优化代码:去除无使用的类

This commit is contained in:
zhanghongqing
2022-07-13 16:46:58 +08:00
parent 06042db9b1
commit 95eefbd8b7
25 changed files with 81 additions and 330 deletions

View File

@@ -8,58 +8,40 @@ max.poll.records=5000
#kafka source poll bytes
max.partition.fetch.bytes=31457280
#====================Kafka KafkaProducer====================#
#producer重试的次数设置
#producer\u91CD\u8BD5\u7684\u6B21\u6570\u8BBE\u7F6E
retries=0
#他的含义就是说一个Batch被创建之后最多过多久不管这个Batch有没有写满都必须发送出去了
#\u4ED6\u7684\u542B\u4E49\u5C31\u662F\u8BF4\u4E00\u4E2ABatch\u88AB\u521B\u5EFA\u4E4B\u540E\uFF0C\u6700\u591A\u8FC7\u591A\u4E45\uFF0C\u4E0D\u7BA1\u8FD9\u4E2ABatch\u6709\u6CA1\u6709\u5199\u6EE1\uFF0C\u90FD\u5FC5\u987B\u53D1\u9001\u51FA\u53BB\u4E86
linger.ms=10
#如果在超时之前未收到响应,客户端将在必要时重新发送请求
#\u5982\u679C\u5728\u8D85\u65F6\u4E4B\u524D\u672A\u6536\u5230\u54CD\u5E94\uFF0C\u5BA2\u6237\u7AEF\u5C06\u5728\u5FC5\u8981\u65F6\u91CD\u65B0\u53D1\u9001\u8BF7\u6C42
request.timeout.ms=30000
#producer都是按照batch进行发送的,批次大小,默认:16384
#producer\u90FD\u662F\u6309\u7167batch\u8FDB\u884C\u53D1\u9001\u7684,\u6279\u6B21\u5927\u5C0F\uFF0C\u9ED8\u8BA4:16384
batch.size=262144
#Producer端用于缓存消息的缓冲区大小
#Producer\u7AEF\u7528\u4E8E\u7F13\u5B58\u6D88\u606F\u7684\u7F13\u51B2\u533A\u5927\u5C0F
#128M
buffer.memory=134217728
#这个参数决定了每次发送给Kafka服务器请求的最大大小,默认1048576
#\u8FD9\u4E2A\u53C2\u6570\u51B3\u5B9A\u4E86\u6BCF\u6B21\u53D1\u9001\u7ED9Kafka\u670D\u52A1\u5668\u8BF7\u6C42\u7684\u6700\u5927\u5927\u5C0F,\u9ED8\u8BA41048576
#10M
max.request.size=10485760
#====================kafka default====================#
#kafka SASL验证用户名-加密
#kafka SASL\u9A8C\u8BC1\u7528\u6237\u540D-\u52A0\u5BC6
kafka.user=nsyGpHKGFA4KW0zro9MDdw==
#kafka SASL及SSL验证密码-加密
#kafka SASL\u53CASSL\u9A8C\u8BC1\u5BC6\u7801-\u52A0\u5BC6
kafka.pin=6MleDyA3Z73HSaXiKsDJ2k7Ys8YWLhEJ
#生产者ack
#\u751F\u4EA7\u8005ack
producer.ack=1
#====================nacos default====================#
#nacos username
nacos.username=nacos
#nacos password
nacos.pin=nacos
#nacos group
nacos.group=Galaxy
#====================Topology Default====================#
#hbase table name
hbase.table.name=tsg_galaxy:relation_framedip_account
#邮件默认编码
#\u90AE\u4EF6\u9ED8\u8BA4\u7F16\u7801
mail.default.charset=UTF-8
#0不做任何校验1弱类型校验
#0\u4E0D\u505A\u4EFB\u4F55\u6821\u9A8C\uFF0C1\u5F31\u7C7B\u578B\u6821\u9A8C
log.transform.type=1
#两个输出之间的最大时间(单位milliseconds)
#\u4E24\u4E2A\u8F93\u51FA\u4E4B\u95F4\u7684\u6700\u5927\u65F6\u95F4(\u5355\u4F4Dmilliseconds)
buffer.timeout=5000
#====================临时配置-待删除====================#
#网关APP_ID 获取接口
app.id.http=http://192.168.44.20:9999/open-api/appDicList
#app_id 更新时间如填写0则不更新缓存
app.tick.tuple.freq.secs=0

View File

@@ -8,51 +8,25 @@ sink.kafka.servers=192.168.45.102:9092
#zookeeper \u5730\u5740 \u7528\u4E8E\u914D\u7F6Elog_id
zookeeper.servers=192.168.45.102:2181
#hbase zookeeper\u5730\u5740 \u7528\u4E8E\u8FDE\u63A5HBase
hbase.zookeeper.servers=192.168.45.102:2181
#--------------------------------HTTP/\u5B9A\u4F4D\u5E93------------------------------#
#\u5B9A\u4F4D\u5E93\u5730\u5740
tools.library=D:\\workerspace\\dat\\
#--------------------------------nacos\u914D\u7F6E------------------------------#
#nacos \u5730\u5740
nacos.server=192.168.45.102:8848
#nacos namespace
nacos.schema.namespace=prod
#nacos data id
nacos.data.id=session_record.json
#--------------------------------Kafka\u6D88\u8D39/\u751F\u4EA7\u914D\u7F6E------------------------------#
#kafka \u63A5\u6536\u6570\u636Etopic
source.kafka.topic=atest
#\u8865\u5168\u6570\u636E \u8F93\u51FA topic
sink.kafka.topic=atest2
#\u8BFB\u53D6topic,\u5B58\u50A8\u8BE5spout id\u7684\u6D88\u8D39offset\u4FE1\u606F\uFF0C\u53EF\u901A\u8FC7\u8BE5\u62D3\u6251\u547D\u540D;\u5177\u4F53\u5B58\u50A8offset\u7684\u4F4D\u7F6E\uFF0C\u786E\u5B9A\u4E0B\u6B21\u8BFB\u53D6\u4E0D\u91CD\u590D\u7684\u6570\u636E\uFF1B
group.id=flinktest-102
group.id=knowledge-group
#--------------------------------topology\u914D\u7F6E------------------------------#
#consumer \u5E76\u884C\u5EA6
source.parallelism=1
#\u8F6C\u6362\u51FD\u6570\u5E76\u884C\u5EA6
transform.parallelism=1
#kafka producer \u5E76\u884C\u5EA6
sink.parallelism=1
#\u6570\u636E\u4E2D\u5FC3\uFF0C\u53D6\u503C\u8303\u56F4(0-31)
data.center.id.num=0
#hbase \u66F4\u65B0\u65F6\u95F4\uFF0C\u5982\u586B\u51990\u5219\u4E0D\u66F4\u65B0\u7F13\u5B58
hbase.tick.tuple.freq.secs=180
#--------------------------------\u9ED8\u8BA4\u503C\u914D\u7F6E------------------------------#
#1 connection\u65E5\u5FD7 \uFF0C2 dns\u65E5\u5FD7
log.need.complete=2
@@ -60,7 +34,6 @@ log.need.complete=2
#\u751F\u4EA7\u8005\u538B\u7F29\u6A21\u5F0F none or snappy
producer.kafka.compression.type=none
source.kafka.topic.connection=connection_record_log
source.kafka.topic.sketch=connection_sketch_record_log
source.kafka.topic.dns=dns_record_log
@@ -78,36 +51,30 @@ sink.arango.table.r.resolve.domain2ip=R_RESOLVE_DOMAIN2IP
sink.arango.table.r.nx.domain2domain=R_NX_DOMAIN2DOMAIN
#clickhouse \u5165\u5E93
ck.hosts=192.168.45.102:8123
ck.hosts=192.168.45.102:8123,192.168.45.102:8123
ck.database=tsg_galaxy_v3
ck.username=default
ck.pin=galaxy2019
#\u5355\u4F4D\u6BEB\u79D2
ck.connection.timeout=10000
ck.socket.timeout=300000
ck.batch=10000
#connection_record_log
flink.watermark.max.orderness=50
#\u7EDF\u8BA1\u65F6\u95F4\u95F4\u9694 \u5355\u4F4Ds
#flink \u65E5\u5FD7\u5EF6\u8FDF\u8D85\u65F6\u65F6\u95F4
flink.watermark.max.delay.time=50
#ck relation\u7EDF\u8BA1\u65F6\u95F4\u95F4\u9694 \u5355\u4F4Ds
log.aggregate.duration=5
#arangodb \u7EDF\u8BA1\u65F6\u95F4\u95F4\u9694 \u5355\u4F4Ds
log.aggregate.duration.graph=5
#arangoDB\u53C2\u6570\u914D\u7F6E
arangoDB.host=192.168.45.102
#arangoDB.host=192.168.40.224
arangoDB.port=8529
arangoDB.user=root
arangoDB.password=galaxy_2019
arangoDB.DB.name=knowledge
arangoDB.batch=100000
arangoDB.ttl=3600
arangoDB.read.limit=
update.arango.batch=10000
thread.pool.number=10
thread.await.termination.time=10
sink.batch.time.out=5
sink.batch=10000
sink.batch.delay.time=5