TSG-8182, toroad支持自动清理历史日志文件.

升级toroad, wire_graft rpm版本.
This commit is contained in:
lijia
2021-10-26 17:43:49 +08:00
parent b069ae6835
commit 1c2229d5c5
9 changed files with 1802 additions and 3 deletions

View File

@@ -3,7 +3,7 @@
wannat_global:
common:
redis_server_ip: "192.168.44.72"
redis_server_port: 7002
redis_server_port: 7003
redis_index: 0
bifang_db_server_ip: "192.168.44.72"
bifang_db_username: "root"
@@ -46,8 +46,8 @@ wannat_global:
rpm_files:
natgw_rpm_file: "wannat_natgw-1.3.8.ed8832d-2.el7.x86_64.rpm"
wire_graft_rpm_file: "libwire_graft-1.3.7.b5d9a8a-2.el7.x86_64.rpm"
toroad_rpm_file: "toroad-1.2.4.d25d72a-2.el7.x86_64.rpm"
wire_graft_rpm_file: "libwire_graft-1.4.1.ec1bc7b-2.el7.x86_64.rpm"
toroad_rpm_file: "toroad-1.2.5.ceffe93-2.el7.x86_64.rpm"
ppp_rpm_file: "ppp-2.4.5-34.el7_7.x86_64.rpm"
pptpd_rpm_file: "pptpd-1.4.0-2.el7.x86_64.rpm"
openvpn_rpm_file: "openvpn-2.4.11-1.el7.x86_64.rpm"

View File

@@ -0,0 +1,820 @@
# -*- text -*-
##
## proxy.conf -- proxy radius and realm configuration directives
##
## $Id: a72beebf52d791616a09ebd69dd7ea9349597363 $
#######################################################################
#
# Proxy server configuration
#
# This entry controls the servers behaviour towards ALL other servers
# to which it sends proxy requests.
#
proxy server {
#
# Note that as of 2.0, the "synchronous", "retry_delay",
# "retry_count", and "dead_time" have all been deprecated.
# For backwards compatibility, they are are still accepted
# by the server, but they ONLY apply to the old-style realm
# configuration. i.e. realms with "authhost" and/or "accthost"
# entries.
#
# i.e. "retry_delay" and "retry_count" have been replaced
# with per-home-server configuration. See the "home_server"
# example below for details.
#
# i.e. "dead_time" has been replaced with a per-home-server
# "revive_interval". We strongly recommend that this not
# be used, however. The new method is much better.
#
# In 2.0, the server is always "synchronous", and setting
# "synchronous = no" is impossible. This simplifies the
# server and increases the stability of the network.
# However, it means that the server (i.e. proxy) NEVER
# originates packets. It proxies packets ONLY when it receives
# a packet or a re-transmission from the NAS. If the NAS never
# re-transmits, the proxy never re-transmits, either. This can
# affect fail-over, where a packet does *not* fail over to a
# second home server.. because the NAS never retransmits the
# packet.
#
# If you need to set "synchronous = no", please send a
# message to the list <freeradius-users@lists.freeradius.org>
# explaining why this feature is vital for your network.
#
# If a realm exists, but there are no live home servers for
# it, we can fall back to using the "DEFAULT" realm. This is
# most useful for accounting, where the server can proxy
# accounting requests to home servers, but if they're down,
# use a DEFAULT realm that is LOCAL (i.e. accthost = LOCAL),
# and then store the packets in the "detail" file. That data
# can be later proxied to the home servers by radrelay, when
# those home servers come back up again.
# Setting this to "yes" may have issues for authentication.
# i.e. If you are proxying for two different ISP's, and then
# act as a general dial-up for Gric. If one of the first two
# ISP's has their RADIUS server go down, you do NOT want to
# proxy those requests to GRIC. Instead, you probably want
# to just drop the requests on the floor. In that case, set
# this value to 'no'.
#
# allowed values: {yes, no}
#
default_fallback = no
}
#######################################################################
#
# Configuration for the proxy realms.
#
# As of 2.0, the "realm" configuration has changed. Instead of
# specifying "authhost" and "accthost" in a realm section, the home
# servers are specified separately in a "home_server" section. For
# backwards compatibility, you can still use the "authhost" and
# "accthost" directives. If you only have one home server for a
# realm, it is easier to use the old-style configuration.
#
# However, if you have multiple servers for a realm, we STRONGLY
# suggest moving to the new-style configuration.
#
#
# Load-balancing and failover between home servers is handled via
# a "home_server_pool" section.
#
# Finally, The "realm" section defines the realm, some options, and
# indicates which server pool should be used for the realm.
#
# This change means that simple configurations now require multiple
# sections to define a realm. However, complex configurations
# are much simpler than before, as multiple realms can share the same
# server pool.
#
# That is, realms point to server pools, and server pools point to
# home servers. Multiple realms can point to one server pool. One
# server pool can point to multiple home servers. Each home server
# can appear in one or more pools.
#
# See sites-available/tls for an example of configuring home servers,
# pools, and realms with TLS.
#
######################################################################
#
# This section defines a "Home Server" which is another RADIUS
# server that gets sent proxied requests. In earlier versions
# of FreeRADIUS, home servers were defined in "realm" sections,
# which was awkward. In 2.0, they have been made independent
# from realms, which is better for a number of reasons.
#
home_server localhost {
#
# Home servers can be sent Access-Request packets
# or Accounting-Request packets.
#
# Allowed values are:
# auth - Handles Access-Request packets
# acct - Handles Accounting-Request packets
# auth+acct - Handles Access-Request packets at "port",
# and Accounting-Request packets at "port + 1"
# coa - Handles CoA-Request and Disconnect-Request packets.
# See also raddb/sites-available/originate-coa
type = auth
#
# Configure ONE OF the following entries:
#
# IPv4 address
#
ipaddr = 127.0.0.1
# OR IPv6 address
# ipv6addr = ::1
# OR virtual server
# virtual_server = foo
# Note that while both ipaddr and ipv6addr will accept
# both addresses and host names, we do NOT recommend
# using host names. When you specify a host name, the
# server has to do a DNS lookup to find the IP address
# of the home server. If the DNS server is slow or
# unresponsive, it means that FreeRADIUS will NOT be
# able to determine the address, and will therefore NOT
# start.
#
# Also, the mapping of host name to address is done ONCE
# when the server starts. If DNS is later updated to
# change the address, FreeRADIUS will NOT discover that
# until after a re-start, or a HUP.
#
# If you specify a virtual_server here, then requests
# will be proxied internally to that virtual server.
# These requests CANNOT be proxied again, however. The
# intent is to have the local server handle packets
# when all home servers are dead.
#
# Requests proxied to a virtual server will be passed
# through the pre-proxy and post-proxy sections, just
# like any other request. See also the sample "realm"
# configuration, below.
#
# None of the rest of the home_server configuration is used
# for the "virtual_server" configuration.
#
# The port to which packets are sent.
#
# Usually 1812 for type "auth", and 1813 for type "acct".
# Older servers may use 1645 and 1646.
# Use 3799 for type "coa"
#
port = 1812
#
# The transport protocol.
#
# If unspecified, defaults to "udp", which is the traditional
# RADIUS transport. It may also be "tcp", in which case TCP
# will be used to talk to this home server.
#
# When home servers are put into pools, the pool can contain
# home servers with both UDP and TCP transports.
#
#proto = udp
#
# The shared secret use to "encrypt" and "sign" packets between
# FreeRADIUS and the home server.
#
# The secret can be any string, up to 8k characters in length.
#
# Control codes can be entered vi octal encoding,
# e.g. "\101\102" == "AB"
# Quotation marks can be entered by escaping them,
# e.g. "foo\"bar"
# Spaces or other "special" characters can be entered
# by putting quotes around the string.
# e.g. "foo bar"
# "foo;bar"
#
secret = testing123
############################################################
#
# The rest of the configuration items listed here are optional,
# and do not have to appear in every home server definition.
#
############################################################
#
# You can optionally specify the source IP address used when
# proxying requests to this home server. When the src_ipaddr
# it set, the server will automatically create a proxy
# listener for that IP address.
#
# If you specify this field for one home server, you will
# likely need to specify it for ALL home servers.
#
# If you don't care about the source IP address, leave this
# entry commented.
#
# src_ipaddr = 127.0.0.1
#
# If the home server does not respond to a request within
# this time, the server marks the request as timed out.
# After "response_timeouts", the home server is marked
# as being "zombie", and "zombie_period" starts.
#
# The response window can be a number between 0.001 and 60.000
# Values on the low end are discouraged, as they will likely
# not work due to limitations of operating system timers.
#
# The default response window is large because responses may
# be slow, especially when proxying across the Internet.
#
# Useful range of values: 5 to 60
response_window = 20
#
# Start "zombie_period" after this many responses have
# timed out.
#
# response_timeouts = 1
#
# If you want the old behaviour of the server rejecting
# proxied requests after "response_window" timeout, set
# the following configuration item to "yes".
#
# This configuration WILL be removed in a future release
# If you believe you need it, email the freeradius-users
# list, and explain why it should stay in the server.
#
# no_response_fail = no
#
# If the home server does not respond to ANY packets during
# the "zombie period", it will be considered to be dead.
#
# A home server that is marked "zombie" will be used for
# proxying as a low priority. If there are live servers,
# they will always be preferred to a zombie. Requests will
# be proxied to a zombie server ONLY when there are no
# live servers.
#
# Any request that is proxied to a home server will continue
# to be sent to that home server until the home server is
# marked dead. At that point, it will fail over to another
# server, if a live server is available. If none is available,
# then the "post-proxy-type fail" handler will be called.
#
# If "status_check" below is something other than "none", then
# the server will start sending status checks at the start of
# the zombie period. It will continue sending status checks
# until the home server is marked "alive".
#
# Useful range of values: 20 to 120
zombie_period = 40
############################################################
#
# As of 2.0, FreeRADIUS supports RADIUS layer "status
# checks". These are used by a proxy server to see if a home
# server is alive.
#
# These status packets are sent ONLY if the proxying server
# believes that the home server is dead. They are NOT sent
# if the proxying server believes that the home server is
# alive. They are NOT sent if the proxying server is not
# proxying packets.
#
# If the home server responds to the status check packet,
# then it is marked alive again, and is returned to use.
#
############################################################
#
# Some home servers do not support status checks via the
# Status-Server packet. Others may not have a "test" user
# configured that can be used to query the server, to see if
# it is alive. For those servers, we have NO WAY of knowing
# when it becomes alive again. Therefore, after the server
# has been marked dead, we wait a period of time, and mark
# it alive again, in the hope that it has come back to
# life.
#
# If it has NOT come back to life, then FreeRADIUS will wait
# for "zombie_period" before marking it dead again. During
# the "zombie_period", ALL AUTHENTICATIONS WILL FAIL, because
# the home server is still dead. There is NOTHING that can
# be done about this, other than to enable the status checks,
# as documented below.
#
# e.g. if "zombie_period" is 40 seconds, and "revive_interval"
# is 300 seconds, the for 40 seconds out of every 340, or about
# 10% of the time, all authentications will fail.
#
# If the "zombie_period" and "revive_interval" configurations
# are set smaller, than it is possible for up to 50% of
# authentications to fail.
#
# As a result, we recommend enabling status checks, and
# we do NOT recommend using "revive_interval".
#
# The "revive_interval" is used ONLY if the "status_check"
# entry below is "none". Otherwise, it will not be used,
# and should be deleted.
#
# Useful range of values: 60 to 3600
revive_interval = 120
#
# The proxying server (i.e. this one) can do periodic status
# checks to see if a dead home server has come back alive.
#
# If set to "none", then the other configuration items listed
# below are not used, and the "revive_interval" time is used
# instead.
#
# If set to "status-server", the Status-Server packets are
# sent. Many RADIUS servers support Status-Server. If a
# server does not support it, please contact the server
# vendor and request that they add it. With status-server if
# the home server is marked as a zombie and a status-server
# response is received, it will be immediately marked as live.
#
# This prevents spurious failovers in federations such as
# eduroam, where intermediary proxy servers may be functional
# but the servers of a home institution may not be,
#
# If set to "request", then Access-Request, or Accounting-Request
# packets are sent, depending on the "type" entry above (auth/acct).
#
# Allowed values: none, status-server, request
status_check = status-server
#
# If the home server does not support Status-Server packets,
# then the server can still send Access-Request or
# Accounting-Request packets, with a pre-defined user name.
#
# This practice is NOT recommended, as it may potentially let
# users gain network access by using these "test" accounts!
#
# If it is used, we recommend that the home server ALWAYS
# respond to these Access-Request status checks with
# Access-Reject. The status check just needs an answer, it
# does not need an Access-Accept.
#
# For Accounting-Request status checks, only the username
# needs to be set. The rest of the accounting attribute are
# set to default values. The home server that receives these
# accounting packets SHOULD NOT treat them like normal user
# accounting packets. i.e It should probably NOT log them to
# a database.
#
# username = "test_user_please_reject_me"
# password = "this is really secret"
#
# Configure the interval between sending status check packets.
#
# Setting it too low increases the probability of spurious
# fail-over and fallback attempts.
#
# Useful range of values: 6 to 120
check_interval = 30
#
# Wait "check_timeout" seconds for a reply to a status check
# packet.
#
check_timeout = 4
#
# Configure the number of status checks in a row that the
# home server needs to respond to before it is marked alive.
#
# If you want to mark a home server as alive after a short
# time period of being responsive, it is best to use a small
# "check_interval", and a large value for
# "num_answers_to_alive". Using a long "check_interval" and
# a small number for "num_answers_to_alive" increases the
# probability of spurious fail-over and fallback attempts.
#
# Useful range of values: 3 to 10
num_answers_to_alive = 3
#
# Limit the total number of outstanding packets to the home
# server.
#
# if ((#request sent) - (#requests received)) > max_outstanding
# then stop sending more packets to the home server
#
# This lets us gracefully fall over when the home server
# is overloaded.
max_outstanding = 65536
#
# The configuration items in the next sub-section are used ONLY
# when "type = coa". It is ignored for all other type of home
# servers.
#
# See RFC 5080 for the definitions of the following terms.
# RAND is a function (internal to FreeRADIUS) returning
# random numbers between -0.1 and +0.1
#
# First Re-transmit occurs after:
#
# RT = IRT + RAND*IRT
#
# Subsequent Re-transmits occur after:
#
# RT = 2 * RTprev + RAND * RTprev
#
# Re-transmits are capped at:
#
# if (MRT && (RT > MRT)) RT = MRT + RAND * MRT
#
# For a maximum number of attempts: MRC
#
# For a maximum (total) period of time: MRD.
#
coa {
# Initial retransmit interval: 1..5
irt = 2
# Maximum Retransmit Timeout: 1..30 (0 == no maximum)
mrt = 16
# Maximum Retransmit Count: 1..20 (0 == retransmit forever)
mrc = 5
# Maximum Retransmit Duration: 5..60
mrd = 30
}
#
# Connection limiting for home servers with "proto = tcp".
#
# This section is ignored for other home servers.
#
limit {
#
# Limit the number of TCP connections to the home server.
#
# The default is 16.
# Setting this to 0 means "no limit"
max_connections = 16
#
# Limit the total number of requests sent over one
# TCP connection. After this number of requests, the
# connection will be closed. Any new packets that are
# proxied to the home server will result in a new TCP
# connection being made.
#
# Setting this to 0 means "no limit"
max_requests = 0
#
# The lifetime, in seconds, of a TCP connection. After
# this lifetime, the connection will be closed.
#
# Setting this to 0 means "forever".
lifetime = 0
#
# The idle timeout, in seconds, of a TCP connection.
# If no packets have been sent over the connection for
# this time, the connection will be closed.
#
# Setting this to 0 means "no timeout".
idle_timeout = 0
}
}
# Sample virtual home server.
#
#
#home_server virtual.example.com {
# virtual_server = virtual.example.com
#}
######################################################################
#
# This section defines a pool of home servers that is used
# for fail-over and load-balancing. In earlier versions of
# FreeRADIUS, fail-over and load-balancing were defined per-realm.
# As a result, if a server had 5 home servers, each of which served
# the same 10 realms, you would need 50 "realm" entries.
#
# In version 2.0, you would need 5 "home_server" sections,
# 10 'realm" sections, and one "home_server_pool" section to tie the
# two together.
#
home_server_pool my_auth_failover {
#
# The type of this pool controls how home servers are chosen.
#
# fail-over - the request is sent to the first live
# home server in the list. i.e. If the first home server
# is marked "dead", the second one is chosen, etc.
#
# load-balance - the least busy home server is chosen,
# where "least busy" is counted by taking the number of
# requests sent to that home server, and subtracting the
# number of responses received from that home server.
#
# If there are two or more servers with the same low
# load, then one of those servers is chosen at random.
# This configuration is most similar to the old
# "round-robin" method, though it is not exactly the same.
#
# Note that load balancing does not work well with EAP,
# as EAP requires packets for an EAP conversation to be
# sent to the same home server. The load balancing method
# does not keep state in between packets, meaning that
# EAP packets for the same conversation may be sent to
# different home servers. This will prevent EAP from
# working.
#
# For non-EAP authentication methods, and for accounting
# packets, we recommend using "load-balance". It will
# ensure the highest availability for your network.
#
# client-balance - the home server is chosen by hashing the
# source IP address of the packet. If that home server
# is down, the next one in the list is used, just as
# with "fail-over".
#
# There is no way of predicting which source IP will map
# to which home server.
#
# This configuration is most useful to do simple load
# balancing for EAP sessions, as the EAP session will
# always be sent to the same home server.
#
# client-port-balance - the home server is chosen by hashing
# the source IP address and source port of the packet.
# If that home server is down, the next one in the list
# is used, just as with "fail-over".
#
# This method provides slightly better load balancing
# for EAP sessions than "client-balance". However, it
# also means that authentication and accounting packets
# for the same session MAY go to different home servers.
#
# keyed-balance - the home server is chosen by hashing (FNV)
# the contents of the Load-Balance-Key attribute from the
# control items. The request is then sent to home server
# chosen by taking:
#
# server = (hash % num_servers_in_pool).
#
# If there is no Load-Balance-Key in the control items,
# the load balancing method is identical to "load-balance".
#
# For most non-EAP authentication methods, The User-Name
# attribute provides a good key. An "unlang" policy can
# be used to copy the User-Name to the Load-Balance-Key
# attribute. This method may not work for EAP sessions,
# as the User-Name outside of the TLS tunnel is often
# static, e.g. "anonymous@realm".
#
#
# The default type is fail-over.
type = fail-over
#
# A virtual_server may be specified here. If so, the
# "pre-proxy" and "post-proxy" sections are called when
# the request is proxied, and when a response is received.
#
# This lets you have one policy for all requests that are proxied
# to a home server. This policy is completely independent of
# any policies used to receive, or process the request.
#
#virtual_server = pre_post_proxy_for_pool
#
# Next, a list of one or more home servers. The names
# of the home servers are NOT the hostnames, but the names
# of the sections. (e.g. home_server foo {...} has name "foo".
#
# Note that ALL home servers listed here have to be of the same
# type. i.e. they all have to be "auth", or they all have to
# be "acct", or the all have to be "auth+acct".
#
home_server = localhost
# Additional home servers can be listed.
# There is NO LIMIT to the number of home servers that can
# be listed, though using more than 10 or so will become
# difficult to manage.
#
# home_server = foo.example.com
# home_server = bar.example.com
# home_server = baz.example.com
# home_server = ...
#
# If ALL home servers are dead, then this "fallback" home server
# is used. If set, it takes precedence over any realm-based
# fallback, such as the DEFAULT realm.
#
# For reasons of stability, this home server SHOULD be a virtual
# server. Otherwise, the fallback may itself be dead!
#
#fallback = virtual.example.com
}
######################################################################
#
#
# This section defines a new-style "realm". Note the in version 2.0,
# there are many fewer configuration items than in 1.x for a realm.
#
# Automatic proxying is done via the "realms" module (see "man
# rlm_realm"). To manually proxy the request put this entry in the
# "users" file:
#
#
#DEFAULT Proxy-To-Realm := "realm_name"
#
#
realm example.com {
#
# Realms point to pools of home servers.
#
# For authentication, the "auth_pool" configuration item
# should point to a "home_server_pool" that was previously
# defined. All of the home servers in the "auth_pool" must
# be of type "auth".
#
# For accounting, the "acct_pool" configuration item
# should point to a "home_server_pool" that was previously
# defined. All of the home servers in the "acct_pool" must
# be of type "acct".
#
# If you have a "home_server_pool" where all of the home servers
# are of type "auth+acct", you can just use the "pool"
# configuration item, instead of specifying both "auth_pool"
# and "acct_pool".
auth_pool = my_auth_failover
# acct_pool = acct
# As of Version 3.0, the server can proxy CoA packets
# based on the Operator-Name attribute. This requires
# that the "suffix" module be listed in the "recv-coa"
# section.
#
# See raddb/sites-available/coa
#
# coa_pool = name_of_coa_pool
#
# Normally, when an incoming User-Name is matched against the
# realm, the realm name is "stripped" off, and the "stripped"
# user name is used to perform matches.
#
# e.g. User-Name = "bob@example.com" will result in two new
# attributes being created by the "realms" module:
#
# Stripped-User-Name = "bob"
# Realm = "example.com"
#
# The Stripped-User-Name is then used as a key in the "users"
# file, for example.
#
# If you do not want this to happen, uncomment "nostrip" below.
#
# nostrip
# There are no more configuration entries for a realm.
}
#
# This is a sample entry for iPass.
# Note that you have to define "ipass_auth_pool" and
# "ipass_acct_pool", along with home_servers for them, too.
#
#realm IPASS {
# nostrip
#
# auth_pool = ipass_auth_pool
# acct_pool = ipass_acct_pool
#}
#
# This realm is used mainly to cancel proxying. You can have
# the "realm suffix" module configured to proxy all requests for
# a realm, and then later cancel the proxying, based on other
# configuration.
#
# For example, you want to terminate PEAP or EAP-TTLS locally,
# you can add the following to the "users" file:
#
# DEFAULT EAP-Type == PEAP, Proxy-To-Realm := LOCAL
#
realm LOCAL {
# If we do not specify a server pool, the realm is LOCAL, and
# requests are not proxied to it.
}
#
# This realm is for requests which don't have an explicit realm
# prefix or suffix. User names like "bob" will match this one.
#
#realm NULL {
# authhost = radius.company.com:1600
# accthost = radius.company.com:1601
# secret = testing123
#}
#
# This realm is for ALL OTHER requests.
#
#realm DEFAULT {
# authhost = radius.company.com:1600
# accthost = radius.company.com:1601
# secret = testing123
#}
# This realm "proxies" requests internally to a virtual server.
# The pre-proxy and post-proxy sections are run just as with any
# other kind of home server. The virtual server then receives
# the request, and replies, just as with any other packet.
#
# Once proxied internally like this, the request CANNOT be proxied
# internally or externally.
#
#realm virtual.example.com {
# virtual_server = virtual.example.com
#}
#
#
# Regular expressions may also be used as realm names. If these are used,
# then the "find matching realm" process is as follows:
#
# 1) Look for a non-regex realm with an *exact* match for the name.
# If found, it is used in preference to any regex matching realm.
#
# 2) Look for a regex realm, in the order that they are listed
# in the configuration files. Any regex match is performed in
# a case-insensitive fashion.
#
# 3) If no realm is found, return the DEFAULT realm, if any.
#
# The order of the realms matters in step (2). For example, defining
# two realms ".*\.example.net$" and ".*\.test\.example\.net$" will result in
# the second realm NEVER matching. This is because all of the realms
# which match the second regex also match the first one. Since the
# first regex matches, it is returned.
#
# The solution is to list the realms in the opposite order,. e.g.
# ".*\.test\.example.net$", followed by ".*\.example\.net$".
#
#
# Some helpful rules:
#
# - always place a '~' character at the start of the realm name.
# This signifies that it is a regex match, and not an exact match
# for the realm.
#
# - place the regex in double quotes. This helps the configuration
# file parser ignore any "special" characters in the regex.
# Yes, this rule is different than the normal "unlang" rules for
# regular expressions. That may be fixed in a future release.
#
# - for version 3.0.4 and following, with "correct_escapes = true",
# use normal regex backslash rules. Just one. Not two.
#
# - If you are matching domain names, put a '$' at the end of the regex
# that matches the domain name. This tells the regex matching code
# that the realm ENDS with the domain name, so it does not match
# realms with the domain name in the middle. e.g. "~.*\.example\.net"
# will match "test.example.netFOO", which is likely not what you want.
# Using "~(.*\.)example\.net$" is better.
#
# The more regex realms that are defined, the more time it takes to
# process them. You should define as few regex realms as possible
# in order to maximize server performance.
#
#realm "~(.*\.)*example\.net$" {
# auth_pool = my_auth_failover
#}

View File

@@ -0,0 +1,958 @@
######################################################################
#
# As of 2.0.0, FreeRADIUS supports virtual hosts using the
# "server" section, and configuration directives.
#
# Virtual hosts should be put into the "sites-available"
# directory. Soft links should be created in the "sites-enabled"
# directory to these files. This is done in a normal installation.
#
# If you are using 802.1X (EAP) authentication, please see also
# the "inner-tunnel" virtual server. You will likely have to edit
# that, too, for authentication to work.
#
# $Id: 292abcc492c6e21594ed93b2fbbd9ab226e4440d $
#
######################################################################
#
# Read "man radiusd" before editing this file. See the section
# titled DEBUGGING. It outlines a method where you can quickly
# obtain the configuration you want, without running into
# trouble. See also "man unlang", which documents the format
# of this file.
#
# This configuration is designed to work in the widest possible
# set of circumstances, with the widest possible number of
# authentication methods. This means that in general, you should
# need to make very few changes to this file.
#
# The best way to configure the server for your local system
# is to CAREFULLY edit this file. Most attempts to make large
# edits to this file will BREAK THE SERVER. Any edits should
# be small, and tested by running the server with "radiusd -X".
# Once the edits have been verified to work, save a copy of these
# configuration files somewhere. (e.g. as a "tar" file). Then,
# make more edits, and test, as above.
#
# There are many "commented out" references to modules such
# as ldap, sql, etc. These references serve as place-holders.
# If you need the functionality of that module, then configure
# it in radiusd.conf, and un-comment the references to it in
# this file. In most cases, those small changes will result
# in the server being able to connect to the DB, and to
# authenticate users.
#
######################################################################
server default {
#
# If you want the server to listen on additional addresses, or on
# additional ports, you can use multiple "listen" sections.
#
# Each section make the server listen for only one type of packet,
# therefore authentication and accounting have to be configured in
# different sections.
#
# The server ignore all "listen" section if you are using '-i' and '-p'
# on the command line.
#
listen {
# Type of packets to listen for.
# Allowed values are:
# auth listen for authentication packets
# acct listen for accounting packets
# proxy IP to use for sending proxied packets
# detail Read from the detail file. For examples, see
# raddb/sites-available/copy-acct-to-home-server
# status listen for Status-Server packets. For examples,
# see raddb/sites-available/status
# coa listen for CoA-Request and Disconnect-Request
# packets. For examples, see the file
# raddb/sites-available/coa
#
type = auth
# Note: "type = proxy" lets you control the source IP used for
# proxying packets, with some limitations:
#
# * A proxy listener CANNOT be used in a virtual server section.
# * You should probably set "port = 0".
# * Any "clients" configuration will be ignored.
#
# See also proxy.conf, and the "src_ipaddr" configuration entry
# in the sample "home_server" section. When you specify the
# source IP address for packets sent to a home server, the
# proxy listeners are automatically created.
# ipaddr/ipv4addr/ipv6addr - IP address on which to listen.
# If multiple ones are listed, only the first one will
# be used, and the others will be ignored.
#
# The configuration options accept the following syntax:
#
# ipv4addr - IPv4 address (e.g.192.0.2.3)
# - wildcard (i.e. *)
# - hostname (radius.example.com)
# Only the A record for the host name is used.
# If there is no A record, an error is returned,
# and the server fails to start.
#
# ipv6addr - IPv6 address (e.g. 2001:db8::1)
# - wildcard (i.e. *)
# - hostname (radius.example.com)
# Only the AAAA record for the host name is used.
# If there is no AAAA record, an error is returned,
# and the server fails to start.
#
# ipaddr - IPv4 address as above
# - IPv6 address as above
# - wildcard (i.e. *), which means IPv4 wildcard.
# - hostname
# If there is only one A or AAAA record returned
# for the host name, it is used.
# If multiple A or AAAA records are returned
# for the host name, only the first one is used.
# If both A and AAAA records are returned
# for the host name, only the A record is used.
#
# ipv4addr = *
# ipv6addr = *
ipaddr = *
# Port on which to listen.
# Allowed values are:
# integer port number (1812)
# 0 means "use /etc/services for the proper port"
port = 0
# Some systems support binding to an interface, in addition
# to the IP address. This feature isn't strictly necessary,
# but for sites with many IP addresses on one interface,
# it's useful to say "listen on all addresses for eth0".
#
# If your system does not support this feature, you will
# get an error if you try to use it.
#
# interface = eth0
# Per-socket lists of clients. This is a very useful feature.
#
# The name here is a reference to a section elsewhere in
# radiusd.conf, or clients.conf. Having the name as
# a reference allows multiple sockets to use the same
# set of clients.
#
# If this configuration is used, then the global list of clients
# is IGNORED for this "listen" section. Take care configuring
# this feature, to ensure you don't accidentally disable a
# client you need.
#
# See clients.conf for the configuration of "per_socket_clients".
#
# clients = per_socket_clients
#
# Connection limiting for sockets with "proto = tcp".
#
# This section is ignored for other kinds of sockets.
#
limit {
#
# Limit the number of simultaneous TCP connections to the socket
#
# The default is 16.
# Setting this to 0 means "no limit"
max_connections = 16
# The per-socket "max_requests" option does not exist.
#
# The lifetime, in seconds, of a TCP connection. After
# this lifetime, the connection will be closed.
#
# Setting this to 0 means "forever".
lifetime = 0
#
# The idle timeout, in seconds, of a TCP connection.
# If no packets have been received over the connection for
# this time, the connection will be closed.
#
# Setting this to 0 means "no timeout".
#
# We STRONGLY RECOMMEND that you set an idle timeout.
#
idle_timeout = 30
}
}
#
# This second "listen" section is for listening on the accounting
# port, too.
#
listen {
ipaddr = *
# ipv6addr = ::
port = 0
type = acct
# interface = eth0
# clients = per_socket_clients
limit {
# The number of packets received can be rate limited via the
# "max_pps" configuration item. When it is set, the server
# tracks the total number of packets received in the previous
# second. If the count is greater than "max_pps", then the
# new packet is silently discarded. This helps the server
# deal with overload situations.
#
# The packets/s counter is tracked in a sliding window. This
# means that the pps calculation is done for the second
# before the current packet was received. NOT for the current
# wall-clock second, and NOT for the previous wall-clock second.
#
# Useful values are 0 (no limit), or 100 to 10000.
# Values lower than 100 will likely cause the server to ignore
# normal traffic. Few systems are capable of handling more than
# 10K packets/s.
#
# It is most useful for accounting systems. Set it to 50%
# more than the normal accounting load, and you can be sure that
# the server will never get overloaded
#
# max_pps = 0
# Only for "proto = tcp". These are ignored for "udp" sockets.
#
# idle_timeout = 0
# lifetime = 0
# max_connections = 0
}
}
# IPv6 versions of the above - read their full config to understand options
listen {
type = auth
ipv6addr = :: # any. ::1 == localhost
port = 0
# interface = eth0
# clients = per_socket_clients
limit {
max_connections = 16
lifetime = 0
idle_timeout = 30
}
}
listen {
ipv6addr = ::
port = 0
type = acct
# interface = eth0
# clients = per_socket_clients
limit {
# max_pps = 0
# idle_timeout = 0
# lifetime = 0
# max_connections = 0
}
}
# Authorization. First preprocess (hints and huntgroups files),
# then realms, and finally look in the "users" file.
#
# Any changes made here should also be made to the "inner-tunnel"
# virtual server.
#
# The order of the realm modules will determine the order that
# we try to find a matching realm.
#
# Make *sure* that 'preprocess' comes before any realm if you
# need to setup hints for the remote radius server
authorize {
#
# Take a User-Name, and perform some checks on it, for spaces and other
# invalid characters. If the User-Name appears invalid, reject the
# request.
#
# See policy.d/filter for the definition of the filter_username policy.
#
filter_username
#
# Some broken equipment sends passwords with embedded zeros.
# i.e. the debug output will show
#
# User-Password = "password\000\000"
#
# This policy will fix it to just be "password".
#
# filter_password
#
# The preprocess module takes care of sanitizing some bizarre
# attributes in the request, and turning them into attributes
# which are more standard.
#
# It takes care of processing the 'raddb/mods-config/preprocess/hints'
# and the 'raddb/mods-config/preprocess/huntgroups' files.
preprocess
# If you intend to use CUI and you require that the Operator-Name
# be set for CUI generation and you want to generate CUI also
# for your local clients then uncomment the operator-name
# below and set the operator-name for your clients in clients.conf
# operator-name
#
# If you want to generate CUI for some clients that do not
# send proper CUI requests, then uncomment the
# cui below and set "add_cui = yes" for these clients in clients.conf
# cui
#
# If you want to have a log of authentication requests,
# un-comment the following line.
# auth_log
#
# The chap module will set 'Auth-Type := CHAP' if we are
# handling a CHAP request and Auth-Type has not already been set
chap
#
# If the users are logging in with an MS-CHAP-Challenge
# attribute for authentication, the mschap module will find
# the MS-CHAP-Challenge attribute, and add 'Auth-Type := MS-CHAP'
# to the request, which will cause the server to then use
# the mschap module for authentication.
mschap
#
# If you have a Cisco SIP server authenticating against
# FreeRADIUS, uncomment the following line, and the 'digest'
# line in the 'authenticate' section.
digest
#
# The WiMAX specification says that the Calling-Station-Id
# is 6 octets of the MAC. This definition conflicts with
# RFC 3580, and all common RADIUS practices. Un-commenting
# the "wimax" module here means that it will fix the
# Calling-Station-Id attribute to the normal format as
# specified in RFC 3580 Section 3.21
# wimax
#
# Look for IPASS style 'realm/', and if not found, look for
# '@realm', and decide whether or not to proxy, based on
# that.
# IPASS
#
# If you are using multiple kinds of realms, you probably
# want to set "ignore_null = yes" for all of them.
# Otherwise, when the first style of realm doesn't match,
# the other styles won't be checked.
#
suffix
# ntdomain
#
# This module takes care of EAP-MD5, EAP-TLS, and EAP-LEAP
# authentication.
#
# It also sets the EAP-Type attribute in the request
# attribute list to the EAP type from the packet.
#
# The EAP module returns "ok" or "updated" if it is not yet ready
# to authenticate the user. The configuration below checks for
# "ok", and stops processing the "authorize" section if so.
#
# Any LDAP and/or SQL servers will not be queried for the
# initial set of packets that go back and forth to set up
# TTLS or PEAP.
#
# The "updated" check is commented out for compatibility with
# previous versions of this configuration, but you may wish to
# uncomment it as well; this will further reduce the number of
# LDAP and/or SQL queries for TTLS or PEAP.
#
eap {
ok = return
# updated = return
}
#
# Pull crypt'd passwords from /etc/passwd or /etc/shadow,
# using the system API's to get the password. If you want
# to read /etc/passwd or /etc/shadow directly, see the
# mods-available/passwd module.
#
# unix
#
# Read the 'users' file. In v3, this is located in
# raddb/mods-config/files/authorize
files
#
# Look in an SQL database. The schema of the database
# is meant to mirror the "users" file.
#
# See "Authorization Queries" in mods-available/sql
-sql
#
# If you are using /etc/smbpasswd, and are also doing
# mschap authentication, the un-comment this line, and
# configure the 'smbpasswd' module.
# smbpasswd
#
# The ldap module reads passwords from the LDAP database.
-ldap
#
# Enforce daily limits on time spent logged in.
# daily
#
expiration
logintime
#
# If no other module has claimed responsibility for
# authentication, then try to use PAP. This allows the
# other modules listed above to add a "known good" password
# to the request, and to do nothing else. The PAP module
# will then see that password, and use it to do PAP
# authentication.
#
# This module should be listed last, so that the other modules
# get a chance to set Auth-Type for themselves.
#
pap
#
# If "status_server = yes", then Status-Server messages are passed
# through the following section, and ONLY the following section.
# This permits you to do DB queries, for example. If the modules
# listed here return "fail", then NO response is sent.
#
# Autz-Type Status-Server {
#
# }
if(User-Name){
if("%{sql: UPDATE radacct set AcctStopTime=ADDDATE(AcctStartTime,INTERVAL AcctSessionTime SECOND), AcctTerminateCause='Clear-Stale Session' WHERE UserName='%{User-Name}' and CallingStationId='%{Calling-Station-Id}' and AcctStopTime is null}"){
}
}
}
# Authentication.
#
#
# This section lists which modules are available for authentication.
# Note that it does NOT mean 'try each module in order'. It means
# that a module from the 'authorize' section adds a configuration
# attribute 'Auth-Type := FOO'. That authentication type is then
# used to pick the appropriate module from the list below.
#
# In general, you SHOULD NOT set the Auth-Type attribute. The server
# will figure it out on its own, and will do the right thing. The
# most common side effect of erroneously setting the Auth-Type
# attribute is that one authentication method will work, but the
# others will not.
#
# The common reasons to set the Auth-Type attribute by hand
# is to either forcibly reject the user (Auth-Type := Reject),
# or to or forcibly accept the user (Auth-Type := Accept).
#
# Note that Auth-Type := Accept will NOT work with EAP.
#
# Please do not put "unlang" configurations into the "authenticate"
# section. Put them in the "post-auth" section instead. That's what
# the post-auth section is for.
#
authenticate {
#
# PAP authentication, when a back-end database listed
# in the 'authorize' section supplies a password. The
# password can be clear-text, or encrypted.
Auth-Type PAP {
pap
}
#
# Most people want CHAP authentication
# A back-end database listed in the 'authorize' section
# MUST supply a CLEAR TEXT password. Encrypted passwords
# won't work.
Auth-Type CHAP {
chap
}
#
# MSCHAP authentication.
Auth-Type MS-CHAP {
mschap
}
#
# For old names, too.
#
mschap
#
# If you have a Cisco SIP server authenticating against
# FreeRADIUS, uncomment the following line, and the 'digest'
# line in the 'authorize' section.
digest
#
# Pluggable Authentication Modules.
# pam
# Uncomment it if you want to use ldap for authentication
#
# Note that this means "check plain-text password against
# the ldap database", which means that EAP won't work,
# as it does not supply a plain-text password.
#
# We do NOT recommend using this. LDAP servers are databases.
# They are NOT authentication servers. FreeRADIUS is an
# authentication server, and knows what to do with authentication.
# LDAP servers do not.
#
# Auth-Type LDAP {
# ldap
# }
#
# Allow EAP authentication.
eap
#
# The older configurations sent a number of attributes in
# Access-Challenge packets, which wasn't strictly correct.
# If you want to filter out these attributes, uncomment
# the following lines.
#
# Auth-Type eap {
# eap {
# handled = 1
# }
# if (handled && (Response-Packet-Type == Access-Challenge)) {
# attr_filter.access_challenge.post-auth
# handled # override the "updated" code from attr_filter
# }
# }
}
#
# Pre-accounting. Decide which accounting type to use.
#
preacct {
preprocess
#
# Merge Acct-[Input|Output]-Gigawords and Acct-[Input-Output]-Octets
# into a single 64bit counter Acct-[Input|Output]-Octets64.
#
# acct_counters64
#
# Session start times are *implied* in RADIUS.
# The NAS never sends a "start time". Instead, it sends
# a start packet, *possibly* with an Acct-Delay-Time.
# The server is supposed to conclude that the start time
# was "Acct-Delay-Time" seconds in the past.
#
# The code below creates an explicit start time, which can
# then be used in other modules. It will be *mostly* correct.
# Any errors are due to the 1-second resolution of RADIUS,
# and the possibility that the time on the NAS may be off.
#
# The start time is: NOW - delay - session_length
#
# update request {
# FreeRADIUS-Acct-Session-Start-Time = "%{expr: %l - %{%{Acct-Session-Time}:-0} - %{%{Acct-Delay-Time}:-0}}"
# }
#
# Ensure that we have a semi-unique identifier for every
# request, and many NAS boxes are broken.
acct_unique
#
# Look for IPASS-style 'realm/', and if not found, look for
# '@realm', and decide whether or not to proxy, based on
# that.
#
# Accounting requests are generally proxied to the same
# home server as authentication requests.
# IPASS
suffix
# ntdomain
#
# Read the 'acct_users' file
files
}
#
# Accounting. Log the accounting data.
#
accounting {
# Update accounting packet by adding the CUI attribute
# recorded from the corresponding Access-Accept
# use it only if your NAS boxes do not support CUI themselves
# cui
#
# Create a 'detail'ed log of the packets.
# Note that accounting requests which are proxied
# are also logged in the detail file.
detail
# daily
# Update the wtmp file
#
# If you don't use "radlast", you can delete this line.
unix
#
# For Simultaneous-Use tracking.
#
# Due to packet losses in the network, the data here
# may be incorrect. There is little we can do about it.
# radutmp
# sradutmp
# Return an address to the IP Pool when we see a stop record.
# main_pool
#
# Log traffic to an SQL database.
#
# See "Accounting queries" in mods-available/sql
-sql
sqlippool
#
# If you receive stop packets with zero session length,
# they will NOT be logged in the database. The SQL module
# will print a message (only in debugging mode), and will
# return "noop".
#
# You can ignore these packets by uncommenting the following
# three lines. Otherwise, the server will not respond to the
# accounting request, and the NAS will retransmit.
#
# if (noop) {
# ok
# }
#
# Instead of sending the query to the SQL server,
# write it into a log file.
#
# sql_log
# Cisco VoIP specific bulk accounting
# pgsql-voip
# For Exec-Program and Exec-Program-Wait
exec
# Filter attributes from the accounting response.
attr_filter.accounting_response
#
# See "Autz-Type Status-Server" for how this works.
#
# Acct-Type Status-Server {
#
# }
}
# Session database, used for checking Simultaneous-Use. Either the radutmp
# or rlm_sql module can handle this.
# The rlm_sql module is *much* faster
session {
# radutmp
#
# See "Simultaneous Use Checking Queries" in mods-available/sql
sql
}
# Post-Authentication
# Once we KNOW that the user has been authenticated, there are
# additional steps we can take.
post-auth {
#
# If you need to have a State attribute, you can
# add it here. e.g. for later CoA-Request with
# State, and Service-Type = Authorize-Only.
#
# if (!&reply:State) {
# update reply {
# State := "0x%{randstr:16h}"
# }
# }
#
# For EAP-TTLS and PEAP, add the cached attributes to the reply.
# The "session-state" attributes are automatically cached when
# an Access-Challenge is sent, and automatically retrieved
# when an Access-Request is received.
#
# The session-state attributes are automatically deleted after
# an Access-Reject or Access-Accept is sent.
#
update {
&reply: += &session-state:
}
# Get an address from the IP Pool.
# main_pool
sqlippool
# Create the CUI value and add the attribute to Access-Accept.
# Uncomment the line below if *returning* the CUI.
# cui
#
# If you want to have a log of authentication replies,
# un-comment the following line, and enable the
# 'detail reply_log' module.
# reply_log
#
# After authenticating the user, do another SQL query.
#
# See "Authentication Logging Queries" in mods-available/sql
-sql
#
# Instead of sending the query to the SQL server,
# write it into a log file.
#
# sql_log
#
# Un-comment the following if you want to modify the user's object
# in LDAP after a successful login.
#
# ldap
# For Exec-Program and Exec-Program-Wait
exec
#
# Calculate the various WiMAX keys. In order for this to work,
# you will need to define the WiMAX NAI, usually via
#
# update request {
# WiMAX-MN-NAI = "%{User-Name}"
# }
#
# If you want various keys to be calculated, you will need to
# update the reply with "template" values. The module will see
# this, and replace the template values with the correct ones
# taken from the cryptographic calculations. e.g.
#
# update reply {
# WiMAX-FA-RK-Key = 0x00
# WiMAX-MSK = "%{EAP-MSK}"
# }
#
# You may want to delete the MS-MPPE-*-Keys from the reply,
# as some WiMAX clients behave badly when those attributes
# are included. See "raddb/modules/wimax", configuration
# entry "delete_mppe_keys" for more information.
#
# wimax
# If there is a client certificate (EAP-TLS, sometimes PEAP
# and TTLS), then some attributes are filled out after the
# certificate verification has been performed. These fields
# MAY be available during the authentication, or they may be
# available only in the "post-auth" section.
#
# The first set of attributes contains information about the
# issuing certificate which is being used. The second
# contains information about the client certificate (if
# available).
#
# update reply {
# Reply-Message += "%{TLS-Cert-Serial}"
# Reply-Message += "%{TLS-Cert-Expiration}"
# Reply-Message += "%{TLS-Cert-Subject}"
# Reply-Message += "%{TLS-Cert-Issuer}"
# Reply-Message += "%{TLS-Cert-Common-Name}"
# Reply-Message += "%{TLS-Cert-Subject-Alt-Name-Email}"
#
# Reply-Message += "%{TLS-Client-Cert-Serial}"
# Reply-Message += "%{TLS-Client-Cert-Expiration}"
# Reply-Message += "%{TLS-Client-Cert-Subject}"
# Reply-Message += "%{TLS-Client-Cert-Issuer}"
# Reply-Message += "%{TLS-Client-Cert-Common-Name}"
# Reply-Message += "%{TLS-Client-Cert-Subject-Alt-Name-Email}"
# }
# Insert class attribute (with unique value) into response,
# aids matching auth and acct records, and protects against duplicate
# Acct-Session-Id. Note: Only works if the NAS has implemented
# RFC 2865 behaviour for the class attribute, AND if the NAS
# supports long Class attributes. Many older or cheap NASes
# only support 16-octet Class attributes.
# insert_acct_class
# MacSEC requires the use of EAP-Key-Name. However, we don't
# want to send it for all EAP sessions. Therefore, the EAP
# modules put required data into the EAP-Session-Id attribute.
# This attribute is never put into a request or reply packet.
#
# Uncomment the next few lines to copy the required data into
# the EAP-Key-Name attribute
# if (&reply:EAP-Session-Id) {
# update reply {
# EAP-Key-Name := &reply:EAP-Session-Id
# }
# }
# Remove reply message if the response contains an EAP-Message
remove_reply_message_if_eap
#
# Access-Reject packets are sent through the REJECT sub-section of the
# post-auth section.
#
# Add the ldap module name (or instance) if you have set
# 'edir_account_policy_check = yes' in the ldap module configuration
#
# The "session-state" attributes are not available here.
#
Post-Auth-Type REJECT {
# log failed authentications in SQL, too.
-sql
attr_filter.access_reject
# Insert EAP-Failure message if the request was
# rejected by policy instead of because of an
# authentication failure
eap
# Remove reply message if the response contains an EAP-Message
remove_reply_message_if_eap
}
#
# Filter access challenges.
#
Post-Auth-Type Challenge {
# remove_reply_message_if_eap
# attr_filter.access_challenge.post-auth
}
}
#
# When the server decides to proxy a request to a home server,
# the proxied request is first passed through the pre-proxy
# stage. This stage can re-write the request, or decide to
# cancel the proxy.
#
# Only a few modules currently have this method.
#
pre-proxy {
# Before proxing the request add an Operator-Name attribute identifying
# if the operator-name is found for this client.
# No need to uncomment this if you have already enabled this in
# the authorize section.
# operator-name
# The client requests the CUI by sending a CUI attribute
# containing one zero byte.
# Uncomment the line below if *requesting* the CUI.
# cui
# Uncomment the following line if you want to change attributes
# as defined in the preproxy_users file.
# files
# Uncomment the following line if you want to filter requests
# sent to remote servers based on the rules defined in the
# 'attrs.pre-proxy' file.
# attr_filter.pre-proxy
# If you want to have a log of packets proxied to a home
# server, un-comment the following line, and the
# 'detail pre_proxy_log' section, above.
# pre_proxy_log
}
#
# When the server receives a reply to a request it proxied
# to a home server, the request may be massaged here, in the
# post-proxy stage.
#
post-proxy {
# If you want to have a log of replies from a home server,
# un-comment the following line, and the 'detail post_proxy_log'
# section, above.
# post_proxy_log
# Uncomment the following line if you want to filter replies from
# remote proxies based on the rules defined in the 'attrs' file.
# attr_filter.post-proxy
#
# If you are proxying LEAP, you MUST configure the EAP
# module, and you MUST list it here, in the post-proxy
# stage.
#
# You MUST also use the 'nostrip' option in the 'realm'
# configuration. Otherwise, the User-Name attribute
# in the proxied request will not match the user name
# hidden inside of the EAP packet, and the end server will
# reject the EAP request.
#
eap
#
# If the server tries to proxy a request and fails, then the
# request is processed through the modules in this section.
#
# The main use of this section is to permit robust proxying
# of accounting packets. The server can be configured to
# proxy accounting packets as part of normal processing.
# Then, if the home server goes down, accounting packets can
# be logged to a local "detail" file, for processing with
# radrelay. When the home server comes back up, radrelay
# will read the detail file, and send the packets to the
# home server.
#
# With this configuration, the server always responds to
# Accounting-Requests from the NAS, but only writes
# accounting packets to disk if the home server is down.
#
# Post-Proxy-Type Fail-Accounting {
# detail
# }
}
}

View File

@@ -3,6 +3,11 @@
file:
path: /opt/wannat/toroad
state: directory
- name: "Creates /var/log/toroad directory"
file:
path: /var/log/toroad
state: directory
- name: "copy toroad_rpm_file to destination server"
synchronize:
@@ -27,6 +32,12 @@
src: "{{ role_path }}/templates/toroad.conf.j2"
dest: /opt/tsg/wannat/toroad/etc/toroad.conf
tags: template
- name: Template the toroad_tmpfile.conf
template:
src: "{{ role_path }}/templates/toroad_tmpfile.conf.j2"
dest: /usr/lib/tmpfiles.d/toroad_tmpfile.conf
tags: template
- name: "Template the toroad.service"
template:
@@ -34,6 +45,13 @@
dest: /usr/lib/systemd/system/toroad.service
tags: template
- name: create symbolic link /opt/tsg/wannat/toroad/log -> /var/log/toroad
file:
src: /var/log/toroad
dest: /opt/tsg/wannat/toroad/log
state: link
force: yes
- name: "enable toroad service"
systemd:
name: toroad

View File

@@ -0,0 +1,3 @@
#Type Path Mode User Group Age Argument
d /var/log/toroad/ 0755 - - 7d -
L /opt/tsg/wannat/toroad/log - - - - /var/log/toroad