This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
tango-tfe/platform/src/key_keeper.cpp
2023-08-09 10:14:30 +08:00

844 lines
25 KiB
C++

#include "key_keeper.h"
#include "MESA_htable_aux.h"
#include <pthread.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <unistd.h>
#include <sys/prctl.h>
#include <arpa/inet.h>
#include <MESA/MESA_prof_load.h>
#include <MESA/MESA_htable.h>
#include <ssl_utils.h>
#include <tfe_rpc.h>
#include <tfe_utils.h>
#include <event2/http.h>
#include <cjson/cJSON.h>
#include <curl/curl.h>
#define HTABLE_MAX_KEY_LEN 256
#define KEYRING_EXSITED 0
#define KEYRING_NOT_EXSITED -1
#define KEYRING_EXPIRE -2
enum key_keeper_mode{
KK_MODE_CERT_STORE = 0,
KK_MODE_LOCAL
};
struct key_keeper
{
enum key_keeper_mode work_mode;
char trusted_ca_path[TFE_PATH_MAX];
char untrusted_ca_path[TFE_PATH_MAX];
char cert_store_host[TFE_SYMBOL_MAX];
unsigned int cert_store_port;
unsigned int hash_slot_size;
unsigned int hash_expire_seconds;
unsigned int del_elem_num_once_when_full;
unsigned int max_elem_num;
MESA_htable_handle cert_cache;
void* logger;
X509* trusted_ca_cert;
EVP_PKEY* trusted_ca_key;
X509* untrusted_ca_cert;
EVP_PKEY* untrusted_ca_key;
unsigned int no_cache;
struct key_keeper_stat stat;
int cert_expire_time;
unsigned int enable_health_check;
pthread_t thread;
pthread_rwlock_t rwlock;
};
struct keyring_private
{
struct keyring head;
pthread_mutex_t mutex;
size_t references;
time_t update_time;
};
struct key_keeper_promise_ctx
{
void* logger;
struct key_keeper* ref_keeper;
uchar* key;
struct future* f_certstore_rpc;
unsigned int key_len;
};
long long certstore_is_unavailable = 0;
static void key_keeper_promise_free_ctx(void* ctx)
{
struct key_keeper_promise_ctx* _ctx = (struct key_keeper_promise_ctx*)ctx;
free(_ctx->key);
_ctx->key = NULL;
free(_ctx);
}
static struct keyring_private* keyring_new(X509 *cert, EVP_PKEY *key, STACK_OF(X509) *chain)
{
struct keyring_private *kyr=ALLOC(struct keyring_private, 1);
pthread_mutex_init(&(kyr->mutex), NULL);
kyr->head.cert = cert;
kyr->head.key = key;
kyr->head.chain = chain;
kyr->references = 1;
return kyr;
}
/*
static struct keyring* keyring_new3(EVP_PKEY *key, X509 *cert, STACK_OF(X509) *chain)
{
struct keyring_private* kyr=NULL;
kyr=keyring_new();
kyr->references = 1;
(kyr->head).key = key;
(kyr->head).cert = cert;
(kyr->head).chain = chain;
if(key)
{
ssl_key_refcount_inc(key);
}
if(cert)
{
ssl_x509_refcount_inc(cert);
}
if(chain){
int i = 0;
for (i = 0; i < sk_X509_num(chain); i++)
{
ssl_x509_refcount_inc(sk_X509_value(chain, i));
}
}
return &(kyr->head);
}
*/
// Increment reference count.
static void keyring_ref_inc(struct keyring_private* kyr)
{
pthread_mutex_lock(&(kyr->mutex));
kyr->references++;
pthread_mutex_unlock(&(kyr->mutex));
}
/*
* Free keyring including internal objects.
*/
void key_keeper_free_keyring(struct keyring *kyr)
{
struct keyring_private* _kyr = (struct keyring_private*)kyr;
pthread_mutex_lock(&_kyr->mutex);
_kyr->references--;
if (_kyr->references>0)
{
pthread_mutex_unlock(&_kyr->mutex);
return;
}
pthread_mutex_unlock(&_kyr->mutex);
pthread_mutex_destroy(&_kyr->mutex);
if (_kyr->head.key)
{
EVP_PKEY_free((_kyr->head).key);
_kyr->head.key=NULL;
}
if (_kyr->head.cert)
{
X509_free(_kyr->head.cert);
_kyr->head.cert=NULL;
}
if (_kyr->head.chain)
{
sk_X509_pop_free((_kyr->head).chain, X509_free);
_kyr->head.chain=NULL;
}
free(_kyr);
}
static X509* transform_cert_to_x509(const char* str)
{
//printf("cert: %s", str);
BIO *bio = NULL;
X509 *cert = NULL;
bio = BIO_new(BIO_s_mem());
if(bio == NULL)
{
return NULL;
}
int len = BIO_write(bio, (const void*)str, strlen(str));
if (len <= 0 )
{
BIO_free_all(bio);
return NULL;
}
cert = PEM_read_bio_X509(bio, NULL, NULL, NULL);
BIO_free_all(bio);
return cert;
}
static char* transform_cert_to_pem(X509* cert)
{
if (NULL == cert)
{
return NULL;
}
BIO* bio = NULL;
bio = BIO_new(BIO_s_mem());
if (NULL == bio)
{
return NULL;
}
if (0 == PEM_write_bio_X509(bio, cert))
{
BIO_free(bio);
return NULL;
}
char *p = NULL;
int len = BIO_get_mem_data(bio, &p);
char *pem = (char*)malloc(len + 1);
memset(pem, 0, len + 1);
BIO_read(bio, pem, len);
BIO_free(bio);
return pem;
}
static EVP_PKEY* transform_key_to_EVP(const char* str)
{
//printf("private key: %s", str);
BIO *mem;
mem = BIO_new_mem_buf(str, -1);
if(mem == NULL)
{
return NULL;
}
EVP_PKEY* key = PEM_read_bio_PrivateKey(mem, NULL, NULL, 0);
BIO_free(mem);
return key;
}
static struct keyring_private* get_keyring_from_response(const char* data)
{
X509* cert = NULL;
X509* chain_cert = NULL;
struct keyring_private* _kyr=NULL;
EVP_PKEY* key = NULL;
STACK_OF(X509)* chain = NULL;
cJSON* data_json = NULL;
cJSON* chain_cert_json = NULL;
cJSON* cert_json = NULL;
cJSON* key_json = NULL;
cJSON* chain_json = NULL;
assert(data != NULL);
data_json = cJSON_Parse(data);
if(unlikely(data_json == NULL))
{
TFE_LOG_ERROR(g_default_logger, "Illegal JSON format: %s", data);
goto error_out;
}
cert_json = cJSON_GetObjectItemCaseSensitive(data_json, "CERTIFICATE");
key_json = cJSON_GetObjectItemCaseSensitive(data_json, "PRIVATE_KEY");
chain_json = cJSON_GetObjectItemCaseSensitive(data_json, "CERTIFICATE_CHAIN");
if(unlikely(cert_json == NULL))
{
TFE_LOG_ERROR(g_default_logger, "Illegal JSON format, No CERTIFICATE section: %s", data);
goto error_out;
}
if(unlikely(key_json == NULL))
{
TFE_LOG_ERROR(g_default_logger, "Illegal JSON format, No PRIVATE_KEY section: %s", data);
goto error_out;
}
if(unlikely(chain_json == NULL))
{
TFE_LOG_ERROR(g_default_logger, "Illegal JSON format, No CERTIFICATE_CHAIN section: %s", data);
goto error_out;
}
if(unlikely(cert_json->valuestring == NULL))
{
TFE_LOG_ERROR(g_default_logger, "Illegal JSON format, No CERTIFICATE value: %s", data);
goto error_out;
}
if(unlikely(key_json->valuestring == NULL))
{
TFE_LOG_ERROR(g_default_logger, "Illegal JSON format, No PRIVATE_KEY value: %s", data);
goto error_out;
}
cert = transform_cert_to_x509(cert_json->valuestring);
if(unlikely(cert == NULL))
{
TFE_LOG_ERROR(g_default_logger, "Transform certificate to X509 failed: %s", cert_json->valuestring);
goto error_out;
}
key = transform_key_to_EVP(key_json->valuestring);
if(unlikely(key == NULL))
{
TFE_LOG_ERROR(g_default_logger, "Transform PRIVATE KEY to EVP failed: %s", key_json->valuestring);
goto error_out;
}
chain = sk_X509_new_null();
cJSON_ArrayForEach(chain_cert_json, chain_json)
{
if(unlikely(chain_cert_json->valuestring == NULL))
{
TFE_LOG_ERROR(g_default_logger, "Illegal JSON format, empty CERTIFICATE_CHAIN value.");
goto error_out;
}
chain_cert = transform_cert_to_x509(chain_cert_json->valuestring);
if(unlikely(chain_cert == NULL))
{
TFE_LOG_ERROR(g_default_logger, "Transform certificate chain entry to X509 failed: %s",
chain_cert_json->valuestring); goto error_out;
}
sk_X509_push(chain, chain_cert);
}
_kyr= keyring_new(cert, key, chain);
cJSON_Delete(data_json);
return _kyr;
error_out:
if(data_json!=NULL) cJSON_Delete(data_json);
if(cert) X509_free(cert);
if(key) EVP_PKEY_free(key);
if(chain) sk_X509_pop_free(chain, X509_free);
return NULL;
}
static long keyring_local_cache_query_cb(void * data, const uchar * key, uint size, void * user_arg)
{
struct keyring_private* kyr=(struct keyring_private*)data;
if(kyr == NULL)
{
return KEYRING_NOT_EXSITED;
}
else
{
struct promise *p = (struct promise *)user_arg;
if (time(NULL) - kyr->update_time > ((struct key_keeper_promise_ctx *)promise_get_ctx(p))->ref_keeper->hash_expire_seconds)
{
return KEYRING_EXPIRE;
}
else
{
promise_success(p, data);
return KEYRING_EXSITED;
}
}
}
static struct keyring_private* generate_x509_keyring(X509* origin_cert, X509* ca, EVP_PKEY* cakey, int cert_expire_time)
{
//TODO: could be optimized to save cpu.
EVP_PKEY* forge_key = ssl_key_genrsa(2048);
X509* forge_cert = ssl_x509_forge(ca, cakey, origin_cert, forge_key, NULL, NULL, cert_expire_time);
STACK_OF(X509)* chain = sk_X509_new_null();
sk_X509_push(chain, ca);
ssl_x509_refcount_inc(ca);
ssl_x509_refcount_inc(forge_cert);
struct keyring_private* _kyr= keyring_new(forge_cert, forge_key, chain);
return _kyr;
}
static void certstore_rpc_on_succ(void* result, void* user)
{
struct promise * p = (struct promise *) user;
struct key_keeper_promise_ctx* ctx = (struct key_keeper_promise_ctx*)promise_get_ctx(p);
// TFE_LOG_INFO(ctx->logger, "certstore rpc success");
future_destroy(ctx->f_certstore_rpc);
MESA_htable_handle htable= ctx->ref_keeper->cert_cache;
const uchar* key = ctx->key;
unsigned int key_len = ctx->key_len;
struct tfe_rpc_response_result* response = tfe_rpc_release(result);
int status_code = response->status_code;
const char* status_msg = response->status_msg;
if(status_code == HTTP_OK)
{
/* Copy a buffer ending with zero */
char * data_as_string = (char *)malloc(response->len + 1);
memcpy(data_as_string, response->data, response->len);
data_as_string[response->len] = '\0';
struct keyring_private* kyr= get_keyring_from_response(data_as_string);
FREE(&data_as_string);
if(kyr == NULL)
{
promise_failed(p, FUTURE_ERROR_EXCEPTION, "get_keyring_from_response failed");
return;
}
if(!ctx->ref_keeper->no_cache)
{
keyring_ref_inc(kyr);
kyr->update_time = time(NULL);
pthread_rwlock_wrlock(&(ctx->ref_keeper->rwlock));
if (MESA_htable_get_elem_num(ctx->ref_keeper->cert_cache) == ctx->ref_keeper->max_elem_num)
{
MESA_htable_del_oldest_manual(htable, NULL, ctx->ref_keeper->del_elem_num_once_when_full);
TFE_LOG_DEBUG(ctx->ref_keeper->logger, "Key keeper cache full: %d del: %d left: %d", ctx->ref_keeper->max_elem_num, ctx->ref_keeper->del_elem_num_once_when_full, MESA_htable_get_elem_num(ctx->ref_keeper->cert_cache));
}
int ret = MESA_htable_add(htable, key, key_len, (void*)kyr);
pthread_rwlock_unlock(&(ctx->ref_keeper->rwlock));
if(ret<0)
{
key_keeper_free_keyring((struct keyring*)kyr);
}
else
{
TFE_LOG_DEBUG(ctx->ref_keeper->logger, "Key keeper cache add key: %s", ctx->key);
}
}
ctx->ref_keeper->stat.new_issue++;
promise_success(p, (void*)kyr);
key_keeper_free_keyring((struct keyring*)kyr);
}
else
{
promise_failed(p, FUTURE_ERROR_EXCEPTION, status_msg);
}
}
static void certstore_rpc_on_fail(enum e_future_error err, const char * what, void * user)
{
struct promise * p = (struct promise *) user;
struct key_keeper_promise_ctx* ctx= (struct key_keeper_promise_ctx*)promise_get_ctx(p);
TFE_LOG_ERROR(ctx->logger, "certstore rpc failed, what is %s", what);
future_destroy(ctx->f_certstore_rpc);
promise_failed(p, err, what);
//promise_dettach_ctx(p);
//ctx_destroy_cb((void*)ctx);
}
static void key_keeper_free_serialized(void* data)
{
// printf("call key_keeper_free_serialized\n");
struct keyring_private* kyr = (struct keyring_private*)data;
key_keeper_free_keyring(&(kyr->head));
}
static MESA_htable_handle create_hash_table(unsigned int slot_size, unsigned int max_elem_num)
{
UNUSED int ret = 0;
MESA_htable_handle htable = MESA_htable_born();
ret = __wrapper_MESA_htable_set_opt_int(htable, MHO_SCREEN_PRINT_CTRL, 0);
/*
* Use rwlock instead of htable mutex:
* MHO_THREAD_SAFE must be set to 0,
* MHO_MUTEX_NUM must be set to 1,
* MHO_EXPIRE_TIME must be set to 0,
* otherwise MESA_htable_del_oldest_manual() execution error
*/
ret = __wrapper_MESA_htable_set_opt_int(htable, MHO_THREAD_SAFE, 0);
ret = __wrapper_MESA_htable_set_opt_int(htable, MHO_MUTEX_NUM, 1);
ret = __wrapper_MESA_htable_set_opt_int(htable, MHO_HASH_SLOT_SIZE, slot_size);
ret = __wrapper_MESA_htable_set_opt_int(htable, MHO_HASH_MAX_ELEMENT_NUM, max_elem_num);
ret = __wrapper_MESA_htable_set_opt_int(htable, MHO_EXPIRE_TIME, 0);
ret = __wrapper_MESA_htable_set_opt_int(htable, MHO_ELIMIMINATE_TYPE,
HASH_ELIMINATE_ALGO_FIFO);
ret = __wrapper_MESA_htable_set_opt_func(htable, MHO_CBFUN_DATA_FREE,
(void *)key_keeper_free_serialized, sizeof(&key_keeper_free_serialized));
//ret = __wrapper_MESA_htable_set_opt(htable, MHO_CBFUN_DATA_EXPIRE_NOTIFY,
// (void *)key_keeper_verify_cb);
ret = MESA_htable_mature(htable);
assert(ret == 0);
return htable;
}
void key_keeper_destroy(struct key_keeper *keeper)
{
if (!keeper->no_cache)
{
pthread_rwlock_destroy(&(keeper->rwlock));
MESA_htable_destroy(keeper->cert_cache, NULL);
}
X509_free(keeper->trusted_ca_cert);
EVP_PKEY_free(keeper->trusted_ca_key);
X509_free(keeper->untrusted_ca_cert);
EVP_PKEY_free(keeper->untrusted_ca_key);
free(keeper);
keeper = NULL;
return;
}
struct evhttp_connection* key_keeper_evhttp_init(struct event_base * evbase, struct evdns_base* dnsbase, struct key_keeper * key_keeper_handler)
{
char *cert_store_host = key_keeper_handler->cert_store_host;
unsigned int cert_store_port =key_keeper_handler->cert_store_port;
return evhttp_connection_base_new(evbase, dnsbase, cert_store_host, cert_store_port);
}
static int health_check(struct key_keeper *keeper)
{
char req_buff[1024] = { 0 };
char rsp_buff[1024] = { 0 };
struct sockaddr_in addr;
char post_head[] =
"POST %s HTTP/1.1\r\n"
"Host: %s:%d\r\n"
"User-Agent: curl/7.47.0\r\n"
"Accept: */*\r\n"
"Content-Length: %d\r\n"
"\r\n%s";
sprintf(req_buff, post_head, "/ca?health_check=1", keeper->cert_store_host, keeper->cert_store_port, strlen("health check"), "health check");
int sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd == -1)
{
TFE_LOG_ERROR(keeper->logger, "CertStore health check thread fail to create socket(), %s", strerror(errno));
/* after log, reset errno */
errno = 0;
goto error;
}
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(keeper->cert_store_port);
addr.sin_addr.s_addr = inet_addr(keeper->cert_store_host);
if (connect(sockfd, (const struct sockaddr *)&addr, sizeof(addr)) == -1)
{
TFE_LOG_ERROR(keeper->logger, "CertStore health check thread fail to connect(), %s", strerror(errno));
/* after log, reset errno */
errno = 0;
goto error;
}
if (write(sockfd, req_buff, strlen(req_buff)) == -1)
{
TFE_LOG_ERROR(keeper->logger, "CertStore health check thread fail to write(), %s", strerror(errno));
/* after log, reset errno */
errno = 0;
goto error;
}
if (read(sockfd, rsp_buff, sizeof(rsp_buff)) == -1)
{
TFE_LOG_ERROR(keeper->logger, "CertStore health check thread fail to read(), %s", strerror(errno));
/* after log, reset errno */
errno = 0;
goto error;
}
close(sockfd);
return 0;
error:
if (sockfd)
close(sockfd);
return -1;
}
static void * certstore_health_check_thread(void * arg)
{
struct key_keeper * keeper = (struct key_keeper *)arg;
assert(keeper != NULL && keeper->thread == pthread_self());
TFE_LOG_INFO(keeper->logger, "CertStore health check thread is running...");
prctl(PR_SET_NAME, "CertStore_health_check");
while (1)
{
if (health_check(keeper) == -1)
{
ATOMIC_INC(&certstore_is_unavailable);
TFE_LOG_ERROR(keeper->logger, "CertStore health check thread on fail: certstore is unavailable !!!");
}
else
{
ATOMIC_ZERO(&certstore_is_unavailable);
}
sleep(1);
}
TFE_LOG_ERROR(keeper->logger, "CertStore health check thread is exit");
return NULL;
}
struct key_keeper* key_keeper_init(const char * profile, const char* section, void* logger)
{
struct key_keeper* keeper = ALLOC(struct key_keeper, 1);
keeper->logger = logger;
char tmp[TFE_STRING_MAX]={0};
MESA_load_profile_string_def(profile, section, "mode", tmp, sizeof(tmp), "debug");
if(strcasecmp(tmp, "debug") == 0)
{
keeper->work_mode = KK_MODE_LOCAL;
}
else
{
keeper->work_mode = KK_MODE_CERT_STORE;
}
MESA_load_profile_string_def(profile, section, "ca_path", keeper->trusted_ca_path,
sizeof(keeper->trusted_ca_path), "./resource/tfe/mesalab-ca.pem");
MESA_load_profile_string_def(profile, section, "untrusted_ca_path", keeper->untrusted_ca_path,
sizeof(keeper->untrusted_ca_path), "./resource/tfe/mesalab-ca-untrust.pem");
MESA_load_profile_string_def(profile, section, "cert_store_host", keeper->cert_store_host,
sizeof(keeper->cert_store_host), "");
MESA_load_profile_uint_def(profile, section, "enable_health_check", &(keeper->enable_health_check), 1);
MESA_load_profile_uint_def(profile, section, "cert_store_port", &(keeper->cert_store_port), 80);
MESA_load_profile_int_def(profile, section, "cert_expire_time", &(keeper->cert_expire_time), 24);
MESA_load_profile_uint_def(profile, section, "no_cache", &(keeper->no_cache), 0);
if (!keeper->no_cache)
{
MESA_load_profile_uint_def(profile, section, "hash_expire_seconds", &(keeper->hash_expire_seconds), 5 * 60);
MESA_load_profile_uint_def(profile, section, "hash_slot_size", &(keeper->hash_slot_size), 1024 * 128);
if (keeper->cert_expire_time != -1)
{
keeper->hash_expire_seconds = MIN(keeper->cert_expire_time * 1800, (int)(keeper->hash_expire_seconds));
}
keeper->max_elem_num = keeper->hash_slot_size * 4;
keeper->del_elem_num_once_when_full = (keeper->max_elem_num / 10) > 0 ? (keeper->max_elem_num / 10) : 1;
keeper->cert_cache = create_hash_table(keeper->hash_slot_size, keeper->max_elem_num);
pthread_rwlock_init(&(keeper->rwlock), NULL);
}
if(0==strcmp(keeper->untrusted_ca_path, keeper->trusted_ca_path))
{
TFE_LOG_ERROR(logger, "Warnning: Trusted and Untrusted Root CA share the same path %s .", keeper->trusted_ca_path);
}
if(keeper->work_mode==KK_MODE_LOCAL)
{
keeper->trusted_ca_cert=ssl_x509_load(keeper->trusted_ca_path);
keeper->trusted_ca_key=ssl_key_load(keeper->trusted_ca_path);
if(keeper->trusted_ca_cert==NULL||keeper->trusted_ca_key==NULL)
{
TFE_LOG_ERROR(logger, "Load Trusted Root CA %s failed.", keeper->trusted_ca_path);
goto error_out;
}
keeper->untrusted_ca_cert=ssl_x509_load(keeper->untrusted_ca_path);
keeper->untrusted_ca_key=ssl_key_load(keeper->untrusted_ca_path);
if(keeper->untrusted_ca_cert==NULL||keeper->trusted_ca_key==NULL)
{
TFE_LOG_ERROR(logger, "Load Untrusted Root CA %s failed.", keeper->untrusted_ca_path);
goto error_out;
}
}
// KK_MODE_CERT_STORE: create thread for certstore health check
if (keeper->work_mode == KK_MODE_CERT_STORE && keeper->enable_health_check)
{
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
int ret = pthread_create(&keeper->thread, NULL, certstore_health_check_thread, (void *)keeper);
if (unlikely(ret < 0))
{
TFE_LOG_ERROR(keeper->logger, "Failed at creating certstore health check thread: %s", strerror(errno));
/* after log, reset errno */
errno = 0;
goto error_out;
}
}
TFE_LOG_INFO(logger, "Key keeper cache, mode:%s, no_cache:%u, ca_path:%s, untrusted_ca_path:%s, cert_store_host:%s, cert_store_port:%d, hash_slot_size:%d, hash_expire_seconds:%d, cert_expire_time:%d, max_elem_num:%d, del_elem_num_once_when_full:%d",
tmp, keeper->no_cache, keeper->trusted_ca_path, keeper->untrusted_ca_path, keeper->cert_store_host, keeper->cert_store_port, keeper->hash_slot_size, keeper->hash_expire_seconds, keeper->cert_expire_time, keeper->max_elem_num, keeper->del_elem_num_once_when_full);
return keeper;
error_out:
key_keeper_destroy(keeper);
return NULL;
}
struct keyring* key_keeper_release_keyring(future_result_t* result)
{
struct keyring_private* kyr=(struct keyring_private*)result;
keyring_ref_inc(kyr);
return &(kyr->head);
}
static uchar* get_key_by_cert(X509* cert, int keyring_id, unsigned int* len, int is_cert_valid)
{
if(cert == NULL)
{
return NULL;
}
char* cert_fingerprint = NULL;
cert_fingerprint = ssl_x509_fingerprint(cert, 0);
if(cert_fingerprint == NULL)
{
return NULL;
}
char* key = ALLOC(char, HTABLE_MAX_KEY_LEN);
memset(key, 0, HTABLE_MAX_KEY_LEN);
snprintf(key, HTABLE_MAX_KEY_LEN, "%d:%d:", keyring_id, is_cert_valid);
strncat(key, cert_fingerprint, HTABLE_MAX_KEY_LEN);
*len = strnlen(key, HTABLE_MAX_KEY_LEN);
free(cert_fingerprint);
return (uchar*)key;
}
char* url_escape(char* url)
{
if(url == NULL)
{
return NULL;
}
CURL *curl = curl_easy_init();
char* _url = NULL;
if(curl)
{
_url = curl_easy_escape(curl, url, strlen(url));
}
curl_easy_cleanup(curl);
return _url;
}
void key_keeper_async_ask(struct future * f, struct key_keeper * keeper, const char* sni, int keyring_id, X509 * origin_cert, int is_cert_valid, struct event_base * evbase, struct evdns_base* dnsbase, struct evhttp_connection *evhttp)
{
struct promise* p = future_to_promise(f);
unsigned int len = 0;
uchar* key = get_key_by_cert(origin_cert, keyring_id, &len, is_cert_valid);
if(key == NULL)
{
promise_failed(p, FUTURE_ERROR_EXCEPTION, "get hash key by_cert failed");
return;
}
struct key_keeper_promise_ctx* ctx = ALLOC(struct key_keeper_promise_ctx, 1);
ctx->logger = keeper->logger;
ctx->ref_keeper = keeper;
ctx->key = key;
ctx->key_len = len;
promise_set_ctx(p, (void*)ctx, key_keeper_promise_free_ctx);
long int cb_rtn = 0;
keeper->stat.ask_times++;
if(!keeper->no_cache)
{
char *tmp = tfe_strdup((const char *)ctx->key);
pthread_rwlock_rdlock(&(keeper->rwlock));
MESA_htable_search_cb(keeper->cert_cache, (const unsigned char*)(ctx->key), ctx->key_len, keyring_local_cache_query_cb, p, &cb_rtn);
pthread_rwlock_unlock(&(keeper->rwlock));
TFE_LOG_DEBUG(keeper->logger, "Key keeper cache search key: %s, found: %ld (0:KEYRING_EXSITED, -1:KEYRING_NOT_EXSITED, -2:KEYRING_EXPIRE)", tmp, cb_rtn);
free(tmp);
if(cb_rtn == KEYRING_EXSITED)
{
//printf("KEYRING_EXSITED\n");
return;
}
if (cb_rtn == KEYRING_EXPIRE)
{
pthread_rwlock_wrlock(&(keeper->rwlock));
MESA_htable_del(keeper->cert_cache, (const unsigned char *)(ctx->key), ctx->key_len, NULL);
pthread_rwlock_unlock(&(keeper->rwlock));
}
}
switch(keeper->work_mode)
{
case KK_MODE_CERT_STORE:
{
char* origin_cert_pem = transform_cert_to_pem(origin_cert);
if(origin_cert_pem == NULL)
{
promise_failed(p, FUTURE_ERROR_EXCEPTION, "transform origin_cert to pem failed");
return;
}
struct future* f_certstore_rpc = future_create("crt_store", certstore_rpc_on_succ, certstore_rpc_on_fail, p);
ctx->f_certstore_rpc = f_certstore_rpc;
char *url = NULL;
//keyring_id = 1;
if(sni == NULL || sni[0] == '\0')
{
asprintf(&url, "http://%s:%d/ca?keyring_id=%d&is_valid=%d",
keeper->cert_store_host, keeper->cert_store_port, keyring_id, is_cert_valid);
}
else
{
asprintf(&url, "http://%s:%d/ca?keyring_id=%d&sni=%s&is_valid=%d",
keeper->cert_store_host, keeper->cert_store_port, keyring_id, sni, is_cert_valid);
}
TFE_LOG_DEBUG(keeper->logger, "CertStore query: %.100s", url);
tfe_rpc_async_ask(f_certstore_rpc, url, POST, DONE_CB, origin_cert_pem, strlen(origin_cert_pem), evbase, dnsbase, evhttp);
free(url);
break;
}
case KK_MODE_LOCAL:
{
struct keyring_private* kyr=NULL;
if(is_cert_valid == 1)
{
kyr=generate_x509_keyring(origin_cert, keeper->trusted_ca_cert, keeper->trusted_ca_key, keeper->cert_expire_time);
}
else
{
kyr=generate_x509_keyring(origin_cert, keeper->untrusted_ca_cert, keeper->untrusted_ca_key, keeper->cert_expire_time);
}
if(kyr)
{
if(!keeper->no_cache)
{
keyring_ref_inc(kyr);
kyr->update_time = time(NULL);
pthread_rwlock_wrlock(&(keeper->rwlock));
if (MESA_htable_get_elem_num(keeper->cert_cache) == keeper->max_elem_num)
{
MESA_htable_del_oldest_manual(keeper->cert_cache, NULL, keeper->del_elem_num_once_when_full);
TFE_LOG_DEBUG(keeper->logger, "Key keeper cache full: %d del: %d left: %d", keeper->max_elem_num, keeper->del_elem_num_once_when_full, MESA_htable_get_elem_num(keeper->cert_cache));
}
int ret = MESA_htable_add(ctx->ref_keeper->cert_cache, ctx->key, ctx->key_len, (void *)kyr);
pthread_rwlock_unlock(&(keeper->rwlock));
if(ret < 0)
{
key_keeper_free_keyring((struct keyring*)kyr);
}
else
{
TFE_LOG_DEBUG(keeper->logger, "Key keeper cache add key: %s", ctx->key);
}
}
promise_success(p, (void*)kyr);
keeper->stat.new_issue++;
key_keeper_free_keyring((struct keyring*)kyr);
}
else
{
promise_failed(p, FUTURE_ERROR_EXCEPTION, "generate X509 cert failed");
}
break;
}
}
return;
}
void key_keeper_statistic(struct key_keeper *keeper, struct key_keeper_stat* result)
{
if (!keeper->no_cache)
{
// pthread_rwlock_rdlock(&(keeper->rwlock));
keeper->stat.cached_num=MESA_htable_get_elem_num(keeper->cert_cache);
// pthread_rwlock_unlock(&(keeper->rwlock));
}
*result = keeper->stat;
return;
}