{
// DEBUG_INFO();
Connection *conn = picotap->getConnection(sock);
if(conn && conn->rxsz) {
float max = conn->type == SOCK_STREAM ? (float)DEFAULT_TCP_RX_BUF_SZ : (float)DEFAULT_UDP_RX_BUF_SZ;
long n = picotap->_phy.streamSend(conn->sock, conn->rxbuf, /* ZT_MAX_MTU */ conn->rxsz);
// extract address and payload size info
if(conn->type==SOCK_DGRAM) {
int payload_sz, addr_sz_offset = sizeof(struct sockaddr_storage);
memcpy(&payload_sz, conn->rxbuf + addr_sz_offset, sizeof(int));
struct sockaddr_storage addr;
memcpy(&addr, conn->rxbuf, addr_sz_offset);
// adjust buffer
if(conn->rxsz-n > 0) // If more remains on buffer
memcpy(conn->rxbuf, conn->rxbuf+ZT_MAX_MTU, conn->rxsz - ZT_MAX_MTU);
conn->rxsz -= ZT_MAX_MTU;
}
if(conn->type==SOCK_STREAM) {
//int payload_sz, addr_sz_offset = sizeof(struct sockaddr_storage);
//memcpy(&payload_sz, conn->rxbuf + addr_sz_offset, sizeof(int));
//struct sockaddr_storage addr;
//memcpy(&addr, conn->rxbuf, addr_sz_offset);
// adjust buffer
if(conn->rxsz-n > 0) // If more remains on buffer
memcpy(conn->rxbuf, conn->rxbuf+n, conn->rxsz - n);
conn->rxsz -= n;
DEBUG_INFO("rxsz=%d", conn->rxsz);
}
if(n) {
//DEBUG_INFO("wrote %d bytes to client application", n);
if(conn->type==SOCK_STREAM) { // Only acknolwedge receipt of TCP packets
DEBUG_TRANS("[TCP RX] <--- :: {TX: %.3f%%, RX: %.3f%%, sock=%p} :: %ld bytes",
(float)conn->txsz / max, (float)conn->rxsz / max, (void*)conn->sock, n);
}
picotap->_phy.setNotifyWritable(conn->sock, true);
}
if(!n || !(conn->rxsz)) {
picotap->_phy.setNotifyWritable(conn->sock, false);
}
}
}
// Closes a pico_socket
/*
static void pico_handleClose(Connection *conn)
{
DEBUG_INFO();
int ret;
if(conn && conn->picosock) {
if((ret = picotap->picostack->__pico_socket_close(conn->picosock)) < 0) {
DEBUG_ERROR("error closing pico_socket(%p)", (void*)(conn->picosock));
// sendReturnValue()
}
return;
}
DEBUG_ERROR("invalid connection or pico_socket");
}
*/
}
#endif // SDK_PICOTCP