This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
tango-tfe/platform/src/proxy.cpp

805 lines
28 KiB
C++

/*
* Proxy engine, built around libevent 2.x.
*/
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/prctl.h>
#include <netinet/in.h>
#include <sys/un.h>
#include <sys/stat.h>
#include <assert.h>
#include <signal.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <pthread.h>
#include <getopt.h>
#include <libgen.h>
#include <unistd.h>
#include <sys/syscall.h>
#include <event2/event.h>
#include <event2/dns.h>
#include <event2/listener.h>
#include <event2/bufferevent.h>
#include <event2/bufferevent_ssl.h>
#include <event2/buffer.h>
#include <event2/thread.h>
#include <MESA/MESA_handle_logger.h>
#include <MESA/MESA_prof_load.h>
#include <fieldstat/fieldstat_easy.h>
#include <tfe_utils.h>
#include <tfe_future.h>
#include <tfe_stream.h>
#include <tfe_proxy.h>
#include <tfe_plugin.h>
#include <tfe_cmsg.h>
#include <tfe_resource.h>
#include <tfe_packet_io.h>
#include <tfe_packet_io_fs.h>
#include <platform.h>
#include <proxy.h>
#include <tcp_stream.h>
//#include <acceptor_kni_v1.h>
//#include <acceptor_kni_v2.h>
//#include <acceptor_kni_v3.h>
#include <acceptor_kni_v4.h>
#include <watchdog_kni.h>
#include <watchdog_tfe.h>
#include <key_keeper.h>
#include <watchdog_3rd_device.h>
#include <timestamp.h>
/* Breakpad */
#include <MESA/breakpad_mini.h>
/* Systemd */
#include <systemd/sd-daemon.h>
#include <MESA/maat.h>
extern struct tcp_policy_enforcer *tcp_policy_enforcer_create(void *logger);
extern struct chaining_policy_enforcer *chaining_policy_enforcer_create(void *logger);
extern struct ssl_policy_enforcer *ssl_policy_enforcer_create();
extern enum ssl_stream_action ssl_policy_enforce(struct ssl_stream *upstream, void *u_para);
static int signals[] = {SIGHUP, SIGPIPE, SIGUSR1, SIGUSR2};
/* Global Resource */
void * g_default_logger = NULL;
struct tfe_proxy * g_default_proxy = NULL;
bool g_print_to_stderr = true;
int worker_thread_ready = 0;
/* Per thread resource */
thread_local unsigned int __currect_thread_id = 0;
thread_local void * __currect_default_logger = NULL;
#define TFE_VAR_VERSION_CATTER(v) __attribute__((__used__)) const char * TFE_VERSION_version_##v = NULL
#define TFE_VAR_VERSION_EXPEND(v) TFE_VAR_VERSION_CATTER(v)
extern "C"
{
/* VERSION TAG */
#ifdef TFE_VAR_VERSION
TFE_VAR_VERSION_EXPEND(TFE_VAR_VERSION);
#else
static __attribute__((__used__)) const char * TFE_VERSION_version_UNKNOWN = NULL;
#endif
#undef TFE_VAR_VERSION_CATTER
#undef TFE_VAR_VERSION_EXPEND
}
/* VERSION STRING */
#ifdef TFE_GIT_VERSION
static __attribute__((__used__)) const char * __tfe_version = TFE_GIT_VERSION;
#else
static __attribute__((__used__)) const char * tfe_version = "Unknown";
#endif
struct tfe_thread_ctx * tfe_proxy_thread_ctx_acquire(struct tfe_proxy * ctx)
{
unsigned int min_thread_id = 0;
unsigned int min_load;
static unsigned int counter=0;
counter++;
// least_conn
if (ctx->load_balance == LEAST_CONN)
{
for (unsigned int tid = 0; tid < ctx->nr_work_threads; tid++)
{
struct tfe_thread_ctx * thread_ctx = ctx->work_threads[tid];
unsigned int thread_load = ATOMIC_READ(&thread_ctx->load);
if (tid == 0)
{
min_thread_id = tid;
min_load = thread_load;
continue;
}
min_thread_id = min_load > thread_load ? tid : min_thread_id;
min_load = min_load > thread_load ? thread_load : min_load;
}
}
// round_robin
else
{
min_thread_id = counter % ctx->nr_work_threads;
}
ATOMIC_INC(&ctx->work_threads[min_thread_id]->load);
return ctx->work_threads[min_thread_id];
}
void tfe_proxy_thread_ctx_release(struct tfe_thread_ctx * thread_ctx)
{
ATOMIC_DEC(&thread_ctx->load);
}
/* 检查本进程是否通过SYSTEMD启动 */
static int check_is_started_by_notify()
{
char * notify_socket = getenv("NOTIFY_SOCKET");
return notify_socket == NULL ? 0 : 1;
}
int tfe_thread_set_affinity(int core_id)
{
int num_cores = sysconf(_SC_NPROCESSORS_ONLN);
if (core_id < 0 || core_id >= num_cores)
{
return EINVAL;
}
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(core_id, &cpuset);
return pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
}
int tfe_proxy_fds_accept(struct tfe_proxy *ctx, int fd_downstream, int fd_upstream, int fd_fake_c, int fd_fake_s, struct tfe_cmsg *cmsg)
{
struct tfe_thread_ctx * worker_thread_ctx = tfe_proxy_thread_ctx_acquire(ctx);
struct tfe_stream * stream = tfe_stream_create(ctx, worker_thread_ctx);
enum tfe_stream_proto stream_protocol;
uint8_t stream_protocol_in_char = 0;
int tcp_passthrough = -1;
uint16_t size = 0;
int result = 0;
result = tfe_cmsg_get_value(cmsg, TFE_CMSG_TCP_RESTORE_PROTOCOL, (unsigned char *)&stream_protocol_in_char, sizeof(stream_protocol_in_char), &size);
if (unlikely(result < 0))
{
TFE_LOG_ERROR(ctx->logger, "failed at fetch connection's protocol from cmsg: %s", strerror(-result));
goto __errout;
}
stream_protocol = (enum tfe_stream_proto)stream_protocol_in_char;
tfe_stream_option_set(stream, TFE_STREAM_OPT_SESSION_TYPE, &stream_protocol, sizeof(stream_protocol));
tfe_stream_cmsg_setup(stream, cmsg);
if (ctx->tcp_options.enable_overwrite <= 0)
{
result = tfe_cmsg_get_value(cmsg, TFE_CMSG_TCP_PASSTHROUGH, (unsigned char *)&tcp_passthrough, sizeof(tcp_passthrough), &size);
if (result < 0)
{
TFE_LOG_ERROR(ctx->logger, "failed at fetch connection's tcp_passthrough from cmsg: %s", strerror(-result));
// goto __errout;
}
}
/* FOR DEBUG */
if (unlikely(ctx->tcp_all_passthrough) || tcp_passthrough > 0)
{
bool __true = true;
uint8_t ssl_intercept_status = SSL_ACTION_PASSTHROUGH;
enum tfe_stream_proto __session_type = STREAM_PROTO_PLAIN;
tfe_stream_option_set(stream, TFE_STREAM_OPT_PASSTHROUGH, &__true, sizeof(__true));
tfe_stream_option_set(stream, TFE_STREAM_OPT_SESSION_TYPE, &__session_type, sizeof(__session_type));
tfe_cmsg_set(cmsg, TFE_CMSG_SSL_PASSTHROUGH_REASON, (const unsigned char *)"TCP Passthrough", (uint16_t)strlen("TCP Passthrough"));
tfe_cmsg_set(cmsg, TFE_CMSG_SSL_INTERCEPT_STATE, (const unsigned char *)&ssl_intercept_status, (uint16_t)sizeof(ssl_intercept_status));
}
TFE_LOG_DEBUG(ctx->logger, "%p: fetch tcp options: cmsg's tcp_passthrough: %d, conf's tcp_passthrough: %d, enalbe passthrough: %d",
stream, tcp_passthrough, ctx->tcp_all_passthrough, (ctx->tcp_all_passthrough > 0 || tcp_passthrough > 0) ? 1 : 0);
result = tfe_stream_init_by_fds(stream, fd_downstream, fd_upstream, fd_fake_c, fd_fake_s);
if (result < 0)
{
TFE_LOG_ERROR(ctx->logger, "%p, Fds(downstream = %d, upstream = %d, type = %d) accept failed.",
stream, fd_downstream, fd_upstream, stream_protocol); goto __errout;
}
else
{
TFE_LOG_DEBUG(ctx->logger, "%p, Fds(downstream = %d, upstream = %d, type = %d) accepted.",
stream, fd_downstream, fd_upstream, stream_protocol);
}
return 0;
__errout:
if(stream != NULL) tfe_stream_destory((struct tfe_stream_private *)stream);
return -1;
}
void tfe_proxy_loopbreak(tfe_proxy * ctx)
{
event_base_loopbreak(ctx->evbase);
}
void tfe_proxy_free(tfe_proxy * ctx)
{
return;
}
static void __dummy_event_handler(evutil_socket_t fd, short what, void * arg)
{
struct tfe_thread_ctx *ctx = (struct tfe_thread_ctx *)arg;
struct timespec now;
clock_gettime(CLOCK_MONOTONIC, &now);
ATOMIC_SET(&(ctx->lastime), now.tv_sec);
// TFE_LOG_DEBUG(g_default_logger, "Worker thread %d Update time %lds", ctx->thread_id, now.tv_sec);
while (ATOMIC_READ(&(ctx->proxy->make_work_thread_sleep)) > 0)
{
TFE_LOG_ERROR(g_default_logger, "recv SIGUSR1, make worker thread[%d] %d sleep", ctx->thread_id, ctx->readable_tid);
sleep(1);
}
}
static void __signal_handler_cb(evutil_socket_t fd, short what, void * arg)
{
tfe_proxy * ctx = (tfe_proxy *) arg;
struct maat *maat=NULL;
const char *profile_path = "./conf/tfe/tfe.conf";
int log_level=LOG_LEVEL_FATAL;
switch (fd)
{
case SIGTERM:
case SIGQUIT:
case SIGHUP:
TFE_LOG_ERROR(ctx->logger, "recv SIGHUP, reload zlog.conf");
MESA_handle_runtime_log_reconstruction(NULL);
MESA_load_profile_int_def(profile_path, "maat", "log_level", &(log_level), LOG_LEVEL_FATAL);
maat = tfe_get_maat_handle();
if(maat)
{
maat_reload_log_level(maat, (enum log_level)log_level);
}
break;
case SIGUSR1:
// enable work thread sleep
TFE_LOG_ERROR(ctx->logger, "recv SIGUSR1, make worker thread sleep");
ATOMIC_SET(&(ctx->make_work_thread_sleep), 1);
break;
case SIGUSR2:
// disable work thread sleep
TFE_LOG_ERROR(ctx->logger, "recv SIGUSR2, wake worker thread from sleep");
ATOMIC_ZERO(&(ctx->make_work_thread_sleep));
break;
case SIGPIPE:
TFE_PROXY_STAT_INCREASE(STAT_SIGPIPE, 1);
TFE_LOG_ERROR(ctx->logger, "Warning: Received SIGPIPE; ignoring.\n");
break;
default: TFE_LOG_ERROR(ctx->logger, "Warning: Received unexpected signal %i\n", fd);
break;
}
}
static void __gc_handler_cb(evutil_socket_t fd, short what, void * arg)
{
tfe_proxy *ctx = (tfe_proxy *)arg;
for (int i = 0; i < TFE_STAT_MAX; i++)
{
long long delta = ATOMIC_EXCHANGE(&(ctx->stat_val[i]), 0);
fieldstat_easy_counter_incrby(ctx->fs_handle, 0, ctx->fs_id[i], NULL, 0, delta);
}
if (ctx->kni_v4_acceptor != NULL)
packet_io_fs_dump(ctx->kni_v4_acceptor->packet_io_fs);
timestamp_update();
return;
}
static void * tfe_work_thread(void * arg)
{
struct tfe_thread_ctx * ctx = (struct tfe_thread_ctx *) arg;
struct timeval timer_delay = {2, 0};
ctx->readable_tid = syscall(SYS_gettid);
struct event * ev = event_new(ctx->evbase, -1, EV_PERSIST, __dummy_event_handler, ctx);
if (unlikely(ev == NULL))
{
TFE_LOG_ERROR(g_default_logger, "Failed at creating dummy event for thread %u", ctx->thread_id);
exit(EXIT_FAILURE);
}
evtimer_add(ev, &timer_delay);
__currect_thread_id = ctx->thread_id;
char thread_name[16];
snprintf(thread_name, sizeof(thread_name), "tfe:worker-%d", ctx->thread_id);
prctl(PR_SET_NAME, (unsigned long long) thread_name, NULL, NULL, NULL);
char affinity[32] = {0};
if (ctx->proxy->enable_cpu_affinity)
{
tfe_thread_set_affinity(ctx->proxy->cpu_affinity_mask[ctx->thread_id + 1]);
snprintf(affinity, sizeof(affinity), "affinity cpu%d", ctx->proxy->cpu_affinity_mask[ctx->thread_id + 1]);
}
TFE_LOG_INFO(g_default_logger, "Work thread %u %s is running...", ctx->thread_id, ctx->proxy->enable_cpu_affinity ? affinity : "");
event_base_dispatch(ctx->evbase);
assert(0);
event_free(ev);
TFE_LOG_ERROR(g_default_logger, "Work thread %u is exit...", ctx->thread_id);
return (void *) NULL;
}
void tfe_proxy_work_thread_create_ctx(struct tfe_proxy * proxy)
{
unsigned int i = 0;
for (i = 0; i < proxy->nr_work_threads; i++)
{
proxy->work_threads[i] = ALLOC(struct tfe_thread_ctx, 1);
proxy->work_threads[i]->thread_id = i;
proxy->work_threads[i]->evbase = event_base_new();
proxy->work_threads[i]->dnsbase = evdns_base_new(proxy->work_threads[i]->evbase, EVDNS_BASE_INITIALIZE_NAMESERVERS);
proxy->work_threads[i]->evhttp = key_keeper_evhttp_init(proxy->work_threads[i]->evbase, proxy->work_threads[i]->dnsbase, proxy->key_keeper_handler);
proxy->work_threads[i]->proxy = proxy;
}
return;
}
int tfe_proxy_work_thread_run(struct tfe_proxy * proxy)
{
struct tfe_thread_ctx * __thread_ctx = NULL;
unsigned int i = 0;
int ret = 0;
for (i = 0; i < proxy->nr_work_threads; i++)
{
__thread_ctx = proxy->work_threads[i];
struct timespec now;
clock_gettime(CLOCK_MONOTONIC, &now);
ATOMIC_SET(&(__thread_ctx->lastime), now.tv_sec);
ret = pthread_create(&__thread_ctx->thr, NULL, tfe_work_thread, (void *) __thread_ctx);
if (unlikely(ret < 0))
{
TFE_LOG_ERROR(proxy->logger, "Failed at pthread_create() for thread %d, error %d: %s", i, errno,
strerror(errno));
/* after log, reset errno */
errno = 0;
return -1;
}
}
return 0;
}
int tfe_proxy_config(struct tfe_proxy * proxy, const char * profile)
{
/* Worker threads */
MESA_load_profile_uint_def(profile, "system", "nr_worker_threads", &proxy->nr_work_threads, 1);
MESA_load_profile_uint_def(profile, "system", "enable_cpu_affinity", &proxy->enable_cpu_affinity, 0);
MESA_load_profile_uint_range(profile, "system", "cpu_affinity_mask", TFE_THREAD_MAX, proxy->cpu_affinity_mask);
// LEAST_CONN = 0; ROUND_ROBIN = 1,
MESA_load_profile_uint_def(profile, "system", "load_balance", (unsigned int *)&proxy->load_balance, ROUND_ROBIN);
if (proxy->nr_work_threads < 1 || proxy->nr_work_threads > TFE_THREAD_MAX)
{
TFE_LOG_ERROR(g_default_logger, "'nr_worker_threads' is invalid, only support [1, %d].", TFE_THREAD_MAX);
return -1;
}
if (proxy->enable_cpu_affinity)
{
unsigned int num_cores = sysconf(_SC_NPROCESSORS_ONLN);
if (proxy->nr_work_threads > num_cores - 2)
{
TFE_LOG_ERROR(g_default_logger, "'nr_worker_threads' is invalid, suggest [1, cpu_cores - 2].");
return -1;
}
for (unsigned int i = 0; i < proxy->nr_work_threads; i++)
{
if (proxy->cpu_affinity_mask[i] <= 0 || proxy->cpu_affinity_mask[i] >= num_cores)
{
TFE_LOG_ERROR(g_default_logger, "'cpu_affinity_mask' is invalid, only support [1, %d].", num_cores);
return -1;
}
}
}
/* Debug */
MESA_load_profile_uint_def(profile, "debug", "passthrough_all_tcp", &proxy->tcp_all_passthrough, 0);
/* ratelimit */
MESA_load_profile_uint_def(profile, "ratelimit", "read_rate", &proxy->rate_limit_options.read_rate, 0);
MESA_load_profile_uint_def(profile, "ratelimit", "read_burst", &proxy->rate_limit_options.read_burst, 0);
MESA_load_profile_uint_def(profile, "ratelimit", "write_rate", &proxy->rate_limit_options.write_rate, 0);
MESA_load_profile_uint_def(profile, "ratelimit", "write_burst", &proxy->rate_limit_options.write_burst, 0);
if(proxy->rate_limit_options.read_rate != 0
|| proxy->rate_limit_options.read_burst != 0
|| proxy->rate_limit_options.write_rate != 0
|| proxy->rate_limit_options.write_burst != 0)
{
proxy->en_rate_limit = 1;
}
/* TCP options, -1 means unset, we shall not call setsockopt */
MESA_load_profile_int_def(profile, "tcp", "sz_rcv_buffer", &proxy->tcp_options.sz_rcv_buffer, -1);
MESA_load_profile_int_def(profile, "tcp", "sz_snd_buffer", &proxy->tcp_options.sz_snd_buffer, -1);
MESA_load_profile_int_def(profile, "tcp", "enable_overwrite", &proxy->tcp_options.enable_overwrite, -1);
MESA_load_profile_int_def(profile, "tcp", "tcp_nodelay", &proxy->tcp_options.tcp_nodelay, -1);
MESA_load_profile_int_def(profile, "tcp", "so_keepalive", &proxy->tcp_options.so_keepalive, -1);
MESA_load_profile_int_def(profile, "tcp", "tcp_keepidle", &proxy->tcp_options.tcp_keepidle, -1);
MESA_load_profile_int_def(profile, "tcp", "tcp_keepintvl", &proxy->tcp_options.tcp_keepintvl, -1);
MESA_load_profile_int_def(profile, "tcp", "tcp_keepcnt", &proxy->tcp_options.tcp_keepcnt, -1);
MESA_load_profile_int_def(profile, "tcp", "tcp_user_timeout", &proxy->tcp_options.tcp_user_timeout, -1);
MESA_load_profile_int_def(profile, "tcp", "tcp_ttl_upstream", &proxy->tcp_options.tcp_ttl_upstream, -1);
MESA_load_profile_int_def(profile, "tcp", "tcp_ttl_downstream", &proxy->tcp_options.tcp_ttl_downstream, -1);
MESA_load_profile_int_def(profile, "traffic_steering", "enable_steering_http", &proxy->traffic_steering_options.enable_steering_http, 0);
MESA_load_profile_int_def(profile, "traffic_steering", "enable_steering_ssl", &proxy->traffic_steering_options.enable_steering_ssl, 0);
MESA_load_profile_int_def(profile, "traffic_steering", "so_mask_client", &proxy->traffic_steering_options.so_mask_client, 0x11);
MESA_load_profile_int_def(profile, "traffic_steering", "so_mask_server", &proxy->traffic_steering_options.so_mask_server, 0x22);
MESA_load_profile_string_def(profile, "traffic_steering", "device_client", proxy->traffic_steering_options.device_client, sizeof(proxy->traffic_steering_options.device_client), "eth_client");
MESA_load_profile_string_def(profile, "traffic_steering", "device_server", proxy->traffic_steering_options.device_server, sizeof(proxy->traffic_steering_options.device_server), "eth_server");
return 0;
}
static const char * __str_stat_spec_map[] =
{
[STAT_SIGPIPE] = "SIGPIPE",
[STAT_FD_OPEN_BY_KNI_ACCEPT] = "fd_rx",
[STAT_FD_CLOSE_BY_KNI_ACCEPT_FAIL] = "fd_rx_err",
[STAT_FD_CLOSE] = "fd_inst_cls",
[STAT_STREAM_OPEN] = "stm_open",
[STAT_STREAM_CLS] = "stm_cls",
[STAT_STREAM_CLS_DOWN_EOF] = "dstm_eof",
[STAT_STREAM_CLS_UP_EOF] = "ustm_eof",
[STAT_STREAM_CLS_DOWN_ERR] = "dstm_err",
[STAT_STREAM_CLS_UP_ERR] = "ustm_err",
[STAT_STREAM_CLS_KILL] = "stm_kill",
[STAT_STREAM_INTERCEPT] = "stm_incpt",
[STAT_STREAM_BYPASS] = "stm_byp",
[STAT_STREAM_INCPT_BYTES] = "stm_incpt_B",
[STAT_STREAM_INCPT_DOWN_BYTES] = "dstm_incpt_B",
[STAT_STREAM_INCPT_UP_BYTES] = "ustm_incpt_B",
[STAT_STREAM_TCP_PLAIN] = "plain",
[STAT_STREAM_TCP_SSL] = "ssl",
[STAT_STEERING_SSL_CONN] = "stee_ssl_conn",
[STAT_STEERING_HTTP_CONN] = "stee_http_conn",
[STAT_STEERING_CLIENT_TX_B] = "stee_c_tx_B",
[STAT_STEERING_SERVER_RX_B] = "stee_s_rx_B",
[STAT_STEERING_SERVER_TX_B] = "stee_s_tx_B",
[STAT_STEERING_CLIENT_RX_B] = "stee_c_rx_B",
[STAT_STEERING_CLIENT_ERR] = "stee_c_err",
[STAT_STEERING_SERVER_ERR] = "stee_s_err",
[STAT_STEERING_CLIENT_EOF] = "stee_c_eof",
[STAT_STEERING_SERVER_EOF] = "stee_s_eof",
[TFE_STAT_MAX] = NULL
};
int tfe_stat_init(struct tfe_proxy *proxy, const char *profile)
{
int output_cycle = 0;
char output_file[TFE_STRING_MAX] = {0};
MESA_load_profile_string_def(profile, "STAT", "output_file", output_file, sizeof(output_file), "log/tfe.fs4");
MESA_load_profile_int_def(profile, "STAT", "output_cycle", &(output_cycle), 5);
proxy->fs_handle = fieldstat_easy_new(1, "tfe", NULL, 0);
fieldstat_easy_enable_auto_output(proxy->fs_handle, output_file, output_cycle);
for (int i = 0; i < TFE_STAT_MAX; i++)
{
proxy->fs_id[i] = fieldstat_easy_register_counter(proxy->fs_handle, __str_stat_spec_map[i]);
}
return 0;
}
void tfe_proxy_acceptor_init(struct tfe_proxy *proxy, const char *profile)
{
#if 0
MESA_load_profile_uint_def(profile, "system", "enable_kni_v1", &proxy->en_kni_v1_acceptor, 0);
MESA_load_profile_uint_def(profile, "system", "enable_kni_v2", &proxy->en_kni_v2_acceptor, 0);
MESA_load_profile_uint_def(profile, "system", "enable_kni_v3", &proxy->en_kni_v3_acceptor, 0);
MESA_load_profile_uint_def(profile, "system", "enable_kni_v4", &proxy->en_kni_v4_acceptor, 0);
int ret = proxy->en_kni_v1_acceptor + proxy->en_kni_v2_acceptor + proxy->en_kni_v3_acceptor + proxy->en_kni_v4_acceptor;
CHECK_OR_EXIT((ret == 1), "Invalid KNI acceptor. Exit.");
if (proxy->en_kni_v1_acceptor)
{
g_default_proxy->kni_v1_acceptor = acceptor_kni_v1_create(proxy, profile, proxy->logger);
CHECK_OR_EXIT(g_default_proxy->kni_v1_acceptor, "Failed at init KNIv1 acceptor. Exit. ");
}
if (proxy->en_kni_v2_acceptor)
{
g_default_proxy->kni_v2_acceptor = acceptor_kni_v2_create(g_default_proxy, profile, g_default_logger);
CHECK_OR_EXIT(g_default_proxy->kni_v2_acceptor, "Failed at init KNIv2 acceptor. Exit. ");
}
if (proxy->en_kni_v3_acceptor)
{
g_default_proxy->kni_v3_acceptor = acceptor_kni_v3_create(g_default_proxy, profile, g_default_logger);
CHECK_OR_EXIT(g_default_proxy->kni_v3_acceptor, "Failed at init KNIv3 acceptor. Exit. ");
}
if (proxy->en_kni_v4_acceptor)
{
g_default_proxy->kni_v4_acceptor = acceptor_kni_v4_create(g_default_proxy, profile);
CHECK_OR_EXIT(g_default_proxy->kni_v4_acceptor, "Failed at init KNIv4 acceptor. Exit. ");
}
#endif
g_default_proxy->kni_v4_acceptor = acceptor_kni_v4_create(g_default_proxy, profile);
CHECK_OR_EXIT(g_default_proxy->kni_v4_acceptor, "Failed at init KNIv4 acceptor. Exit. ");
return;
}
static void usage(char *cmd)
{
fprintf(stderr, "USAGE: %s [OPTIONS]\n", cmd);
fprintf(stderr, " -v -- show version\n");
fprintf(stderr, " -g -- generate coredump\n");
fprintf(stderr, " -h -- show help info\n\n");
fprintf(stderr, "kill -s SIGHUP $pid -- reload zlog configure\n");
fprintf(stderr, "kill -s SIGUSR1 $pid -- make worker thread sleep\n");
fprintf(stderr, "kill -s SIGUSR2 $pid -- wake worker thread from sleep\n");
}
int main(int argc, char * argv[])
{
const char * main_profile = "./conf/tfe/tfe.conf";
const char * future_profile= "./conf/tfe/future.conf";
const char * zlog_profile = "./conf/tfe/zlog.conf";
int ret = 0;
int opt = 0;
bool to_generate_a_segv = false;
while ((opt = getopt(argc, argv, "vgh")) != -1)
{
switch (opt)
{
case 'v':
fprintf(stderr, "Tango Frontend Engine, Version: %s\n", tfe_version());
return 0;
case 'g':
fprintf(stderr, "Tango Frontend Engine, prepare to generate a coredump.");
to_generate_a_segv = true;
break;
case 'h': /* fall through */
default:
usage(argv[0]);
return 0;
}
}
fprintf(stderr, "Tango Frontend Engine, Version: %s", __tfe_version);
if (0 != MESA_handle_runtime_log_creation(zlog_profile))
{
fprintf(stderr, "MESA_handle_runtime_log_creation return error\n");
exit(EXIT_FAILURE);
}
/* adds locking, only required if accessed from separate threads */
evthread_use_pthreads();
g_default_logger = (void *)MESA_create_runtime_log_handle("tfe", RLOG_LV_DEBUG);
if (unlikely(g_default_logger == NULL))
{
TFE_LOG_ERROR(g_default_logger, "Failed at creating default logger: %s", "log/tfe.log");
exit(EXIT_FAILURE);
}
/* PROXY INSTANCE */
g_default_proxy = ALLOC(struct tfe_proxy, 1);
assert(g_default_proxy);
strcpy(g_default_proxy->name, "tfe");
g_default_proxy->breakpad = breakpad_init(main_profile, "system", g_default_logger, tfe_version());
CHECK_OR_EXIT(g_default_proxy->breakpad, "Failed at starting breakpad. Exit.");
if (to_generate_a_segv)
{
breakpad_segv_generate();
}
future_promise_library_init(future_profile);
/* CONFIG */
ret = tfe_proxy_config(g_default_proxy, main_profile);
CHECK_OR_EXIT(ret == 0, "Failed at loading profile %s, Exit.", main_profile);
/* PERFOMANCE MONITOR */
tfe_stat_init(g_default_proxy, main_profile);
/* LOGGER */
g_default_proxy->logger = g_default_logger;
/* MAIN THREAD EVBASE */
g_default_proxy->evbase = event_base_new();
CHECK_OR_EXIT(g_default_proxy->evbase, "Failed at creating evbase for main thread. Exit.");
/* GC EVENT */
g_default_proxy->gcev = event_new(g_default_proxy->evbase, -1, EV_PERSIST, __gc_handler_cb, g_default_proxy);
CHECK_OR_EXIT(g_default_proxy->gcev, "Failed at creating GC event. Exit. ");
/* KEY_KEEP INIT */
g_default_proxy->key_keeper_handler = key_keeper_init(main_profile, "key_keeper", g_default_logger);
CHECK_OR_EXIT(g_default_proxy->key_keeper_handler, "Failed at init Key keeper. Exit.");
/* RESOURCE INIT */
ret = tfe_env_init();
CHECK_OR_EXIT(ret == 0, "TFE bussiness resource init failed. Exit.");
/* SSL INIT */
g_default_proxy->ssl_mgr_handler = ssl_manager_init(main_profile, "ssl", g_default_proxy->evbase, g_default_proxy->key_keeper_handler, g_default_logger);
CHECK_OR_EXIT(g_default_proxy->ssl_mgr_handler, "Failed at init SSL manager. Exit.");
for (size_t i = 0; i < (sizeof(signals) / sizeof(int)); i++)
{
g_default_proxy->sev[i] = evsignal_new(g_default_proxy->evbase, signals[i], __signal_handler_cb, g_default_proxy);
CHECK_OR_EXIT(g_default_proxy->sev[i], "Failed at create signal event. Exit.");
evsignal_add(g_default_proxy->sev[i], NULL);
}
struct timeval gc_delay = {0, 500 * 1000}; // Microseconds, we set 500 miliseconds here.
evtimer_add(g_default_proxy->gcev, &gc_delay);
timestamp_update();
/* WORKER THREAD CTX Create */
tfe_proxy_work_thread_create_ctx(g_default_proxy);
tfe_proxy_acceptor_init(g_default_proxy, main_profile);
/* SCM Sender */
g_default_proxy->scm_sender = sender_scm_init(main_profile, "kni", g_default_logger);
CHECK_OR_EXIT(g_default_proxy->scm_sender != NULL, "Failed at creating scm sender, Exit.");
/* PLUGIN INIT */
unsigned int plugin_iterator = 0;
for (struct tfe_plugin * plugin_iter = tfe_plugin_iterate(&plugin_iterator);
plugin_iter != NULL; plugin_iter = tfe_plugin_iterate(&plugin_iterator))
{
ret = plugin_iter->on_init(g_default_proxy);
CHECK_OR_EXIT(ret >= 0, "Plugin %s init failed. Exit. ", plugin_iter->symbol);
TFE_LOG_INFO(g_default_logger, "Plugin %s initialized. ", plugin_iter->symbol);
}
g_default_proxy->int_ply_enforcer = intercept_policy_enforcer_create(g_default_logger);
CHECK_OR_EXIT(g_default_proxy->int_ply_enforcer != NULL, "Failed at creating intercept policy enforcer. Exit.");
g_default_proxy->tcp_ply_enforcer = tcp_policy_enforcer_create(g_default_logger);
CHECK_OR_EXIT(g_default_proxy->tcp_ply_enforcer != NULL, "Failed at creating tcp policy enforcer. Exit.");
g_default_proxy->ssl_ply_enforcer = ssl_policy_enforcer_create();
CHECK_OR_EXIT(g_default_proxy->ssl_ply_enforcer != NULL, "Failed at creating ssl policy enforcer. Exit.");
g_default_proxy->chain_ply_enforcer = chaining_policy_enforcer_create(g_default_logger);
CHECK_OR_EXIT(g_default_proxy->chain_ply_enforcer != NULL, "Failed at creating chaining policy enforcer. Exit.");
ssl_manager_set_new_upstream_cb(g_default_proxy->ssl_mgr_handler, ssl_policy_enforce, g_default_proxy->ssl_ply_enforcer);
ret = tfe_proxy_work_thread_run(g_default_proxy);
CHECK_OR_EXIT(ret == 0, "Failed at creating thread. Exit.");
/* Watchdog KNI */
g_default_proxy->watchdog_kni = watchdog_kni_create(g_default_proxy, main_profile, g_default_logger);
CHECK_OR_EXIT(g_default_proxy->watchdog_kni != NULL, "Failed at creating KNI watchdog, Exit.");
/* Watchdog TFE */
g_default_proxy->watchdog_tfe = watchdog_tfe_create(g_default_proxy, main_profile, g_default_logger);
CHECK_OR_EXIT(g_default_proxy->watchdog_tfe != NULL, "Failed at creating TFE watchdog, Exit.");
/* Watchdog 3rd device */
g_default_proxy->watchdog_3rd_device = watchdog_3rd_device_create(g_default_proxy, main_profile, g_default_logger);
CHECK_OR_EXIT(g_default_proxy->watchdog_3rd_device != NULL, "Failed at creating 3rd device watchdog, Exit.");
TFE_LOG_ERROR(g_default_logger, "Tango Frontend Engine initialized, Version: %s.", __tfe_version);
/* If TFE is run by systemd's notify, then tell the systemd our tfe is ready.
* and disable the stderr log, only print logs into files */
if(check_is_started_by_notify())
{
sd_notify(0, "READY=1");
g_print_to_stderr = false;
sleep(1);
}
g_print_to_stderr = false;
worker_thread_ready = 1;
event_base_dispatch(g_default_proxy->evbase);
return 0;
}
const char * tfe_version()
{
return __tfe_version;
}
unsigned int tfe_proxy_get_work_thread_count(void)
{
return g_default_proxy->nr_work_threads;
}
struct event_base * tfe_proxy_get_work_thread_evbase(unsigned int thread_id)
{
assert(thread_id < g_default_proxy->nr_work_threads);
return g_default_proxy->work_threads[thread_id]->evbase;
}
struct evdns_base* tfe_proxy_get_work_thread_dnsbase(unsigned int thread_id)
{
assert(thread_id < g_default_proxy->nr_work_threads);
return g_default_proxy->work_threads[thread_id]->dnsbase;
}
struct evhttp_connection* tfe_proxy_get_work_thread_evhttp(unsigned int thread_id)
{
assert(thread_id < g_default_proxy->nr_work_threads);
return g_default_proxy->work_threads[thread_id]->evhttp;
}
struct event_base * tfe_proxy_get_gc_evbase(void)
{
return g_default_proxy->evbase;
}
struct fieldstat_easy *tfe_proxy_get_fs_handle(void)
{
return g_default_proxy->fs_handle;
}
void * tfe_proxy_get_error_logger(void)
{
return g_default_logger;
}
int tfe_proxy_ssl_add_trust_ca(const char* pem_file)
{
return ssl_manager_add_trust_ca(g_default_proxy->ssl_mgr_handler, pem_file);
}
int tfe_proxy_ssl_del_trust_ca(const char* pem_file)
{
return ssl_manager_del_trust_ca(g_default_proxy->ssl_mgr_handler, pem_file);
}
int tfe_proxy_ssl_add_crl(const char* pem_file)
{
return ssl_manager_add_crl(g_default_proxy->ssl_mgr_handler, pem_file);
}
int tfe_proxy_ssl_del_crl(const char* pem_file)
{
return ssl_manager_del_crl(g_default_proxy->ssl_mgr_handler, pem_file);
}
void tfe_proxy_ssl_reset_trust_ca(void)
{
ssl_manager_reset_trust_ca(g_default_proxy->ssl_mgr_handler);
return;
}
void tfe_proxy_ssl_reset_trust_ca_finish(void)
{
ssl_manager_reset_trust_ca_finish(g_default_proxy->ssl_mgr_handler);
return;
}