updated included zerotierone src
This commit is contained in:
@@ -73,9 +73,6 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
|
||||
try {
|
||||
const uint64_t now = RR->node->now();
|
||||
|
||||
SharedPtr<Path> path(RR->topology->getPath(localAddr,fromAddr));
|
||||
path->received(now);
|
||||
|
||||
if (len == 13) {
|
||||
/* LEGACY: before VERB_PUSH_DIRECT_PATHS, peers used broadcast
|
||||
* announcements on the LAN to solve the 'same network problem.' We
|
||||
@@ -93,11 +90,11 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
|
||||
_lastBeaconResponse = now;
|
||||
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP);
|
||||
outp.armor(peer->key(),true);
|
||||
path->send(RR,outp.data(),outp.size(),now);
|
||||
RR->node->putPacket(localAddr,fromAddr,outp.data(),outp.size());
|
||||
}
|
||||
}
|
||||
|
||||
} else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) { // SECURITY: min length check is important since we do some C-style stuff below!
|
||||
} else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) { // min length check is important!
|
||||
if (reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
|
||||
// Handle fragment ----------------------------------------------------
|
||||
|
||||
@@ -105,25 +102,14 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
|
||||
const Address destination(fragment.destination());
|
||||
|
||||
if (destination != RR->identity.address()) {
|
||||
switch(RR->node->relayPolicy()) {
|
||||
case ZT_RELAY_POLICY_ALWAYS:
|
||||
break;
|
||||
case ZT_RELAY_POLICY_TRUSTED:
|
||||
if (!path->trustEstablished(now))
|
||||
return;
|
||||
break;
|
||||
// case ZT_RELAY_POLICY_NEVER:
|
||||
default:
|
||||
return;
|
||||
}
|
||||
|
||||
// Fragment is not for us, so try to relay it
|
||||
if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
|
||||
fragment.incrementHops();
|
||||
|
||||
// Note: we don't bother initiating NAT-t for fragments, since heads will set that off.
|
||||
// It wouldn't hurt anything, just redundant and unnecessary.
|
||||
SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
|
||||
if ((!relayTo)||(!relayTo->sendDirect(fragment.data(),fragment.size(),now,false))) {
|
||||
if ((!relayTo)||(!relayTo->send(fragment.data(),fragment.size(),now))) {
|
||||
#ifdef ZT_ENABLE_CLUSTER
|
||||
if (RR->cluster) {
|
||||
RR->cluster->sendViaCluster(Address(),destination,fragment.data(),fragment.size(),false);
|
||||
@@ -134,7 +120,7 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
|
||||
// Don't know peer or no direct path -- so relay via root server
|
||||
relayTo = RR->topology->getBestRoot();
|
||||
if (relayTo)
|
||||
relayTo->sendDirect(fragment.data(),fragment.size(),now,true);
|
||||
relayTo->send(fragment.data(),fragment.size(),now);
|
||||
}
|
||||
} else {
|
||||
TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
|
||||
@@ -178,7 +164,7 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
|
||||
for(unsigned int f=1;f<totalFragments;++f)
|
||||
rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength());
|
||||
|
||||
if (rq->frag0.tryDecode(RR)) {
|
||||
if (rq->frag0.tryDecode(RR,false)) {
|
||||
rq->timestamp = 0; // packet decoded, free entry
|
||||
} else {
|
||||
rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something
|
||||
@@ -214,25 +200,14 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
|
||||
//TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());
|
||||
|
||||
if (destination != RR->identity.address()) {
|
||||
switch(RR->node->relayPolicy()) {
|
||||
case ZT_RELAY_POLICY_ALWAYS:
|
||||
break;
|
||||
case ZT_RELAY_POLICY_TRUSTED:
|
||||
if (!path->trustEstablished(now))
|
||||
return;
|
||||
break;
|
||||
// case ZT_RELAY_POLICY_NEVER:
|
||||
default:
|
||||
return;
|
||||
}
|
||||
|
||||
Packet packet(data,len);
|
||||
|
||||
// Packet is not for us, so try to relay it
|
||||
if (packet.hops() < ZT_RELAY_MAX_HOPS) {
|
||||
packet.incrementHops();
|
||||
|
||||
SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
|
||||
if ((relayTo)&&((relayTo->sendDirect(packet.data(),packet.size(),now,false)))) {
|
||||
if ((relayTo)&&((relayTo->send(packet.data(),packet.size(),now)))) {
|
||||
Mutex::Lock _l(_lastUniteAttempt_m);
|
||||
uint64_t &luts = _lastUniteAttempt[_LastUniteKey(source,destination)];
|
||||
if ((now - luts) >= ZT_MIN_UNITE_INTERVAL) {
|
||||
@@ -256,7 +231,7 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
|
||||
#endif
|
||||
relayTo = RR->topology->getBestRoot(&source,1,true);
|
||||
if (relayTo)
|
||||
relayTo->sendDirect(packet.data(),packet.size(),now,true);
|
||||
relayTo->send(packet.data(),packet.size(),now);
|
||||
}
|
||||
} else {
|
||||
TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet.source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
|
||||
@@ -273,7 +248,7 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
|
||||
|
||||
rq->timestamp = now;
|
||||
rq->packetId = packetId;
|
||||
rq->frag0.init(data,len,path,now);
|
||||
rq->frag0.init(data,len,localAddr,fromAddr,now);
|
||||
rq->totalFragments = 0;
|
||||
rq->haveFragments = 1;
|
||||
rq->complete = false;
|
||||
@@ -284,24 +259,24 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
|
||||
// We have all fragments -- assemble and process full Packet
|
||||
//TRACE("packet %.16llx is complete, assembling and processing...",pid);
|
||||
|
||||
rq->frag0.init(data,len,path,now);
|
||||
rq->frag0.init(data,len,localAddr,fromAddr,now);
|
||||
for(unsigned int f=1;f<rq->totalFragments;++f)
|
||||
rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength());
|
||||
|
||||
if (rq->frag0.tryDecode(RR)) {
|
||||
if (rq->frag0.tryDecode(RR,false)) {
|
||||
rq->timestamp = 0; // packet decoded, free entry
|
||||
} else {
|
||||
rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something
|
||||
}
|
||||
} else {
|
||||
// Still waiting on more fragments, but keep the head
|
||||
rq->frag0.init(data,len,path,now);
|
||||
rq->frag0.init(data,len,localAddr,fromAddr,now);
|
||||
}
|
||||
} // else this is a duplicate head, ignore
|
||||
} else {
|
||||
// Packet is unfragmented, so just process it
|
||||
IncomingPacket packet(data,len,path,now);
|
||||
if (!packet.tryDecode(RR)) {
|
||||
IncomingPacket packet(data,len,localAddr,fromAddr,now);
|
||||
if (!packet.tryDecode(RR,false)) {
|
||||
Mutex::Lock _l(_rxQueue_m);
|
||||
RXQueueEntry *rq = &(_rxQueue[ZT_RX_QUEUE_SIZE - 1]);
|
||||
unsigned long i = ZT_RX_QUEUE_SIZE - 1;
|
||||
@@ -338,6 +313,12 @@ void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,c
|
||||
if (to == network->mac())
|
||||
return;
|
||||
|
||||
// Check to make sure this protocol is allowed on this network
|
||||
if (!network->config().permitsEtherType(etherType)) {
|
||||
TRACE("%.16llx: ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id());
|
||||
return;
|
||||
}
|
||||
|
||||
// Check if this packet is from someone other than the tap -- i.e. bridged in
|
||||
bool fromBridged = false;
|
||||
if (from != network->mac()) {
|
||||
@@ -349,7 +330,8 @@ void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,c
|
||||
}
|
||||
|
||||
if (to.isMulticast()) {
|
||||
MulticastGroup multicastGroup(to,0);
|
||||
// Destination is a multicast address (including broadcast)
|
||||
MulticastGroup mg(to,0);
|
||||
|
||||
if (to.isBroadcast()) {
|
||||
if ( (etherType == ZT_ETHERTYPE_ARP) && (len >= 28) && ((((const uint8_t *)data)[2] == 0x08)&&(((const uint8_t *)data)[3] == 0x00)&&(((const uint8_t *)data)[4] == 6)&&(((const uint8_t *)data)[5] == 4)&&(((const uint8_t *)data)[7] == 0x01)) ) {
|
||||
@@ -362,100 +344,75 @@ void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,c
|
||||
* them into multicasts by stuffing the IP address being queried into
|
||||
* the 32-bit ADI field. In practice this uses our multicast pub/sub
|
||||
* system to implement a kind of extended/distributed ARP table. */
|
||||
multicastGroup = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0));
|
||||
mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0));
|
||||
} else if (!network->config().enableBroadcast()) {
|
||||
// Don't transmit broadcasts if this network doesn't want them
|
||||
TRACE("%.16llx: dropped broadcast since ff:ff:ff:ff:ff:ff is not enabled",network->id());
|
||||
return;
|
||||
}
|
||||
} else if ((etherType == ZT_ETHERTYPE_IPV6)&&(len >= (40 + 8 + 16))) {
|
||||
// IPv6 NDP emulation for certain very special patterns of private IPv6 addresses -- if enabled
|
||||
if ((network->config().ndpEmulation())&&(reinterpret_cast<const uint8_t *>(data)[6] == 0x3a)&&(reinterpret_cast<const uint8_t *>(data)[40] == 0x87)) { // ICMPv6 neighbor solicitation
|
||||
Address v6EmbeddedAddress;
|
||||
const uint8_t *const pkt6 = reinterpret_cast<const uint8_t *>(data) + 40 + 8;
|
||||
const uint8_t *my6 = (const uint8_t *)0;
|
||||
|
||||
// ZT-RFC4193 address: fdNN:NNNN:NNNN:NNNN:NN99:93DD:DDDD:DDDD / 88 (one /128 per actual host)
|
||||
|
||||
// ZT-6PLANE address: fcXX:XXXX:XXDD:DDDD:DDDD:####:####:#### / 40 (one /80 per actual host)
|
||||
// (XX - lower 32 bits of network ID XORed with higher 32 bits)
|
||||
|
||||
// For these to work, we must have a ZT-managed address assigned in one of the
|
||||
// above formats, and the query must match its prefix.
|
||||
/* IPv6 NDP emulation on ZeroTier-RFC4193 addressed networks! This allows
|
||||
* for multicast-free operation in IPv6 networks, which both improves
|
||||
* performance and is friendlier to mobile and (especially) IoT devices.
|
||||
* In the future there may be a no-multicast build option for embedded
|
||||
* and IoT use and this will be the preferred addressing mode. Note that
|
||||
* it plays nice with our L2 emulation philosophy and even with bridging.
|
||||
* While "real" devices behind the bridge can't have ZT-RFC4193 addresses
|
||||
* themselves, they can look these addresses up with NDP and it will
|
||||
* work just fine. */
|
||||
if ((reinterpret_cast<const uint8_t *>(data)[6] == 0x3a)&&(reinterpret_cast<const uint8_t *>(data)[40] == 0x87)) { // ICMPv6 neighbor solicitation
|
||||
for(unsigned int sipk=0;sipk<network->config().staticIpCount;++sipk) {
|
||||
const InetAddress *const sip = &(network->config().staticIps[sipk]);
|
||||
if (sip->ss_family == AF_INET6) {
|
||||
my6 = reinterpret_cast<const uint8_t *>(reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_addr.s6_addr);
|
||||
const unsigned int sipNetmaskBits = Utils::ntoh((uint16_t)reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_port);
|
||||
if ((sipNetmaskBits == 88)&&(my6[0] == 0xfd)&&(my6[9] == 0x99)&&(my6[10] == 0x93)) { // ZT-RFC4193 /88 ???
|
||||
const InetAddress *sip = &(network->config().staticIps[sipk]);
|
||||
if ((sip->ss_family == AF_INET6)&&(Utils::ntoh((uint16_t)reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_port) == 88)) {
|
||||
const uint8_t *my6 = reinterpret_cast<const uint8_t *>(reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_addr.s6_addr);
|
||||
if ((my6[0] == 0xfd)&&(my6[9] == 0x99)&&(my6[10] == 0x93)) { // ZT-RFC4193 == fd__:____:____:____:__99:93__:____:____ / 88
|
||||
const uint8_t *pkt6 = reinterpret_cast<const uint8_t *>(data) + 40 + 8;
|
||||
unsigned int ptr = 0;
|
||||
while (ptr != 11) {
|
||||
if (pkt6[ptr] != my6[ptr])
|
||||
break;
|
||||
++ptr;
|
||||
}
|
||||
if (ptr == 11) { // prefix match!
|
||||
v6EmbeddedAddress.setTo(pkt6 + ptr,5);
|
||||
break;
|
||||
}
|
||||
} else if (sipNetmaskBits == 40) { // ZT-6PLANE /40 ???
|
||||
const uint32_t nwid32 = (uint32_t)((network->id() ^ (network->id() >> 32)) & 0xffffffff);
|
||||
if ( (my6[0] == 0xfc) && (my6[1] == (uint8_t)((nwid32 >> 24) & 0xff)) && (my6[2] == (uint8_t)((nwid32 >> 16) & 0xff)) && (my6[3] == (uint8_t)((nwid32 >> 8) & 0xff)) && (my6[4] == (uint8_t)(nwid32 & 0xff))) {
|
||||
unsigned int ptr = 0;
|
||||
while (ptr != 5) {
|
||||
if (pkt6[ptr] != my6[ptr])
|
||||
break;
|
||||
++ptr;
|
||||
}
|
||||
if (ptr == 5) { // prefix match!
|
||||
v6EmbeddedAddress.setTo(pkt6 + ptr,5);
|
||||
break;
|
||||
if (ptr == 11) { // /88 matches an assigned address on this network
|
||||
const Address atPeer(pkt6 + ptr,5);
|
||||
if (atPeer != RR->identity.address()) {
|
||||
const MAC atPeerMac(atPeer,network->id());
|
||||
TRACE("ZT-RFC4193 NDP emulation: %.16llx: forging response for %s/%s",network->id(),atPeer.toString().c_str(),atPeerMac.toString().c_str());
|
||||
|
||||
uint8_t adv[72];
|
||||
adv[0] = 0x60; adv[1] = 0x00; adv[2] = 0x00; adv[3] = 0x00;
|
||||
adv[4] = 0x00; adv[5] = 0x20;
|
||||
adv[6] = 0x3a; adv[7] = 0xff;
|
||||
for(int i=0;i<16;++i) adv[8 + i] = pkt6[i];
|
||||
for(int i=0;i<16;++i) adv[24 + i] = my6[i];
|
||||
adv[40] = 0x88; adv[41] = 0x00;
|
||||
adv[42] = 0x00; adv[43] = 0x00; // future home of checksum
|
||||
adv[44] = 0x60; adv[45] = 0x00; adv[46] = 0x00; adv[47] = 0x00;
|
||||
for(int i=0;i<16;++i) adv[48 + i] = pkt6[i];
|
||||
adv[64] = 0x02; adv[65] = 0x01;
|
||||
adv[66] = atPeerMac[0]; adv[67] = atPeerMac[1]; adv[68] = atPeerMac[2]; adv[69] = atPeerMac[3]; adv[70] = atPeerMac[4]; adv[71] = atPeerMac[5];
|
||||
|
||||
uint16_t pseudo_[36];
|
||||
uint8_t *const pseudo = reinterpret_cast<uint8_t *>(pseudo_);
|
||||
for(int i=0;i<32;++i) pseudo[i] = adv[8 + i];
|
||||
pseudo[32] = 0x00; pseudo[33] = 0x00; pseudo[34] = 0x00; pseudo[35] = 0x20;
|
||||
pseudo[36] = 0x00; pseudo[37] = 0x00; pseudo[38] = 0x00; pseudo[39] = 0x3a;
|
||||
for(int i=0;i<32;++i) pseudo[40 + i] = adv[40 + i];
|
||||
uint32_t checksum = 0;
|
||||
for(int i=0;i<36;++i) checksum += Utils::hton(pseudo_[i]);
|
||||
while ((checksum >> 16)) checksum = (checksum & 0xffff) + (checksum >> 16);
|
||||
checksum = ~checksum;
|
||||
adv[42] = (checksum >> 8) & 0xff;
|
||||
adv[43] = checksum & 0xff;
|
||||
|
||||
RR->node->putFrame(network->id(),network->userPtr(),atPeerMac,from,ZT_ETHERTYPE_IPV6,0,adv,72);
|
||||
return; // stop processing: we have handled this frame with a spoofed local reply so no need to send it anywhere
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if ((v6EmbeddedAddress)&&(v6EmbeddedAddress != RR->identity.address())) {
|
||||
const MAC peerMac(v6EmbeddedAddress,network->id());
|
||||
TRACE("IPv6 NDP emulation: %.16llx: forging response for %s/%s",network->id(),v6EmbeddedAddress.toString().c_str(),peerMac.toString().c_str());
|
||||
|
||||
uint8_t adv[72];
|
||||
adv[0] = 0x60; adv[1] = 0x00; adv[2] = 0x00; adv[3] = 0x00;
|
||||
adv[4] = 0x00; adv[5] = 0x20;
|
||||
adv[6] = 0x3a; adv[7] = 0xff;
|
||||
for(int i=0;i<16;++i) adv[8 + i] = pkt6[i];
|
||||
for(int i=0;i<16;++i) adv[24 + i] = my6[i];
|
||||
adv[40] = 0x88; adv[41] = 0x00;
|
||||
adv[42] = 0x00; adv[43] = 0x00; // future home of checksum
|
||||
adv[44] = 0x60; adv[45] = 0x00; adv[46] = 0x00; adv[47] = 0x00;
|
||||
for(int i=0;i<16;++i) adv[48 + i] = pkt6[i];
|
||||
adv[64] = 0x02; adv[65] = 0x01;
|
||||
adv[66] = peerMac[0]; adv[67] = peerMac[1]; adv[68] = peerMac[2]; adv[69] = peerMac[3]; adv[70] = peerMac[4]; adv[71] = peerMac[5];
|
||||
|
||||
uint16_t pseudo_[36];
|
||||
uint8_t *const pseudo = reinterpret_cast<uint8_t *>(pseudo_);
|
||||
for(int i=0;i<32;++i) pseudo[i] = adv[8 + i];
|
||||
pseudo[32] = 0x00; pseudo[33] = 0x00; pseudo[34] = 0x00; pseudo[35] = 0x20;
|
||||
pseudo[36] = 0x00; pseudo[37] = 0x00; pseudo[38] = 0x00; pseudo[39] = 0x3a;
|
||||
for(int i=0;i<32;++i) pseudo[40 + i] = adv[40 + i];
|
||||
uint32_t checksum = 0;
|
||||
for(int i=0;i<36;++i) checksum += Utils::hton(pseudo_[i]);
|
||||
while ((checksum >> 16)) checksum = (checksum & 0xffff) + (checksum >> 16);
|
||||
checksum = ~checksum;
|
||||
adv[42] = (checksum >> 8) & 0xff;
|
||||
adv[43] = checksum & 0xff;
|
||||
|
||||
RR->node->putFrame(network->id(),network->userPtr(),peerMac,from,ZT_ETHERTYPE_IPV6,0,adv,72);
|
||||
return; // NDP emulation done. We have forged a "fake" reply, so no need to send actual NDP query.
|
||||
} // else no NDP emulation
|
||||
} // else no NDP emulation
|
||||
}
|
||||
|
||||
// Check this after NDP emulation, since that has to be allowed in exactly this case
|
||||
if (network->config().multicastLimit == 0) {
|
||||
TRACE("%.16llx: dropped multicast: not allowed on network",network->id());
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/* Learn multicast groups for bridged-in hosts.
|
||||
@@ -463,70 +420,62 @@ void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,c
|
||||
* multicast addresses on bridge interfaces and subscribing each slave.
|
||||
* But in that case this does no harm, as the sets are just merged. */
|
||||
if (fromBridged)
|
||||
network->learnBridgedMulticastGroup(multicastGroup,RR->node->now());
|
||||
network->learnBridgedMulticastGroup(mg,RR->node->now());
|
||||
|
||||
//TRACE("%.16llx: MULTICAST %s -> %s %s %u",network->id(),from.toString().c_str(),multicastGroup.toString().c_str(),etherTypeName(etherType),len);
|
||||
|
||||
// First pass sets noTee to false, but noTee is set to true in OutboundMulticast to prevent duplicates.
|
||||
if (!network->filterOutgoingPacket(false,RR->identity.address(),Address(),from,to,(const uint8_t *)data,len,etherType,vlanId)) {
|
||||
TRACE("%.16llx: %s -> %s %s packet not sent: filterOutgoingPacket() returned false",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
|
||||
return;
|
||||
}
|
||||
//TRACE("%.16llx: MULTICAST %s -> %s %s %u",network->id(),from.toString().c_str(),mg.toString().c_str(),etherTypeName(etherType),len);
|
||||
|
||||
RR->mc->send(
|
||||
((!network->config().isPublic())&&(network->config().com)) ? &(network->config().com) : (const CertificateOfMembership *)0,
|
||||
network->config().multicastLimit,
|
||||
RR->node->now(),
|
||||
network->id(),
|
||||
network->config().disableCompression(),
|
||||
network->config().activeBridges(),
|
||||
multicastGroup,
|
||||
mg,
|
||||
(fromBridged) ? from : MAC(),
|
||||
etherType,
|
||||
data,
|
||||
len);
|
||||
} else if (to[0] == MAC::firstOctetForNetwork(network->id())) {
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
if (to[0] == MAC::firstOctetForNetwork(network->id())) {
|
||||
// Destination is another ZeroTier peer on the same network
|
||||
|
||||
Address toZT(to.toAddress(network->id())); // since in-network MACs are derived from addresses and network IDs, we can reverse this
|
||||
SharedPtr<Peer> toPeer(RR->topology->getPeer(toZT));
|
||||
|
||||
if (!network->filterOutgoingPacket(false,RR->identity.address(),toZT,from,to,(const uint8_t *)data,len,etherType,vlanId)) {
|
||||
TRACE("%.16llx: %s -> %s %s packet not sent: filterOutgoingPacket() returned false",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
|
||||
return;
|
||||
}
|
||||
|
||||
if (fromBridged) {
|
||||
const bool includeCom = ( (network->config().isPrivate()) && (network->config().com) && ((!toPeer)||(toPeer->needsOurNetworkMembershipCertificate(network->id(),RR->node->now(),true))) );
|
||||
if ((fromBridged)||(includeCom)) {
|
||||
Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME);
|
||||
outp.append(network->id());
|
||||
outp.append((unsigned char)0x00);
|
||||
if (includeCom) {
|
||||
outp.append((unsigned char)0x01); // 0x01 -- COM included
|
||||
network->config().com.serialize(outp);
|
||||
} else {
|
||||
outp.append((unsigned char)0x00);
|
||||
}
|
||||
to.appendTo(outp);
|
||||
from.appendTo(outp);
|
||||
outp.append((uint16_t)etherType);
|
||||
outp.append(data,len);
|
||||
if (!network->config().disableCompression())
|
||||
outp.compress();
|
||||
send(outp,true);
|
||||
outp.compress();
|
||||
send(outp,true,network->id());
|
||||
} else {
|
||||
Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME);
|
||||
outp.append(network->id());
|
||||
outp.append((uint16_t)etherType);
|
||||
outp.append(data,len);
|
||||
if (!network->config().disableCompression())
|
||||
outp.compress();
|
||||
send(outp,true);
|
||||
outp.compress();
|
||||
send(outp,true,network->id());
|
||||
}
|
||||
|
||||
//TRACE("%.16llx: UNICAST: %s -> %s etherType==%s(%.4x) vlanId==%u len==%u fromBridged==%d includeCom==%d",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),etherType,vlanId,len,(int)fromBridged,(int)includeCom);
|
||||
} else {
|
||||
// Destination is bridged behind a remote peer
|
||||
|
||||
// We filter with a NULL destination ZeroTier address first. Filtrations
|
||||
// for each ZT destination are also done below. This is the same rationale
|
||||
// and design as for multicast.
|
||||
if (!network->filterOutgoingPacket(false,RR->identity.address(),Address(),from,to,(const uint8_t *)data,len,etherType,vlanId)) {
|
||||
TRACE("%.16llx: %s -> %s %s packet not sent: filterOutgoingPacket() returned false",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
|
||||
return;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
{
|
||||
// Destination is bridged behind a remote peer
|
||||
|
||||
Address bridges[ZT_MAX_BRIDGE_SPAM];
|
||||
unsigned int numBridges = 0;
|
||||
@@ -561,34 +510,37 @@ void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,c
|
||||
}
|
||||
|
||||
for(unsigned int b=0;b<numBridges;++b) {
|
||||
if (network->filterOutgoingPacket(true,RR->identity.address(),bridges[b],from,to,(const uint8_t *)data,len,etherType,vlanId)) {
|
||||
Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME);
|
||||
outp.append(network->id());
|
||||
outp.append((uint8_t)0x00);
|
||||
to.appendTo(outp);
|
||||
from.appendTo(outp);
|
||||
outp.append((uint16_t)etherType);
|
||||
outp.append(data,len);
|
||||
if (!network->config().disableCompression())
|
||||
outp.compress();
|
||||
send(outp,true);
|
||||
SharedPtr<Peer> bridgePeer(RR->topology->getPeer(bridges[b]));
|
||||
Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME);
|
||||
outp.append(network->id());
|
||||
if ( (network->config().isPrivate()) && (network->config().com) && ((!bridgePeer)||(bridgePeer->needsOurNetworkMembershipCertificate(network->id(),RR->node->now(),true))) ) {
|
||||
outp.append((unsigned char)0x01); // 0x01 -- COM included
|
||||
network->config().com.serialize(outp);
|
||||
} else {
|
||||
TRACE("%.16llx: %s -> %s %s packet not sent: filterOutgoingPacket() returned false",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
|
||||
outp.append((unsigned char)0);
|
||||
}
|
||||
to.appendTo(outp);
|
||||
from.appendTo(outp);
|
||||
outp.append((uint16_t)etherType);
|
||||
outp.append(data,len);
|
||||
outp.compress();
|
||||
send(outp,true,network->id());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Switch::send(const Packet &packet,bool encrypt)
|
||||
void Switch::send(const Packet &packet,bool encrypt,uint64_t nwid)
|
||||
{
|
||||
if (packet.destination() == RR->identity.address()) {
|
||||
TRACE("BUG: caught attempt to send() to self, ignored");
|
||||
return;
|
||||
}
|
||||
|
||||
if (!_trySend(packet,encrypt)) {
|
||||
//TRACE(">> %s to %s (%u bytes, encrypt==%d, nwid==%.16llx)",Packet::verbString(packet.verb()),packet.destination().toString().c_str(),packet.size(),(int)encrypt,nwid);
|
||||
|
||||
if (!_trySend(packet,encrypt,nwid)) {
|
||||
Mutex::Lock _l(_txQueue_m);
|
||||
_txQueue.push_back(TXQueueEntry(packet.destination(),RR->node->now(),packet,encrypt));
|
||||
_txQueue.push_back(TXQueueEntry(packet.destination(),RR->node->now(),packet,encrypt,nwid));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -638,7 +590,7 @@ bool Switch::unite(const Address &p1,const Address &p2)
|
||||
outp.append(cg.first.rawIpData(),4);
|
||||
}
|
||||
outp.armor(p1p->key(),true);
|
||||
p1p->sendDirect(outp.data(),outp.size(),now,true);
|
||||
p1p->send(outp.data(),outp.size(),now);
|
||||
} else {
|
||||
// Tell p2 where to find p1.
|
||||
Packet outp(p2,RR->identity.address(),Packet::VERB_RENDEZVOUS);
|
||||
@@ -653,7 +605,7 @@ bool Switch::unite(const Address &p1,const Address &p2)
|
||||
outp.append(cg.second.rawIpData(),4);
|
||||
}
|
||||
outp.armor(p2p->key(),true);
|
||||
p2p->sendDirect(outp.data(),outp.size(),now,true);
|
||||
p2p->send(outp.data(),outp.size(),now);
|
||||
}
|
||||
++alt; // counts up and also flips LSB
|
||||
}
|
||||
@@ -661,6 +613,17 @@ bool Switch::unite(const Address &p1,const Address &p2)
|
||||
return true;
|
||||
}
|
||||
|
||||
void Switch::rendezvous(const SharedPtr<Peer> &peer,const InetAddress &localAddr,const InetAddress &atAddr)
|
||||
{
|
||||
TRACE("sending NAT-t message to %s(%s)",peer->address().toString().c_str(),atAddr.toString().c_str());
|
||||
const uint64_t now = RR->node->now();
|
||||
peer->sendHELLO(localAddr,atAddr,now,2); // first attempt: send low-TTL packet to 'open' local NAT
|
||||
{
|
||||
Mutex::Lock _l(_contactQueue_m);
|
||||
_contactQueue.push_back(ContactQueueEntry(peer,now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY,localAddr,atAddr));
|
||||
}
|
||||
}
|
||||
|
||||
void Switch::requestWhois(const Address &addr)
|
||||
{
|
||||
bool inserted = false;
|
||||
@@ -691,7 +654,7 @@ void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
|
||||
while (i) {
|
||||
RXQueueEntry *rq = &(_rxQueue[--i]);
|
||||
if ((rq->timestamp)&&(rq->complete)) {
|
||||
if (rq->frag0.tryDecode(RR))
|
||||
if (rq->frag0.tryDecode(RR,false))
|
||||
rq->timestamp = 0;
|
||||
}
|
||||
}
|
||||
@@ -701,7 +664,7 @@ void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
|
||||
Mutex::Lock _l(_txQueue_m);
|
||||
for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
|
||||
if (txi->dest == peer->address()) {
|
||||
if (_trySend(txi->packet,txi->encrypt))
|
||||
if (_trySend(txi->packet,txi->encrypt,txi->nwid))
|
||||
_txQueue.erase(txi++);
|
||||
else ++txi;
|
||||
} else ++txi;
|
||||
@@ -713,6 +676,42 @@ unsigned long Switch::doTimerTasks(uint64_t now)
|
||||
{
|
||||
unsigned long nextDelay = 0xffffffff; // ceiling delay, caller will cap to minimum
|
||||
|
||||
{ // Iterate through NAT traversal strategies for entries in contact queue
|
||||
Mutex::Lock _l(_contactQueue_m);
|
||||
for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
|
||||
if (now >= qi->fireAtTime) {
|
||||
if (!qi->peer->pushDirectPaths(qi->localAddr,qi->inaddr,now,true,false))
|
||||
qi->peer->sendHELLO(qi->localAddr,qi->inaddr,now);
|
||||
_contactQueue.erase(qi++);
|
||||
continue;
|
||||
/* Old symmetric NAT buster code, obsoleted by port prediction alg in SelfAwareness but left around for now in case we revert
|
||||
if (qi->strategyIteration == 0) {
|
||||
// First strategy: send packet directly to destination
|
||||
qi->peer->sendHELLO(qi->localAddr,qi->inaddr,now);
|
||||
} else if (qi->strategyIteration <= 3) {
|
||||
// Strategies 1-3: try escalating ports for symmetric NATs that remap sequentially
|
||||
InetAddress tmpaddr(qi->inaddr);
|
||||
int p = (int)qi->inaddr.port() + qi->strategyIteration;
|
||||
if (p > 65535)
|
||||
p -= 64511;
|
||||
tmpaddr.setPort((unsigned int)p);
|
||||
qi->peer->sendHELLO(qi->localAddr,tmpaddr,now);
|
||||
} else {
|
||||
// All strategies tried, expire entry
|
||||
_contactQueue.erase(qi++);
|
||||
continue;
|
||||
}
|
||||
++qi->strategyIteration;
|
||||
qi->fireAtTime = now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY;
|
||||
nextDelay = std::min(nextDelay,(unsigned long)ZT_NAT_T_TACTICAL_ESCALATION_DELAY);
|
||||
*/
|
||||
} else {
|
||||
nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
|
||||
}
|
||||
++qi; // if qi was erased, loop will have continued before here
|
||||
}
|
||||
}
|
||||
|
||||
{ // Retry outstanding WHOIS requests
|
||||
Mutex::Lock _l(_outstandingWhoisRequests_m);
|
||||
Hashtable< Address,WhoisRequest >::Iterator i(_outstandingWhoisRequests);
|
||||
@@ -740,7 +739,7 @@ unsigned long Switch::doTimerTasks(uint64_t now)
|
||||
{ // Time out TX queue packets that never got WHOIS lookups or other info.
|
||||
Mutex::Lock _l(_txQueue_m);
|
||||
for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
|
||||
if (_trySend(txi->packet,txi->encrypt))
|
||||
if (_trySend(txi->packet,txi->encrypt,txi->nwid))
|
||||
_txQueue.erase(txi++);
|
||||
else if ((now - txi->creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
|
||||
TRACE("TX %s -> %s timed out",txi->packet.source().toString().c_str(),txi->packet.destination().toString().c_str());
|
||||
@@ -765,41 +764,65 @@ unsigned long Switch::doTimerTasks(uint64_t now)
|
||||
|
||||
Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
|
||||
{
|
||||
SharedPtr<Peer> upstream(RR->topology->getBestRoot(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
|
||||
if (upstream) {
|
||||
Packet outp(upstream->address(),RR->identity.address(),Packet::VERB_WHOIS);
|
||||
SharedPtr<Peer> root(RR->topology->getBestRoot(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
|
||||
if (root) {
|
||||
Packet outp(root->address(),RR->identity.address(),Packet::VERB_WHOIS);
|
||||
addr.appendTo(outp);
|
||||
RR->node->expectReplyTo(outp.packetId());
|
||||
send(outp,true);
|
||||
outp.armor(root->key(),true);
|
||||
if (root->send(outp.data(),outp.size(),RR->node->now()))
|
||||
return root->address();
|
||||
}
|
||||
return Address();
|
||||
}
|
||||
|
||||
bool Switch::_trySend(const Packet &packet,bool encrypt)
|
||||
bool Switch::_trySend(const Packet &packet,bool encrypt,uint64_t nwid)
|
||||
{
|
||||
const SharedPtr<Peer> peer(RR->topology->getPeer(packet.destination()));
|
||||
SharedPtr<Peer> peer(RR->topology->getPeer(packet.destination()));
|
||||
|
||||
if (peer) {
|
||||
const uint64_t now = RR->node->now();
|
||||
|
||||
// First get the best path, and if it's dead (and this is not a root)
|
||||
// we attempt to re-activate that path but this packet will flow
|
||||
// upstream. If the path comes back alive, it will be used in the future.
|
||||
// For roots we don't do the alive check since roots are not required
|
||||
// to send heartbeats "down" and because we have to at least try to
|
||||
// go somewhere.
|
||||
|
||||
SharedPtr<Path> viaPath(peer->getBestPath(now,false));
|
||||
if ( (viaPath) && (!viaPath->alive(now)) && (!RR->topology->isRoot(peer->identity())) ) {
|
||||
if ((now - viaPath->lastOut()) > std::max((now - viaPath->lastIn()) * 4,(uint64_t)ZT_PATH_MIN_REACTIVATE_INTERVAL))
|
||||
peer->attemptToContactAt(viaPath->localAddress(),viaPath->address(),now);
|
||||
viaPath.zero();
|
||||
SharedPtr<Network> network;
|
||||
if (nwid) {
|
||||
network = RR->node->network(nwid);
|
||||
if ((!network)||(!network->hasConfig()))
|
||||
return false; // we probably just left this network, let its packets die
|
||||
}
|
||||
|
||||
Path *viaPath = peer->getBestPath(now);
|
||||
SharedPtr<Peer> relay;
|
||||
|
||||
if (!viaPath) {
|
||||
SharedPtr<Peer> relay(RR->topology->getBestRoot());
|
||||
if ( (!relay) || (!(viaPath = relay->getBestPath(now,false))) ) {
|
||||
if (!(viaPath = peer->getBestPath(now,true)))
|
||||
return false;
|
||||
if (network) {
|
||||
unsigned int bestq = ~((unsigned int)0); // max unsigned int since quality is lower==better
|
||||
unsigned int ptr = 0;
|
||||
for(;;) {
|
||||
const Address raddr(network->config().nextRelay(ptr));
|
||||
if (raddr) {
|
||||
SharedPtr<Peer> rp(RR->topology->getPeer(raddr));
|
||||
if (rp) {
|
||||
const unsigned int q = rp->relayQuality(now);
|
||||
if (q < bestq) {
|
||||
bestq = q;
|
||||
rp.swap(relay);
|
||||
}
|
||||
}
|
||||
} else break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!relay)
|
||||
relay = RR->topology->getBestRoot();
|
||||
|
||||
if ( (!relay) || (!(viaPath = relay->getBestPath(now))) )
|
||||
return false;
|
||||
}
|
||||
// viaPath will not be null if we make it here
|
||||
|
||||
// Push possible direct paths to us if we are relaying
|
||||
if (relay) {
|
||||
peer->pushDirectPaths(viaPath->localAddress(),viaPath->address(),now,false,( (network)&&(network->isAllowed(peer)) ));
|
||||
viaPath->sent(now);
|
||||
}
|
||||
|
||||
Packet tmp(packet);
|
||||
@@ -807,12 +830,7 @@ bool Switch::_trySend(const Packet &packet,bool encrypt)
|
||||
unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
|
||||
tmp.setFragmented(chunkSize < tmp.size());
|
||||
|
||||
const uint64_t trustedPathId = RR->topology->getOutboundPathTrust(viaPath->address());
|
||||
if (trustedPathId) {
|
||||
tmp.setTrusted(trustedPathId);
|
||||
} else {
|
||||
tmp.armor(peer->key(),encrypt);
|
||||
}
|
||||
tmp.armor(peer->key(),encrypt);
|
||||
|
||||
if (viaPath->send(RR,tmp.data(),chunkSize,now)) {
|
||||
if (chunkSize < tmp.size()) {
|
||||
@@ -822,7 +840,7 @@ bool Switch::_trySend(const Packet &packet,bool encrypt)
|
||||
unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
|
||||
if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
|
||||
++fragsRemaining;
|
||||
const unsigned int totalFragments = fragsRemaining + 1;
|
||||
unsigned int totalFragments = fragsRemaining + 1;
|
||||
|
||||
for(unsigned int fno=1;fno<totalFragments;++fno) {
|
||||
chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
|
||||
|
||||
Reference in New Issue
Block a user