updated included zerotierone src

This commit is contained in:
Joseph Henry
2016-10-21 15:44:36 -07:00
parent 3dfea66bd4
commit 12bd9439db
105 changed files with 5083 additions and 6969 deletions

View File

@@ -33,29 +33,37 @@
#include "Switch.hpp"
// Entry timeout -- make it fairly long since this is just to prevent stale buildup
#define ZT_SELFAWARENESS_ENTRY_TIMEOUT 600000
#define ZT_SELFAWARENESS_ENTRY_TIMEOUT 3600000
namespace ZeroTier {
class _ResetWithinScope
{
public:
_ResetWithinScope(uint64_t now,int inetAddressFamily,InetAddress::IpScope scope) :
_ResetWithinScope(uint64_t now,InetAddress::IpScope scope) :
_now(now),
_family(inetAddressFamily),
_scope(scope) {}
inline void operator()(Topology &t,const SharedPtr<Peer> &p) { p->resetWithinScope(_scope,_family,_now); }
inline void operator()(Topology &t,const SharedPtr<Peer> &p)
{
if (p->resetWithinScope(_scope,_now))
peersReset.push_back(p);
}
std::vector< SharedPtr<Peer> > peersReset;
private:
uint64_t _now;
int _family;
InetAddress::IpScope _scope;
};
SelfAwareness::SelfAwareness(const RuntimeEnvironment *renv) :
RR(renv),
_phy(128)
_phy(32)
{
}
SelfAwareness::~SelfAwareness()
{
}
@@ -71,11 +79,9 @@ void SelfAwareness::iam(const Address &reporter,const InetAddress &receivedOnLoc
if ( (trusted) && ((now - entry.ts) < ZT_SELFAWARENESS_ENTRY_TIMEOUT) && (!entry.mySurface.ipsEqual(myPhysicalAddress)) ) {
// Changes to external surface reported by trusted peers causes path reset in this scope
TRACE("physical address %s for scope %u as seen from %s(%s) differs from %s, resetting paths in scope",myPhysicalAddress.toString().c_str(),(unsigned int)scope,reporter.toString().c_str(),reporterPhysicalAddress.toString().c_str(),entry.mySurface.toString().c_str());
entry.mySurface = myPhysicalAddress;
entry.ts = now;
entry.trusted = trusted;
TRACE("physical address %s for scope %u as seen from %s(%s) differs from %s, resetting paths in scope",myPhysicalAddress.toString().c_str(),(unsigned int)scope,reporter.toString().c_str(),reporterPhysicalAddress.toString().c_str(),entry.mySurface.toString().c_str());
// Erase all entries in this scope that were not reported from this remote address to prevent 'thrashing'
// due to multiple reports of endpoint change.
@@ -90,14 +96,23 @@ void SelfAwareness::iam(const Address &reporter,const InetAddress &receivedOnLoc
}
}
// Reset all paths within this scope and address family
_ResetWithinScope rset(now,myPhysicalAddress.ss_family,(InetAddress::IpScope)scope);
// Reset all paths within this scope
_ResetWithinScope rset(now,(InetAddress::IpScope)scope);
RR->topology->eachPeer<_ResetWithinScope &>(rset);
// Send a NOP to all peers for whom we forgot a path. This will cause direct
// links to be re-established if possible, possibly using a root server or some
// other relay.
for(std::vector< SharedPtr<Peer> >::const_iterator p(rset.peersReset.begin());p!=rset.peersReset.end();++p) {
if ((*p)->activelyTransferringFrames(now)) {
Packet outp((*p)->address(),RR->identity.address(),Packet::VERB_NOP);
RR->sw->send(outp,true,0);
}
}
} else {
// Otherwise just update DB to use to determine external surface info
entry.mySurface = myPhysicalAddress;
entry.ts = now;
entry.trusted = trusted;
}
}
@@ -118,70 +133,49 @@ std::vector<InetAddress> SelfAwareness::getSymmetricNatPredictions()
/* This is based on ideas and strategies found here:
* https://tools.ietf.org/html/draft-takeda-symmetric-nat-traversal-00
*
* For each IP address reported by a trusted (upstream) peer, we find
* the external port most recently reported by ANY peer for that IP.
*
* We only do any of this for global IPv4 addresses since private IPs
* and IPv6 are not going to have symmetric NAT.
*
* SECURITY NOTE:
*
* We never use IPs reported by non-trusted peers, since this could lead
* to a minor vulnerability whereby a peer could poison our cache with
* bad external surface reports via OK(HELLO) and then possibly coax us
* into suggesting their IP to other peers via PUSH_DIRECT_PATHS. This
* in turn could allow them to MITM flows.
*
* Since flows are encrypted and authenticated they could not actually
* read or modify traffic, but they could gather meta-data for forensics
* purpsoes or use this as a DOS attack vector. */
* In short: a great many symmetric NATs allocate ports sequentially.
* This is common on enterprise and carrier grade NATs as well as consumer
* devices. This code generates a list of "you might try this" addresses by
* extrapolating likely port assignments from currently known external
* global IPv4 surfaces. These can then be included in a PUSH_DIRECT_PATHS
* message to another peer, causing it to possibly try these addresses and
* bust our local symmetric NAT. It works often enough to be worth the
* extra bit of code and does no harm in cases where it fails. */
std::map< uint32_t,std::pair<uint64_t,unsigned int> > maxPortByIp;
InetAddress theOneTrueSurface;
// Gather unique surfaces indexed by local received-on address and flag
// us as behind a symmetric NAT if there is more than one.
std::map< InetAddress,std::set<InetAddress> > surfaces;
bool symmetric = false;
{
Mutex::Lock _l(_phy_m);
{ // First get IPs from only trusted peers, and perform basic NAT type characterization
Hashtable< PhySurfaceKey,PhySurfaceEntry >::Iterator i(_phy);
PhySurfaceKey *k = (PhySurfaceKey *)0;
PhySurfaceEntry *e = (PhySurfaceEntry *)0;
while (i.next(k,e)) {
if ((e->trusted)&&(e->mySurface.ss_family == AF_INET)&&(e->mySurface.ipScope() == InetAddress::IP_SCOPE_GLOBAL)) {
if (!theOneTrueSurface)
theOneTrueSurface = e->mySurface;
else if (theOneTrueSurface != e->mySurface)
symmetric = true;
maxPortByIp[reinterpret_cast<const struct sockaddr_in *>(&(e->mySurface))->sin_addr.s_addr] = std::pair<uint64_t,unsigned int>(e->ts,e->mySurface.port());
}
}
}
{ // Then find max port per IP from a trusted peer
Hashtable< PhySurfaceKey,PhySurfaceEntry >::Iterator i(_phy);
PhySurfaceKey *k = (PhySurfaceKey *)0;
PhySurfaceEntry *e = (PhySurfaceEntry *)0;
while (i.next(k,e)) {
if ((e->mySurface.ss_family == AF_INET)&&(e->mySurface.ipScope() == InetAddress::IP_SCOPE_GLOBAL)) {
std::map< uint32_t,std::pair<uint64_t,unsigned int> >::iterator mp(maxPortByIp.find(reinterpret_cast<const struct sockaddr_in *>(&(e->mySurface))->sin_addr.s_addr));
if ((mp != maxPortByIp.end())&&(mp->second.first < e->ts)) {
mp->second.first = e->ts;
mp->second.second = e->mySurface.port();
}
}
Hashtable< PhySurfaceKey,PhySurfaceEntry >::Iterator i(_phy);
PhySurfaceKey *k = (PhySurfaceKey *)0;
PhySurfaceEntry *e = (PhySurfaceEntry *)0;
while (i.next(k,e)) {
if ((e->mySurface.ss_family == AF_INET)&&(e->mySurface.ipScope() == InetAddress::IP_SCOPE_GLOBAL)) {
std::set<InetAddress> &s = surfaces[k->receivedOnLocalAddress];
s.insert(e->mySurface);
symmetric = symmetric||(s.size() > 1);
}
}
}
// If we appear to be symmetrically NATed, generate and return extrapolations
// of those surfaces. Since PUSH_DIRECT_PATHS is sent multiple times, we
// probabilistically generate extrapolations of anywhere from +1 to +5 to
// increase the odds that it will work "eventually".
if (symmetric) {
std::vector<InetAddress> r;
for(unsigned int k=1;k<=3;++k) {
for(std::map< uint32_t,std::pair<uint64_t,unsigned int> >::iterator i(maxPortByIp.begin());i!=maxPortByIp.end();++i) {
unsigned int p = i->second.second + k;
if (p > 65535) p -= 64511;
InetAddress pred(&(i->first),4,p);
if (std::find(r.begin(),r.end(),pred) == r.end())
r.push_back(pred);
for(std::map< InetAddress,std::set<InetAddress> >::iterator si(surfaces.begin());si!=surfaces.end();++si) {
for(std::set<InetAddress>::iterator i(si->second.begin());i!=si->second.end();++i) {
InetAddress ipp(*i);
unsigned int p = ipp.port() + 1 + ((unsigned int)RR->node->prng() & 3);
if (p >= 65535)
p -= 64510; // NATs seldom use ports <=1024 so wrap to 1025
ipp.setPort(p);
if ((si->second.count(ipp) == 0)&&(std::find(r.begin(),r.end(),ipp) == r.end())) {
r.push_back(ipp);
}
}
}
return r;