dynamic loading of network stack no longer needed

This commit is contained in:
Joseph Henry
2017-04-06 19:16:01 -07:00
parent 997f12a592
commit 08cca3c7aa
463 changed files with 136513 additions and 0 deletions

809
src/picoTCP.cpp Normal file
View File

@@ -0,0 +1,809 @@
/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2015 ZeroTier, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#include "pico_eth.h"
#include "pico_stack.h"
#include "pico_ipv4.h"
#include "pico_icmp4.h"
#include "pico_dev_tap.h"
#include "pico_protocol.h"
#include "pico_socket.h"
#include "pico_device.h"
#include "pico_ipv6.h"
#include "ZeroTierSDK.h"
#include "SocketTap.hpp"
#include "picoTCP.hpp"
#include "Utils.hpp"
#include "OSUtils.hpp"
#include "Mutex.hpp"
#include "Constants.hpp"
#include "Phy.hpp"
// stack locks
ZeroTier::Mutex _lock;
ZeroTier::Mutex _lock_mem;
struct pico_socket;
struct pico_device;
extern "C" int pico_stack_init(void);
extern "C" void pico_stack_tick(void);
int pico_ipv4_to_string(PICO_IPV4_TO_STRING_SIG);
extern "C" int pico_ipv4_link_add(PICO_IPV4_LINK_ADD_SIG);
extern "C" int pico_device_init(PICO_DEVICE_INIT_SIG);
int pico_stack_recv(PICO_STACK_RECV_SIG);
int pico_icmp4_ping(PICO_ICMP4_PING_SIG);
extern "C" int pico_string_to_ipv4(PICO_STRING_TO_IPV4_SIG);
extern "C" int pico_string_to_ipv6(PICO_STRING_TO_IPV6_SIG);
int pico_socket_setoption(PICO_SOCKET_SETOPTION_SIG);
uint32_t pico_timer_add(PICO_TIMER_ADD_SIG);
int pico_socket_send(PICO_SOCKET_SEND_SIG);
int pico_socket_sendto(PICO_SOCKET_SENDTO_SIG);
int pico_socket_recv(PICO_SOCKET_RECV_SIG);
extern "C" int pico_socket_recvfrom(PICO_SOCKET_RECVFROM_SIG);
extern "C" struct pico_socket * pico_socket_open(PICO_SOCKET_OPEN_SIG);
int pico_socket_bind(PICO_SOCKET_BIND_SIG);
int pico_socket_connect(PICO_SOCKET_CONNECT_SIG);
extern "C" int pico_socket_listen(PICO_SOCKET_LISTEN_SIG);
int pico_socket_read(PICO_SOCKET_READ_SIG);
extern "C" int pico_socket_write(PICO_SOCKET_WRITE_SIG);
extern "C" int pico_socket_close(PICO_SOCKET_CLOSE_SIG);
int pico_socket_shutdown(PICO_SOCKET_SHUTDOWN_SIG);
struct pico_socket * pico_socket_accept(PICO_SOCKET_ACCEPT_SIG);
extern "C" struct pico_ipv6_link * pico_ipv6_link_add(PICO_IPV6_LINK_ADD_SIG);
namespace ZeroTier {
// Reference to the tap interface
// This is needed due to the fact that there's a lot going on in the tap interface
// that needs to be updated on each of the network stack's callbacks and not every
// network stack provides a mechanism for storing a reference to the tap.
//
// In future releases this will be replaced with a new structure of static pointers that
// will make it easier to maintain multiple active tap interfaces
struct pico_device picodev;
SocketTap * picotap;
int pico_eth_send(struct pico_device *dev, void *buf, int len);
int pico_eth_poll(struct pico_device *dev, int loop_score);
// Initialize network stack's interfaces and assign addresses
void picoTCP::pico_init_interface(SocketTap *tap, const InetAddress &ip)
{
if (std::find(tap->_ips.begin(),tap->_ips.end(),ip) == tap->_ips.end()) {
tap->_ips.push_back(ip);
std::sort(tap->_ips.begin(),tap->_ips.end());
#if defined(SDK_IPV4)
if(ip.isV4())
{
struct pico_ip4 ipaddr, netmask;
ipaddr.addr = *((uint32_t *)ip.rawIpData());
netmask.addr = *((uint32_t *)ip.netmask().rawIpData());
uint8_t mac[PICO_SIZE_ETH];
tap->_mac.copyTo(mac, PICO_SIZE_ETH);
DEBUG_ATTN("mac = %s", tap->_mac.toString().c_str());
picodev.send = pico_eth_send; // tx
picodev.poll = pico_eth_poll; // rx
picodev.mtu = tap->_mtu;
if( 0 != pico_device_init(&(picodev), "p0", mac)) {
DEBUG_ERROR("device init failed");
return;
}
pico_ipv4_link_add(&(picodev), ipaddr, netmask);
// DEBUG_INFO("device initialized as ipv4_addr = %s", ipv4_str);
// pico_icmp4_ping("10.8.8.1", 20, 1000, 10000, 64, cb_ping);
}
#elif defined(SDK_IPV6)
if(ip.isV6())
{
struct pico_ip6 ipaddr, netmask;
char ipv6_str[INET6_ADDRSTRLEN], nm_str[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, ip.rawIpData(), ipv6_str, INET6_ADDRSTRLEN);
inet_ntop(AF_INET6, ip.netmask().rawIpData(), nm_str, INET6_ADDRSTRLEN);
pico_string_to_ipv6(ipv6_str, ipaddr.addr);
pico_string_to_ipv6(nm_str, netmask.addr);
pico_ipv6_link_add(&(picodev), ipaddr, netmask);
picodev.send = pico_eth_send; // tx
picodev.poll = pico_eth_poll; // rx
uint8_t mac[PICO_SIZE_ETH];
tap->_mac.copyTo(mac, PICO_SIZE_ETH);
DEBUG_ATTN("mac = %s", tap->_mac.toString().c_str());
if( 0 != pico_device_init(&(picodev), "p0", mac)) {
DEBUG_ERROR("device init failed");
return;
}
DEBUG_ATTN("device initialized as ipv6_addr = %s", ipv6_str);
}
#endif
}
}
// Main stack loop
void picoTCP::pico_loop(SocketTap *tap)
{
while(tap->_run)
{
tap->_phy.poll(ZT_PHY_POLL_INTERVAL); // in ms
pico_stack_tick();
}
}
// RX packets from [ZT->STACK] onto RXBUF
// Also notify the tap service that data can be read:
// [RXBUF -> (ZTSOCK->APP)]
// -----------------------------------------
// | TAP <-> MEM BUFFER <-> STACK <-> APP |
// | |
// | APP <-> I/O BUFFER <-> STACK <-> TAP |
// | |<-----------------| | RX
// -----------------------------------------
// After this step, buffer will be emptied periodically by pico_handleRead()
void picoTCP::pico_cb_tcp_read(ZeroTier::SocketTap *tap, struct pico_socket *s)
{
Connection *conn = tap->getConnection(s);
if(conn) {
int r;
uint16_t port = 0;
union {
struct pico_ip4 ip4;
struct pico_ip6 ip6;
} peer;
do {
int avail = DEFAULT_TCP_RX_BUF_SZ - conn->rxsz;
if(avail) {
r = pico_socket_recvfrom(s, conn->rxbuf + (conn->rxsz), SDK_MTU, (void *)&peer.ip4.addr, &port);
// DEBUG_ATTN("received packet (%d byte) from %08X:%u", r, long_be2(peer.ip4.addr), short_be(port));
tap->_phy.setNotifyWritable(conn->sock, true);
if (r > 0)
conn->rxsz += r;
}
else
DEBUG_ERROR("not enough space left on I/O RX buffer for pico_socket(%p)", s);
}
while(r > 0);
return;
}
DEBUG_ERROR("invalid connection");
}
// RX packets from the stack onto internal buffer
// Also notifies the tap service that data can be read
// -----------------------------------------
// | TAP <-> MEM BUFFER <-> STACK <-> APP |
// | |
// | APP <-> I/O BUFFER <-> STACK <-> TAP |
// | |<-----------------| | RX
// -----------------------------------------
// After this step, buffer will be emptied periodically by pico_handleRead()
// Read payload is encapsulated as such:
//
// [addr|payload_len|payload]
//
void picoTCP::pico_cb_udp_read(SocketTap *tap, struct pico_socket *s)
{
Connection *conn = tap->getConnection(s);
if(conn) {
uint16_t port = 0;
union {
struct pico_ip4 ip4;
struct pico_ip6 ip6;
} peer;
char tmpbuf[SDK_MTU];
unsigned char *addr_pos, *sz_pos, *payload_pos;
struct sockaddr_in addr_in;
addr_in.sin_addr.s_addr = peer.ip4.addr;
addr_in.sin_port = port;
// RX
int r = pico_socket_recvfrom(s, tmpbuf, SDK_MTU, (void *)&peer.ip4.addr, &port);
//DEBUG_FLOW(" [ RXBUF <- STACK] Receiving (%d) from stack, copying to receving buffer", r);
// Mutex::Lock _l2(tap->_rx_buf_m);
// struct sockaddr_in6 addr_in6;
// addr_in6.sin6_addr.s6_addr;
// addr_in6.sin6_port = Utils::ntoh(s->remote_port);
// DEBUG_ATTN("remote_port=%d, local_port=%d", s->remote_port, Utils::ntoh(s->local_port));
tap->_rx_buf_m.lock();
if(conn->rxsz == DEFAULT_UDP_RX_BUF_SZ) { // if UDP buffer full
//DEBUG_FLOW(" [ RXBUF <- STACK] UDP RX buffer full. Discarding oldest payload segment");
memmove(conn->rxbuf, conn->rxbuf + SDK_MTU, DEFAULT_UDP_RX_BUF_SZ - SDK_MTU);
addr_pos = conn->rxbuf + (DEFAULT_UDP_RX_BUF_SZ - SDK_MTU); // TODO:
sz_pos = addr_pos + sizeof(struct sockaddr_storage);
conn->rxsz -= SDK_MTU;
}
else {
addr_pos = conn->rxbuf + conn->rxsz; // where we'll prepend the size of the address
sz_pos = addr_pos + sizeof(struct sockaddr_storage);
}
payload_pos = addr_pos + sizeof(struct sockaddr_storage) + sizeof(r);
memcpy(addr_pos, &addr_in, sizeof(struct sockaddr_storage));
memcpy(payload_pos, tmpbuf, r); // write payload to app's socket
// Adjust buffer size
if(r) {
conn->rxsz += SDK_MTU;
memcpy(sz_pos, &r, sizeof(r));
}
if (r < 0) {
DEBUG_ERROR("unable to read from picosock=%p", s);
}
tap->_rx_buf_m.unlock();
// TODO: Revisit logic
if(r)
tap->phyOnUnixWritable(conn->sock, NULL, true);
//DEBUG_EXTRA(" Copied onto rxbuf (%d) from stack socket", r);
return;
}
}
// TX packets from internal buffer to network
void picoTCP::pico_cb_tcp_write(SocketTap *tap, struct pico_socket *s)
{
Connection *conn = tap->getConnection(s);
if(!conn)
DEBUG_ERROR("invalid connection");
if(!conn->txsz)
return;
// Only called from a locked context, no need to lock anything
if(conn->txsz > 0) {
int r, max_write_len = conn->txsz < SDK_MTU ? conn->txsz : SDK_MTU;
if((r = pico_socket_write(s, &conn->txbuf, max_write_len)) < 0) {
DEBUG_ERROR("unable to write to picosock=%p", s);
return;
}
int sz = (conn->txsz)-r;
if(sz)
memmove(&conn->txbuf, (conn->txbuf+r), sz);
conn->txsz -= r;
#if DEBUG_LEVEL >= MSG_TRANSFER
int max = conn->type == SOCK_STREAM ? DEFAULT_TCP_TX_BUF_SZ : DEFAULT_UDP_TX_BUF_SZ;
DEBUG_TRANS("[TCP TX] ---> :: {TX: %.3f%%, RX: %.3f%%, physock=%p} :: %d bytes",
(float)conn->txsz / (float)max, (float)conn->rxsz / max, conn->sock, r);
#endif
return;
}
}
// Main callback for TCP connections
void picoTCP::pico_cb_socket_activity(uint16_t ev, struct pico_socket *s)
{
int err;
Mutex::Lock _l(picotap->_tcpconns_m);
Connection *conn = picotap->getConnection(s);
if(!conn) {
DEBUG_ERROR("invalid connection");
}
// Accept connection (analogous to lwip_nc_accept)
if (ev & PICO_SOCK_EV_CONN) {
DEBUG_INFO("connection established with server, picosock=%p",(conn->picosock));
uint32_t peer;
uint16_t port;
struct pico_socket *client = pico_socket_accept(s, &peer, &port);
if(!client) {
DEBUG_EXTRA("unable to accept conn. (event might not be incoming, not necessarily an error), picosock=%p", (conn->picosock));
}
ZT_PHY_SOCKFD_TYPE fds[2];
if(socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) {
if(errno < 0) {
// FIXME: Return a value to the client
//tap->sendReturnValue(conn, -1, errno);
DEBUG_ERROR("unable to create socketpair");
return;
}
}
Connection *newTcpConn = new Connection();
picotap->_Connections.push_back(newTcpConn);
newTcpConn->type = SOCK_STREAM;
newTcpConn->sock = picotap->_phy.wrapSocket(fds[0], newTcpConn);
newTcpConn->picosock = client;
int fd = picotap->_phy.getDescriptor(conn->sock);
if(sock_fd_write(fd, fds[1]) < 0) {
DEBUG_ERROR("error sending new fd to client application");
}
DEBUG_EXTRA("conn=%p, physock=%p, listen_picosock=%p, new_picosock=%p, fd=%d", newTcpConn, newTcpConn->sock, s, client, fds[1]);
}
if (ev & PICO_SOCK_EV_FIN) {
DEBUG_INFO("socket closed. exit normally. picosock=%p\n\n", s);
//pico_timer_add(2000, compare_results, NULL);
}
if (ev & PICO_SOCK_EV_ERR) {
DEBUG_INFO("socket error received" /*, strerror(pico_err)*/);
}
if (ev & PICO_SOCK_EV_CLOSE) {
err = pico_socket_close(s);
DEBUG_INFO("socket closure = %d, picosock=%p", err, s);
if(err==0) {
picotap->closeConnection(conn->sock);
}
return;
}
// Read from picoTCP socket
if (ev & PICO_SOCK_EV_RD) {
if(conn->type==SOCK_STREAM)
pico_cb_tcp_read(picotap, s);
if(conn->type==SOCK_DGRAM)
pico_cb_udp_read(picotap, s);
}
// Write to picoTCP socket
if (ev & PICO_SOCK_EV_WR) {
pico_cb_tcp_write(picotap, s);
}
}
// Called when an incoming ping is received
/*
static void pico_cb_ping(struct pico_icmp4_stats *s)
{
DEBUG_INFO();
char host[30];
pico_ipv4_to_string(host, s->dst.addr);
if (s->err == 0) {
printf("%lu bytes from %s: icmp_req=%lu ttl=%lu time=%lu ms\n", s->size,
host, s->seq, s->ttl, (long unsigned int)s->time);
} else {
printf("PING %lu to %s: Error %d\n", s->seq, host, s->err);
}
}
*/
// Called from the stack, sends data to the tap device (in our case, the ZeroTier service)
// -----------------------------------------
// | TAP <-> MEM BUFFER <-> STACK <-> APP |
// | |<-------------------------| | TX
// | APP <-> I/O BUFFER <-> STACK <-> TAP |
// | |
// -----------------------------------------
int pico_eth_send(struct pico_device *dev, void *buf, int len)
{
struct pico_eth_hdr *ethhdr;
ethhdr = (struct pico_eth_hdr *)buf;
MAC src_mac;
MAC dest_mac;
src_mac.setTo(ethhdr->saddr, 6);
dest_mac.setTo(ethhdr->daddr, 6);
picotap->_handler(picotap->_arg,NULL,picotap->_nwid,src_mac,dest_mac,
Utils::ntoh((uint16_t)ethhdr->proto),0, ((char*)buf) + sizeof(struct pico_eth_hdr),len - sizeof(struct pico_eth_hdr));
return len;
}
// Receives data from the tap device and encapsulates it into a ZeroTier ethernet frame and places it in a locked memory buffer
// -----------------------------------------
// | TAP <-> MEM BUFFER <-> STACK <-> APP |
// | |--------------->| | RX
// | APP <-> I/O BUFFER <-> STACK <-> TAP |
// | |
// -----------------------------------------
// It will then periodically be transfered into the network stack via pico_eth_poll()
void picoTCP::pico_rx(SocketTap *tap, const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len)
{
// Since picoTCP only allows the reception of frames from within the polling function, we
// must enqueue each frame into a memory structure shared by both threads. This structure will
Mutex::Lock _l(tap->_pico_frame_rxbuf_m);
// assemble new eth header
struct pico_eth_hdr ethhdr;
from.copyTo(ethhdr.saddr, 6);
to.copyTo(ethhdr.daddr, 6);
ethhdr.proto = Utils::hton((uint16_t)etherType);
int newlen = len + sizeof(int) + sizeof(struct pico_eth_hdr);
int mylen;
while(newlen > (MAX_PICO_FRAME_RX_BUF_SZ-tap->pico_frame_rxbuf_tot) && ethhdr.proto == 56710)
{
mylen = 0;
//DEBUG_FLOW(" [ ZTWIRE -> FBUF ] not enough space left on RX frame buffer, dropping oldest packet in buffer");
/*
memcpy(&mylen, picotap->pico_frame_rxbuf, sizeof(len));
memmove(tap->pico_frame_rxbuf, tap->pico_frame_rxbuf + mylen, MAX_PICO_FRAME_RX_BUF_SZ-mylen); // shift buffer
picotap->pico_frame_rxbuf_tot-=mylen;
*/
memset(tap->pico_frame_rxbuf,0,MAX_PICO_FRAME_RX_BUF_SZ);
picotap->pico_frame_rxbuf_tot=0;
}
memcpy(tap->pico_frame_rxbuf + tap->pico_frame_rxbuf_tot, &newlen, sizeof(newlen)); // size of frame + meta
memcpy(tap->pico_frame_rxbuf + tap->pico_frame_rxbuf_tot + sizeof(newlen), &ethhdr, sizeof(ethhdr)); // new eth header
memcpy(tap->pico_frame_rxbuf + tap->pico_frame_rxbuf_tot + sizeof(newlen) + sizeof(ethhdr), data, len); // frame data
tap->pico_frame_rxbuf_tot += newlen;
DEBUG_FLOW(" [ ZTWIRE -> FBUF ] Move FRAME(sz=%d) into FBUF(sz=%d), data_len=%d", newlen, picotap->pico_frame_rxbuf_tot, len);
}
// Called periodically by the stack, this removes data from the locked memory buffer (FBUF) and feeds it into the stack.
// A maximum of 'loop_score' frames can be processed in each call
// -----------------------------------------
// | TAP <-> MEM BUFFER <-> STACK <-> APP |
// | |----------------->| | RX
// | APP <-> I/O BUFFER <-> STACK <-> TAP |
// | |
// -----------------------------------------
int pico_eth_poll(struct pico_device *dev, int loop_score)
{
// OPTIMIZATION: The copy logic and/or buffer structure should be reworked for better performance after the BETA
// SocketTap *tap = (SocketTap*)netif->state;
Mutex::Lock _l(picotap->_pico_frame_rxbuf_m);
unsigned char frame[SDK_MTU];
int len;
while (picotap->pico_frame_rxbuf_tot > 0 && loop_score > 0) {
//DEBUG_FLOW(" [ FBUF -> STACK] Frame buffer SZ=%d", picotap->pico_frame_rxbuf_tot);
memset(frame, 0, sizeof(frame));
len = 0;
memcpy(&len, picotap->pico_frame_rxbuf, sizeof(len)); // get frame len
if(len >= 0) {
//DEBUG_FLOW(" [ FBUF -> STACK] Moving FRAME of size (%d) from FBUF(sz=%d) into stack",len, picotap->pico_frame_rxbuf_tot-len);
memcpy(frame, picotap->pico_frame_rxbuf + sizeof(len), len-(sizeof(len)) ); // get frame data
memmove(picotap->pico_frame_rxbuf, picotap->pico_frame_rxbuf + len, MAX_PICO_FRAME_RX_BUF_SZ-len); // shift buffer
pico_stack_recv(dev, (uint8_t*)frame, (len-sizeof(len)));
picotap->pico_frame_rxbuf_tot-=len;
}
else {
DEBUG_ERROR("Skipping frame of size (%d)",len);
exit(0);
}
loop_score--;
}
return loop_score;
}
// Creates a new pico_socket and Connection object to represent a new connection to be.
Connection *picoTCP::pico_handleSocket(PhySocket *sock, void **uptr, struct socket_st* socket_rpc)
{
struct pico_socket * psock;
int protocol, protocol_version;
#if defined(SDK_IPV4)
protocol_version = PICO_PROTO_IPV4;
#elif defined(SDK_IPV6)
protocol_version = PICO_PROTO_IPV6;
#endif
if(socket_rpc->socket_type == SOCK_DGRAM) {
protocol = PICO_PROTO_UDP;
psock = pico_socket_open(protocol_version, protocol, &pico_cb_socket_activity);
}
if(socket_rpc->socket_type == SOCK_STREAM) {
protocol = PICO_PROTO_TCP;
psock = pico_socket_open(protocol_version, protocol, &pico_cb_socket_activity);
}
if(psock) {
DEBUG_ATTN("physock=%p, picosock=%p", sock, psock);
Connection * newConn = new Connection();
*uptr = newConn;
newConn->type = socket_rpc->socket_type;
newConn->sock = sock;
/*
int res = 0;
int sendbuff = UNIX_SOCK_BUF_SIZE;
socklen_t optlen = sizeof(sendbuff);
res = setsockopt(picotap->_phy.getDescriptor(sock), SOL_SOCKET, SO_RCVBUF, &sendbuff, sizeof(sendbuff));
if(res == -1)
//DEBUG_ERROR("Error while setting RX buffer limits");
res = setsockopt(picotap->_phy.getDescriptor(sock), SOL_SOCKET, SO_SNDBUF, &sendbuff, sizeof(sendbuff));
if(res == -1)
//DEBUG_ERROR("Error while setting TX buffer limits");
// Get buffer size
// optlen = sizeof(sendbuff);
// res = getsockopt(picotap->_phy.getDescriptor(sock), SOL_SOCKET, SO_SNDBUF, &sendbuff, &optlen);
// DEBUG_INFO("buflen=%d", sendbuff);
*/
newConn->local_addr = NULL;
newConn->picosock = psock;
picotap->_Connections.push_back(newConn);
memset(newConn->rxbuf, 0, DEFAULT_UDP_RX_BUF_SZ);
return newConn;
}
else
DEBUG_ERROR("failed to create pico_socket");
return NULL;
}
// Writes data from the I/O buffer to the network stack
// -----------------------------------------
// | TAP <-> MEM BUFFER <-> STACK <-> APP |
// | |
// | APP <-> I/O BUFFER <-> STACK <-> TAP |
// | |----------------->| | TX
// -----------------------------------------
void picoTCP::pico_handleWrite(Connection *conn)
{
if(!conn || !conn->picosock) {
DEBUG_ERROR(" invalid connection");
return;
}
int max, r, max_write_len = conn->txsz < SDK_MTU ? conn->txsz : SDK_MTU;
if((r = pico_socket_write(conn->picosock, &conn->txbuf, max_write_len)) < 0) {
DEBUG_ERROR("unable to write to picosock=%p, r=%d", (conn->picosock), r);
return;
}
// TODO: Errors
/*
if(pico_err == PICO_ERR_EINVAL)
DEBUG_ERROR("PICO_ERR_EINVAL - invalid argument");
if(pico_err == PICO_ERR_EIO)
DEBUG_ERROR("PICO_ERR_EIO - input/output error");
if(pico_err == PICO_ERR_ENOTCONN)
DEBUG_ERROR("PICO_ERR_ENOTCONN - the socket is not connected");
if(pico_err == PICO_ERR_ESHUTDOWN)
DEBUG_ERROR("PICO_ERR_ESHUTDOWN - cannot send after transport endpoint shutdown");
if(pico_err == PICO_ERR_EADDRNOTAVAIL)
DEBUG_ERROR("PICO_ERR_EADDRNOTAVAIL - address not available");
if(pico_err == PICO_ERR_EHOSTUNREACH)
DEBUG_ERROR("PICO_ERR_EHOSTUNREACH - host is unreachable");
if(pico_err == PICO_ERR_ENOMEM)
DEBUG_ERROR("PICO_ERR_ENOMEM - not enough space");
if(pico_err == PICO_ERR_EAGAIN)
DEBUG_ERROR("PICO_ERR_EAGAIN - resource temporarily unavailable");
*/
// adjust buffer
int sz = (conn->txsz)-r;
if(sz)
memmove(&conn->txbuf, (conn->txbuf+r), sz);
conn->txsz -= r;
if(conn->type == SOCK_STREAM) {
max = DEFAULT_TCP_TX_BUF_SZ;
DEBUG_TRANS("[TCP TX] ---> :: {TX: %.3f%%, RX: %.3f%%, physock=%p} :: %d bytes",
(float)conn->txsz / (float)max, (float)conn->rxsz / max, conn->sock, r);
}
if(conn->type == SOCK_DGRAM) {
max = DEFAULT_UDP_TX_BUF_SZ;
DEBUG_TRANS("[UDP TX] ---> :: {TX: %.3f%%, RX: %.3f%%, physock=%p} :: %d bytes",
(float)conn->txsz / (float)max, (float)conn->rxsz / max, conn->sock, r);
}
}
// Instructs the stack to connect to a remote host
void picoTCP::pico_handleConnect(PhySocket *sock, PhySocket *rpcSock, Connection *conn, struct connect_st* connect_rpc)
{
if(conn->picosock) {
struct sockaddr_in *addr = (struct sockaddr_in *) &connect_rpc->addr;
int ret;
// TODO: Rewrite this
#if defined(SDK_IPV4)
struct pico_ip4 zaddr;
struct sockaddr_in *in4 = (struct sockaddr_in*)&connect_rpc->addr;
char ipv4_str[INET_ADDRSTRLEN];
inet_ntop(AF_INET, &(in4->sin_addr), ipv4_str, INET_ADDRSTRLEN);
pico_string_to_ipv4(ipv4_str, &(zaddr.addr));
//DEBUG_ATTN("addr=%s:%d", ipv4_str, Utils::ntoh(addr->sin_port));
ret = pico_socket_connect(conn->picosock, &zaddr, addr->sin_port);
#elif defined(SDK_IPV6) // "fd56:5799:d8f6:1238:8c99:9322:30ce:418a"
struct pico_ip6 zaddr;
struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&connect_rpc->addr;
char ipv6_str[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &(in6->sin6_addr), ipv6_str, INET6_ADDRSTRLEN);
pico_string_to_ipv6(ipv6_str, zaddr.addr);
//DEBUG_ATTN("addr=%s:%d", ipv6_str, Utils::ntoh(addr->sin_port));
ret = pico_socket_connect(conn->picosock, &zaddr, addr->sin_port);
#endif
memcpy(&(conn->peer_addr), &connect_rpc->addr, sizeof(struct sockaddr_storage));
if(ret == PICO_ERR_EPROTONOSUPPORT)
DEBUG_ERROR("PICO_ERR_EPROTONOSUPPORT");
if(ret == PICO_ERR_EINVAL)
DEBUG_ERROR("PICO_ERR_EINVAL");
if(ret == PICO_ERR_EHOSTUNREACH)
DEBUG_ERROR("PICO_ERR_EHOSTUNREACH");
picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), 0, ERR_OK);
}
}
// Instructs the stack to bind to a given address
void picoTCP::pico_handleBind(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct bind_st *bind_rpc)
{
Connection *conn = picotap->getConnection(sock);
if(!sock) {
DEBUG_ERROR("invalid connection");
return;
}
struct sockaddr_in *addr = (struct sockaddr_in *) &bind_rpc->addr;
int ret;
// TODO: Rewrite this
#if defined(SDK_IPV4)
struct pico_ip4 zaddr;
struct sockaddr_in *in4 = (struct sockaddr_in*)&bind_rpc->addr;
char ipv4_str[INET_ADDRSTRLEN];
inet_ntop(AF_INET, &(in4->sin_addr), ipv4_str, INET_ADDRSTRLEN);
pico_string_to_ipv4(ipv4_str, &(zaddr.addr));
DEBUG_ATTN("addr=%s:%d, physock=%p, picosock=%p", ipv4_str, Utils::ntoh(addr->sin_port), sock, (conn->picosock));
ret = pico_socket_bind(conn->picosock, &zaddr, (uint16_t*)&(addr->sin_port));
#elif defined(SDK_IPV6)
struct pico_ip6 zaddr;
struct sockaddr_in6 *in6 = (struct sockaddr_in6*)&bind_rpc->addr;
char ipv6_str[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &(in6->sin6_addr), ipv6_str, INET6_ADDRSTRLEN);
pico_string_to_ipv6(ipv6_str, zaddr.addr);
DEBUG_ATTN("addr=%s:%d, physock=%p, picosock=%p", ipv6_str, Utils::ntoh(addr->sin_port), sock, (conn->picosock));
ret = pico_socket_bind(conn->picosock, &zaddr, (uint16_t*)&(addr->sin_port));
#endif
if(ret < 0) {
DEBUG_ERROR("unable to bind pico_socket(%p), err=%d", (conn->picosock), ret);
if(ret == PICO_ERR_EINVAL) {
DEBUG_ERROR("PICO_ERR_EINVAL - invalid argument");
picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), -1, EINVAL);
}
if(ret == PICO_ERR_ENOMEM) {
DEBUG_ERROR("PICO_ERR_ENOMEM - not enough space");
picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), -1, ENOMEM);
}
if(ret == PICO_ERR_ENXIO) {
DEBUG_ERROR("PICO_ERR_ENXIO - no such device or address");
picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), -1, ENXIO);
}
}
picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), ERR_OK, ERR_OK); // success
}
// Puts a pico_socket into a listening state to receive incoming connection requests
void picoTCP::pico_handleListen(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct listen_st *listen_rpc)
{
Connection *conn = picotap->getConnection(sock);
DEBUG_ATTN("physock=%p, conn=%p, picosock=%p", sock, conn, conn->picosock);
if(!sock || !conn) {
DEBUG_ERROR("invalid connection");
return;
}
int ret, backlog = 100;
if((ret = pico_socket_listen(conn->picosock, backlog)) < 0)
{
if(ret == PICO_ERR_EINVAL) {
DEBUG_ERROR("PICO_ERR_EINVAL - invalid argument");
picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), -1, EINVAL);
}
if(ret == PICO_ERR_EISCONN) {
DEBUG_ERROR("PICO_ERR_EISCONN - socket is connected");
picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), -1, EISCONN);
}
}
picotap->sendReturnValue(picotap->_phy.getDescriptor(rpcSock), ERR_OK, ERR_OK); // success
}
// Feeds data into the local app socket from the I/O buffer associated with the "connection"
// [ (APP<-ZTSOCK) <- RXBUF ]
// -----------------------------------------
// | TAP <-> MEM BUFFER <-> STACK <-> APP |
// | |
// | APP <-> I/O BUFFER <-> STACK <-> TAP |
// | |<---------------| | RX
// -----------------------------------------
void picoTCP::pico_handleRead(PhySocket *sock,void **uptr,bool lwip_invoked)
{
if(!lwip_invoked) {
// The stack thread writes to RXBUF as well
picotap->_tcpconns_m.lock();
picotap->_rx_buf_m.lock();
}
int tot = 0, n = -1, write_attempts = 0;
Connection *conn = picotap->getConnection(sock);
if(conn && conn->rxsz) {
//
if(conn->type==SOCK_DGRAM) {
// Try to write SDK_MTU-sized chunk to app socket
while(tot < SDK_MTU) {
write_attempts++;
n = picotap->_phy.streamSend(conn->sock, (conn->rxbuf)+tot, SDK_MTU);
tot += n;
DEBUG_FLOW(" [ ZTSOCK <- RXBUF] wrote = %d, errno=%d", n, errno);
// If socket is unavailable, attempt to write N times before giving up
if(errno==35) {
if(write_attempts == 1024) {
n = SDK_MTU; // say we wrote it, even though we didn't (drop packet)
tot = SDK_MTU;
}
}
}
int payload_sz, addr_sz_offset = sizeof(struct sockaddr_storage);
memcpy(&payload_sz, conn->rxbuf + addr_sz_offset, sizeof(int));
struct sockaddr_storage addr;
memcpy(&addr, conn->rxbuf, addr_sz_offset);
// adjust buffer
//DEBUG_FLOW(" [ ZTSOCK <- RXBUF] Copying data from receiving buffer to ZT-controlled app socket (n=%d, payload_sz=%d)", n, payload_sz);
if(conn->rxsz-n > 0) { // If more remains on buffer
memcpy(conn->rxbuf, conn->rxbuf+SDK_MTU, conn->rxsz - SDK_MTU);
//DEBUG_FLOW(" [ ZTSOCK <- RXBUF] Data(%d) still on buffer, moving it up by one MTU", conn->rxsz-n);
////memset(conn->rxbuf, 0, DEFAULT_UDP_RX_BUF_SZ);
////conn->rxsz=SDK_MTU;
}
conn->rxsz -= SDK_MTU;
}
//
if(conn->type==SOCK_STREAM) {
n = picotap->_phy.streamSend(conn->sock, conn->rxbuf, conn->rxsz);
if(conn->rxsz-n > 0) // If more remains on buffer
memcpy(conn->rxbuf, conn->rxbuf+n, conn->rxsz - n);
conn->rxsz -= n;
}
// Notify ZT I/O loop that it has new buffer contents
if(n) {
if(conn->type==SOCK_STREAM) {
#if DEBUG_LEVEL >= MSG_TRANSFER
float max = conn->type == SOCK_STREAM ? (float)DEFAULT_TCP_RX_BUF_SZ : (float)DEFAULT_UDP_RX_BUF_SZ;
DEBUG_TRANS("[TCP RX] <--- :: {TX: %.3f%%, RX: %.3f%%, physock=%p} :: %d bytes",
(float)conn->txsz / max, (float)conn->rxsz / max, conn->sock, n);
#endif
}
if(conn->rxsz == 0) {
picotap->_phy.setNotifyWritable(sock, false);
}
else {
picotap->_phy.setNotifyWritable(sock, true);
}
}
else {
picotap->_phy.setNotifyWritable(sock, false);
}
}
if(!lwip_invoked) {
picotap->_tcpconns_m.unlock();
picotap->_rx_buf_m.unlock();
}
DEBUG_FLOW(" [ ZTSOCK <- RXBUF] Emitted (%d) from RXBUF(%d) to socket", tot, conn->rxsz);
}
// Closes a pico_socket
void picoTCP::pico_handleClose(PhySocket *sock)
{
/*
int ret;
if(conn && conn->picosock) {
if((ret = pico_socket_close(conn->picosock)) < 0) {
DEBUG_ERROR("error closing pico_socket(%p)", (void*)(conn->picosock));
// sendReturnValue()
}
return;
}
DEBUG_ERROR("invalid connection or pico_socket");
*/
}
}